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Organization of the supplementary material
In this appendix, we present the detailed proof of our main results (Theorem 1 and Proposition 2) and
additional qualitative results. We follow the proof scheme of Garreau and von Luxburg [2020]. In a
nutshell, when λ “ 0, the main problem

β̂λn P argmin
βPRd`1

" n
ÿ

i“1
πipyi ´ β

Jziq
2 ` λ ‖β‖2

*

(1)

reduces to least squares, with β̂n given in closed-form by

β̂n “ pZ
JWZq´1ZJWy ,

with Z P t0, 1unˆd the matrix whose lines are given by the zis and W the diagonal matrix such that
Wi,i “ πi. Setting Σ̂n :“ 1

nZ
JWZ and Γ̂n :“ 1

nZ
JWy, the study of β̂n can be split in two parts: the

examination of Σ̂n (Section 1), and then that of Γ̂n (Section 2). We put everything together in Section 3,
proving the concentration of β̂n and providing the expression of βf . All technical results are collected in
Section 4. Finally, additional qualitative results are presented in Section 5.

1 Study of Σ̂n

We start by the study of Σ̂n, first computing its limit Σ when n Ñ `8 (Section 1.1). We show that Σ
is invertible in closed-form in Section 1.2. We then proceed to show that Σ̂n is concentrated around Σ in
Section 1.3. We conclude this section by obtaining a control on the operator norm of Σ´1 (Section 1.4),
a technical requirement for the proof of the main result.

1.1 Computation of Σ
By definition of Z and W , the matrix Σ̂n can be written

Σ̂ “

¨

˚

˚

˚

˝

1
n

řn
i“1 πi

1
n

řn
i“1 πizi,1 ¨ ¨ ¨ 1

n

řn
i“1 πizi,d

1
n

řn
i“1 πizi,1

1
n

řn
i“1 πizi,1 ¨ ¨ ¨ 1

n

řn
i“1 πizi,1zi,d

...
...

. . .
...

1
n

řn
i“1 πizi,d

1
n

řn
i“1 πizi,1zi,d ¨ ¨ ¨ 1

n

řn
i“1 πizi,d

˛

‹

‹

‹

‚

P Rpd`1qˆpd`1q .

Recall that we defined the random variable z such that zi is i.i.d. z for any i, as well as π and
x the associated weights and perturbed samples. For any p ě 0, we also defined αp “ E rπ

śp
i“1 zis

(Definition 1). Taking the expectation with respect to z in the previous display, we obtain

Σj,k “

$

’

&

’

%

α0 if j “ k “ 0,
α1 if j “ 0 and k ą 0 or j ą 0 and k “ 0 or j “ k ą 0,
α2 otherwise.

As promised, it is possible to compute the α coefficients in closed-form. Let us denote by S the
number of superpixel deletions. Since the coordinates of z are i.i.d. Bernoulli with parameter 1{2, we
deduce that S is a binomial random variable of parameters d and 1{2. Note that, conditionally to S “ s,
ř

j zj “ d´ s and therefore π “ ψps{dq with

@t P r0, 1s, ψptq :“ exp
ˆ

´p1´
?

1´ tq2

2ν2

˙

(2)

as in the paper. As a consequence of these observations, we have:
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Figure 1: The first three α coefficients as a function of the bandwidth ν for d “ 50. In green the limit
value given by Lemma 1.

Proposition 1 (Computation of the α coefficients). Let p ě 0 be an integer. Then

αp “
1
2d

d
ÿ

s“0

ˆ

d´ p

s

˙

ψps{dq .

Proof. We write

αp “ E rπz1 ¨ ¨ ¨ zps

“

d
ÿ

s“0
Es rπz1 ¨ ¨ ¨ zpsP pS “ sq (law of total expectation)

“
1
2d

d
ÿ

s“0

ˆ

d

s

˙

Es rπz1 ¨ ¨ ¨ zp|z1 “ 1, . . . , zp “ 1sPs pz1 “ 1, . . . , zp “ 1q (S „ Bpn, 1{2q)

“
1
2d

d
ÿ

s“0

ˆ

d

s

˙

ψps{dqPs pz1 “ 1, . . . , zp “ 1q (definition of ψ)

αp “
1
2d

d
ÿ

s“0

ˆ

d

s

˙

pd´ pq!
d! ¨

pd´ sq!
pd´ s´ pq!ψps{dq (Lemma 3)

We conclude by some algebra.

It is quite straightforward to compute the limits of the α coefficients when ν Ñ `8. In fact, since
e´1{p2ν2

q ď ψptq ď 1 for any ν ą 0, we have the following bounds on αp:

Lemma 1 (Bounding the α coefficients). For any p ě 0, we have

e
´1
2ν2

2p ď αp ď
1
2p .

In particular, when ν Ñ `8, we have αp Ñ 1
2p for any p ě 0.

We demonstrate these approximations in Figure 1.

1.2 σ coefficients
Since the structure of Σ is the same as in the text case [Mardaoui and Garreau, 2021], we can invert it
similarly.

Proposition 2 (Inverse of Σ). For any d ě 1, recall that we defined
$

’

&

’

%

σ1 “ ´α1 ,

σ2 “
pd´2qα0α2´pd´1qα2

1`α0α1
α1´α2

,

σ3 “
α2

1´α0α2
α1´α2

,

and cd “ pd´ 1qα0α2 ´ dα
2
1 ` α0α1. Let us further define σ0 :“ pd´ 1qα2 ` α1. Assume that cd ‰ 0 and

α1 ‰ α2. Then Σ is invertible, and it holds that

Σ´1 “
1
cd

¨

˚

˚

˚

˚

˚

˚

˝

σ0 σ1 σ1 ¨ ¨ ¨ σ1
σ1 σ2 σ3 ¨ ¨ ¨ σ3

σ1 σ3 σ2
. . .

...
...

...
. . . . . . σ3

σ1 σ3 ¨ ¨ ¨ σ3 σ2

˛

‹

‹

‹

‹

‹

‹

‚

P Rpd`1qˆpd`1q . (3)
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Figure 2: The first four σ coefficients as a function of the bandwidth ν for d “ 50. In green, the limit
values given by Eq. (4).

From Lemma 1, we deduce

σ0 Ñ
d` 1

4 , σ1 Ñ
´1
2 , σ2 Ñ 1 , σ3 Ñ 0 , and cd Ñ 1{4 . (4)

when ν Ñ `8. We illustrate this in Figure 2. Now, Proposition 2
requires α1 ‰ α2 and cd ‰ 0 in order for Σ to be invertible. One of the
consequences of the following result is that these conditions are always
satisfied.

Proposition 3 (Σ is invertible). Let d ě 1 and ν ą 0. Then α1´α2 ě

e
´1
2ν2 {4 and cd ě e

´1
ν2 {4.

Note that in this case the lower bound obtained on cd is tight. We show
the evolution of cd with respect to the bandwidth in Figure 3.
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Figure 3: Evolution
of cd with respect to
ν when d “ 50.

Proof. By definition of the α coefficients and Pascal identity, it holds that

αp ´ αp`1 “
1
2d

d
ÿ

s“0

ˆ

d´ p´ 1
s´ 1

˙

ψ
´ s

d

¯

, (5)

for any p ě 0. Since e´1{p2ν2
q ď ψptq ď 1 for any 1 ď t ď 1, we deduce from Eq. (5) that, for any p ě 0,

e
´1
2ν2

2p`1 ď αp ´ αp`1 ď
1

2p`1 . (6)

We deduce the lower bound on α1 ´ α2 by setting p “ 1 in the previous display.
Let us turn to cd. We write

cd “ dα1pα0 ´ α1q ´ pd´ 1qα0pα1 ´ α2q

“
1
4d

«

d ¨
d
ÿ

s“0

ˆ

d´ 1
s

˙

ψ
´ s

d

¯

¨

d
ÿ

s“0

ˆ

d´ 1
s´ 1

˙

ψ
´ s

d

¯

´ pd´ 1q ¨
d
ÿ

s“0

ˆ

d

s

˙

ψ
´ s

d

¯

¨

d
ÿ

s“0

ˆ

d´ 2
s´ 1

˙

ψ
´ s

d

¯

ff

(using Eq. (5))

cd “
1
4d

«

d
ÿ

s“0

ˆ

d´ 1
s

˙

ψ
´ s

d

¯

¨

d
ÿ

s“0
s

ˆ

d

s

˙

ψ
´ s

d

¯

´

d
ÿ

s“0

ˆ

d

s

˙

ψ
´ s

d

¯

¨

d
ÿ

s“0
s

ˆ

d´ 1
s

˙

ψ
´ s

d

¯

ff

,

where we used elementary properties of the binomial coefficients in the last display. For any 0 ď s ď d,
let us set

As :“
ˆ

d´ 1
s

˙
c

ψ
´ s

d

¯

, Bs :“ s

c

ψ
´ s

d

¯

, Cs :“
c

ψ
´ s

d

¯

, and Ds :“
ˆ

d

s

˙
c

ψ
´ s

d

¯

.

With these notation,

cd “
1
4d

«

ÿ

s

AsCs ¨
ÿ

s

BsDs ´
ÿ

s

AsBs ¨
ÿ

CsDs

ff

.

According to the four-letter identity (Proposition 13), we can rewrite cd as

cd “
1
4d

ÿ

săt

pAsDt ´AtDsqpCsBt ´ CtBsq

“
1
4d

ÿ

săt

pt´ sq

ˆˆ

d´ 1
s

˙ˆ

d

t

˙

´

ˆ

d´ 1
t

˙ˆ

d

s

˙˙

ψ
´ s

d

¯

ψ

ˆ

t

d

˙

cd “
1

d ¨ 4d
ÿ

săt

ˆ

d

s

˙ˆ

d

t

˙

ps´ tq2ψ
´ s

d

¯

ψ

ˆ

t

d

˙

.
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Since e´1{p2ν2
q ď ψptq ď 1 for any 1 ď t ď 1, all that is left to do is to control the double sum. According

to Proposition 14, we have
ÿ

săt

ˆ

d

s

˙ˆ

d

t

˙

ps´ tq2 “ d ¨ 4d´1 .

We deduce that
e
´1
2ν2

4 ď cd ď
1
4 . (7)

We conclude this section with useful relationships between α and σ coefficients.

Proposition 4 (Useful equalities). Let αp, σp, and cd be defined as above. Then it holds that

σ0α1 ` σ1α1 ` pd´ 1qσ1α2 “ 0 , (8)

σ1α1 ` σ2α1 ` pd´ 1qσ3α2 “ cd , (9)

σ1α1 ` σ2α2 ` σ3α1 ` pd´ 2qσ3α2 “ 0 , (10)

σ1α0 ` σ2α1 ` pd´ 1qσ3α1 “ 0 , (11)

σ0α0 ` dσ1α1 “ cd . (12)

Proof. Straightforward from the definitions.

1.3 Concentration of Σ̂n

We now turn to the concentration of Σ̂n around Σ. More precisely, we show that Σ̂n is close to Σ in
operator norm, with high probability. Since the definition of Σ̂n is identical to the one in the Tabular
LIME case, we can use the proof machinery of Garreau and von Luxburg [2020].

Proposition 5 (Concentration of Σ̂n). For any t ě 0,

P
ˆ∥∥∥Σ̂n ´ Σ

∥∥∥
op
ě t

˙

ď 4d ¨ exp
ˆ

´nt2

32d2

˙

.

Proof. We can write Σ̂ “ 1
n

ř

i πiZiZ
J
i . The summands are bounded i.i.d. random variables, thus we

can apply the matrix version of Hoeffding inequality. More precisely, the entries of Σ̂n belong to r0, 1s
by construction, and Lemma 1 guarantees that the entries of Σ also belong to r0, 1s. Therefore, if we set
Mi :“ 1

nπiZiZ
J
i ´ Σ, then the Mi satisfy the assumptions of Theorem 21 in Garreau and von Luxburg

[2020] and we can conclude since 1
n

ř

iMi “ Σ̂n ´ Σ.

1.4 Control of ‖Σ´1‖op

In this section, we obtain a control on the operator norm of the inverse covariance matrix. Our strategy
is to bound the norm of the σ coefficients. We start with the control of α2

1 ´ α0α2, a quantity appearing
in σ2 and σ3.

Lemma 2 (Control of α2
1 ´ α0α2). For any d ě 2, we have∣∣α2

1 ´ α0α2
∣∣ ď 1

2d .

Proof. By definition of the α coefficients, we know that

α2
1 ´ α0α2 “

1
4d

»

–

˜

d
ÿ

s“0

ˆ

d´ 1
s

˙

ψ
´ s

d

¯

¸2

´

˜

d
ÿ

s“0

ˆ

d

s

˙

ψ
´ s

d

¯

¸

¨

˜

d
ÿ

s“0

ˆ

d´ 2
s

˙

ψ
´ s

d

¯

¸

fi

fl .

Let us ignore the 1{4d normalization for now, and set ws :“
`

d
s

˘

ψ
`

s
d

˘

. Elementary manipulations of the
binomial coefficients allow us to rewrite the previous display as

˜

d
ÿ

s“0

d´ s

d
ws

¸2

´

˜

d
ÿ

s“0
ws

¸

¨

˜

d
ÿ

s“0

d´ s

d
¨
d´ s´ 1
d´ 1 ws

¸

. (13)

Let us notice that
d´ s

d
´
d´ s´ 1
d´ 1 “

s

dpd´ 1q .
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Thus we can split Eq. (13) in two parts.
The first part is reminiscent of the Cauchy-Schwarz-like expression that appears in the proof of

Proposition 3:
˜

d
ÿ

s“0

d´ s

d
ws

¸2

´

˜

d
ÿ

s“0
ws

¸

¨

˜

d
ÿ

s“0

pd´ sq2

d2 ws

¸

. (14)

We use, again, the four letter identity (Proposition 13) to bound this term. Namely, for any 0 ď s ď d,
let us set

As “ Bs :“ d´ s

d

?
ws , and Cs “ Ds :“

?
ws .

Then we can rewrite Eq. (14) as

ÿ

săt

pAsDt ´AtDsqpCsBt ´ CtBsq “
´1
d2

ÿ

săt

pt´ sq2
ˆ

d

s

˙ˆ

d

t

˙

ψ
´ s

d

¯

ψ

ˆ

t

d

˙

. (15)

According to Proposition 14, Eq. (15) is bounded by d ¨ 4d´1{d2 “ 4d´1{d.
The second part of Eq. (13) reads

˜

d
ÿ

s“0
ws

¸

¨

˜

d
ÿ

s“0

d´ s

d
¨

s

dpd´ 1qws

¸

.

Since ψ is bounded by 1, coming back to the definition of the ws, it is straightforward to show that
|
ř

s ws| ď 2d and that |
ř

s spd´ sqws| ď dpd ´ 1q2d´2. We deduce that (the absolute value of) this
second term is upper bounded by 4d´1{d.

Putting together the bounds obtained on both terms and renormalizing by 4d, we obtain that

∣∣α2
1 ´ α0α2

∣∣ ď 1
4d

„

4d´1

d
`

4d´1

d



“
1
2d .

We now have everything we need to provide reasonably tight upper bounds for the σ coefficients.

Proposition 6 (Bounding the σ coefficients). Let d ě 2. Then the following holds:

|σ0| ď
3d
4 , |σ1| ď

1
2 , |σ2| ď 2e

1
2ν2 , and |σ3| ď

2e
1

2ν2

d
.

Proof. From Lemma 1 and the definition of σ0, we have

|σ0| “ |pd´ 1qα2 ` α1| ď
d´ 1

4 `
1
2 “

d` 3
4 .

We deduce the first result since d ě 2. Next, since σ1 “ ´α1, we obtain |σ1| ď 1{2 directly from Lemma 1.
Regarding the last two coefficients, recall that Proposition 3 guarantees that their common denominator
α1 ´ α2 is lower bounded by e

´1
2ν2 {4. Since

pd´ 2qα0α2 ´ pd´ 1qα2
1 ` α0α1 “ cd ` α

2
1 ´ α0α2 ,

we can write σ2 “ pcd ` α
2
1 ´ α0α2q{pα1 ´ α2q and deduce that

|σ2| ď
1{4` 1{p2dq

e
´1
2ν2 {4

ď 2e
1

2ν2 ,

since, according to Eq. (7), cd ď 1{4 and α2
1 ´ α0α2 ď 1{p2dq according to Lemma 2. Finally, we write

|σ3| “
∣∣∣∣α2

1 ´ α0α2

α1 ´ α2

∣∣∣∣ ď 1{p2dq
e
´1
2ν2 {4

“
2e

1
2ν2

d
.

The bounds obtained in Proposition 6 immediately translate into a control of the Frobenius norm of
Σ´1, which in turn yields a control over the operator norm of Σ´1, as promised.

Corollary 1 (Control of
∥∥Σ´1

∥∥
op). Let d ě 2. Then

∥∥Σ´1
∥∥

op ď 8de
1
ν2 .
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Proof. Using Proposition 6, we write∥∥Σ´1∥∥2
F “

1
c2
d

“

σ2
0 ` 2dσ2

1 ` dσ
2
2 ` pd

2 ´ dqσ2
3
‰

ď 16e
1
ν2

„

9d2

16 `
2d
4 ` 4de

1
ν2 ` 4e

1
ν2



ď 61d2e
2
ν2 ,

where we used d ě 2 in the last display. Since the operator norm is upper bounded by the Frobenius
norm, we conclude observing that

?
61 ď 8.

Remark 1. The bound on∥∥Σ´1
∥∥

op is essentially tight
with respect to the dependency
in d, as can be seen in Figure 4.
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Figure 4: Evolution of
∥∥Σ´1

∥∥
op as a function of d for various

values of the bandwidth parameter. The linear dependency in
d is striking.

2 Study of Γ̂n
We now turn to the study of Γ̂n. We start by computing the limiting expression. Recall that we defined
Γ̂n “ 1

nZ
JWy, where y P Rd`1 is the random vector defined coordinate-wise by yi “ fpxiq. From the

definition of Γ̂n, it is straightforward that

Γ̂n “

¨

˚

˚

˚

˝

1
n

řn
i“1 πifpxiq

1
n

řn
i“1 πizi,1fpxiq

...
1
n

řn
i“1 πizi,dfpxiq

˛

‹

‹

‹

‚

P Rd`1 .

As a consequence, if we define Γf :“ ErΓ̂ns, it holds that

Γf “

¨

˚

˚

˚

˝

E rπfpxqs
E rπz1fpxqs

...
E rπzdfpxqs

˛

‹

‹

‹

‚

. (16)

We specialize Eq. (16) to shape detectors in Section 2.1 and linear models in Section 2.2. The concen-
tration of Γ̂n around Γ is obtained in Section 2.3.

2.1 Shape detectors
Recall that we defined

@x P r0, 1sD, fpxq “
ź

uPS
1xuąτ , (17)

with S “ tu1, . . . , uqu a fixed set of pixels indices and τ P p0, 1q a threshold. As in the paper, let us define
E “ tj s.t. Jj X S ‰ Hu denote the set of superpixels intersecting the shape, and

E` “ tj P E s.t. ξj ą τu and E´ “ tj P E s.t. ξj ď τu .

6



We also defined
S` “ tu P S s.t. ξu ą τu and S´ “ tu P S s.t. ξu ď τu .

In the main paper, we made the following simplifying assumption:

@j P E`, Jj X S´ “ H . (18)

This is not the case here. Unfortunately, without this assumption, the expression of Γf is slightly more
complicated and we need to generalize the definition of the α coefficients.

Definition 1 (Generalized α coefficients). For any p, q such that p` q ď d, we define

αp,q :“ E rπz1 ¨ ¨ ¨ zp ¨ p1´ zp`1q ¨ ¨ ¨ p1´ zp`qqs . (19)

We notice that, for any 1 ď p ď d, αp,0 “ αp. As it is the case with α coefficients, the generalized α
coefficients can be computed in closed-form:

Proposition 7 (Computation of the generalized α coefficients). Let p, q such that p`q ď d. Then

αp,q “
1
2d

d
ÿ

s“0

ˆ

d´ p´ q

s´ q

˙

ψ
´ s

d

¯

.

Proof. We follow the proof of Proposition 1.

αp,q “ E rπz1 ¨ ¨ ¨ zp ¨ p1´ zp`1q ¨ ¨ ¨ p1´ zp`qqs

“

d
ÿ

s“0
Es rπz1 ¨ ¨ ¨ zp ¨ p1´ zp`1q ¨ ¨ ¨ p1´ zp`qqs ¨ P pS “ sq

“
1
2d

d
ÿ

s“0

ˆ

d

s

˙

ψ
´ s

d

¯

Ps pz1 “ ¨ ¨ ¨ “ zp “ 1, zp`1 “ ¨ ¨ ¨ “ zp`q “ 0q

“
1
2d

d
ÿ

s“0

ˆ

d

s

˙

ψ
´ s

d

¯

ˆ

d´ p´ q

s´ q

˙ˆ

d

s

˙

(Lemma 4)

αp,q “
1
2d

d
ÿ

s“0

ˆ

d´ p´ q

s´ q

˙

ψ
´ s

d

¯

.

Notice that the expression of αp,q coincide with that of αp when q “ 0. We can now give the expression
of Γf for an elementary shape detector in the general case.

Proposition 8 (Computation of Γf , elementary shape detector). Assume that f is written as
in Eq. (17). Assume that for any j P E´, Jj X S´ “ H (otherwise Γf “ 0). Let p :“ |E´| and
q :“ |tj P E`, Jj X S´ ‰ Hu|. Then E rπfpxqs “ αp,q and

E rπzjfpxqs “

$

’

&

’

%

0 if j P tj P E` s.t. Jj X S´ ‰ Hu ,
αp,q if j P E´ ,
αp`1,q otherwise.

Taking q “ 0 (a consequence of Eq. (18)) in Proposition 8 directly yields E rπfpxqs “ αp and

E rπzjfpxqs “

#

αp if j P E´ ,
αp`1 otherwise.

Proof. We notice that, for any u P Jj ,

xu “ zjξu ` p1´ zjqξu .

There are four cases to consider when deciding whether xu ą τ or not:

• ξu ą τ and ξu ą τ , that is, j P E` and u P Jj X S`. Then xu ą τ a.s.;

• ξu ď τ and ξu ą τ , that is, j P E` and u P Jj X S´. Then xu ą τ if, and only if, zj “ 0;

• ξu ą τ and ξu ď τ , that is, j P E´ and u P Jj X S`. Then xu ą τ if, and only if, zj “ 1;
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• ξu ď τ and ξu ď τ , that is, j P E´ and u P Jj X S´. Then xu ď τ a.s., but this last case cannot
happen since we assume that for any j P E´, Jj X S´ “ H.

This case separation allows us to rewrite fpxq as

fpxq “
ź

uPS
1xuąτ (Eq. (17))

“
ź

jPE`

ź

uPJjXS´

p1´ zjq ¨
ź

jPE´

ź

uPJjXS`

zj

Since we assumed that for any j P E´, Jj X S´ “ H, then for any j P E´, Jj X S` ‰ H. Thus the
rightmost inner products are never empty, and since zj P t0, 1u a.s., we deduce that there are p terms
in the rightmost product. By definition of q, and again since 1 ´ zj P t0, 1u a.s., there are q terms in
the leftmost product. By definition of E` and E´, these products do not have any common terms. We
deduce that E rπfpxqs “ αp,q by definition of the generalized α coefficients.

When computing E rπzjfpxqs, there are several possibilities. First, if j P tj P E` s.t. Jj X S´ ‰ Hu,
since zjp1 ´ zjq “ 0 a.s., we deduce that E rπzjfpxqs “ 0. Second, if j P E´, since z2

j “ zj , we recover
E rπzjfpxqs “ E rπfpxqs “ αp,q. Finally, if j does not belong to one of these sets, then the rightmost
product gains one additional term and we obtain αp`1,q.

2.2 Linear model
In this section, we compute Γf for a linear f . As in the paper, we define

fpxq “
D
ÿ

u“1
λuxu , (20)

with λ1, . . . , λD P R arbitrary coefficients. By linearity, we just have to look into the case f : x ÞÑ xu
where u P t1, . . . , Du is a fixed pixel index.

Proposition 9 (Computation of Γf , linear case). Assume that f is defined as in Eq. (20) and u P Jj.
Then

E rπxus “ α1pξu ´ ξuq ` α0ξu ,

E rπzjxus “ α1pξu ´ ξuq ` α1ξu ,

and, for any k ‰ j,
E rπzkxus “ α2pξu ´ ξuq ` α1ξu .

Proof. As in the proof of Proposition 8, we notice that

xu “ zjξu ` p1´ zjqξu .

Then we write

E rπxus “ E
“

πpzjξu ` p1´ zjqξuq
‰

“ E
“

πzjpξu ´ ξuq ` πξu
‰

E rπxus “ α1pξu ´ ξuq ` α0ξu ,

where we used the definition of the α coefficients. Now let us compute E rπzjfpxqs:

E rπzjxus “ E
“

πzjpzjξu ` p1´ zjqξuq
‰

“ E
“

πzjppξu ´ ξuqzj ` ξuq
‰

(zj P t0, 1u a.s.)
E rπzjxus “ α1pξu ´ ξuq ` α1ξu .

And finally, for any k ‰ j,

E rπzkxus “ E
“

πzkppξu ´ ξuqzj ` ξuq
‰

“ α2pξu ´ ξuq ` α1ξu .
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2.3 Concentration of Γ̂n

We now show that Γ̂n is concentrated around Γf . Since the expression of Γ̂n is the same than in the
tabular case, and we assume that f is bounded on the support of x, the same reasoning as in the proof
of Proposition 24 in Garreau and von Luxburg [2020] can be applied.

Proposition 10 (Concentration of Γ̂n). Assume that f is bounded by M ą 0 on Supppxq. Then, for
any t ą 0, it holds that

P
´

‖Γ̂n ´ Γf‖ ě t
¯

ď 4dexp
ˆ

´nt2

32Md2

˙

.

Proof. Since f is bounded by M on Supppxq, it holds that |fpxq| ď M almost surely. We can then
proceed as in the proof of Proposition 24 in Garreau and von Luxburg [2020].

3 The study of βf

3.1 Concentration of β̂n

In this section we show the concentration of β̂n (Theorem 1 in the paper). The proof scheme follows
closely that of Garreau and von Luxburg [2020].

Theorem 1 (Concentration of β̂n). Assume that f is bounded by a constant M on the unit cube
r0, 1sD. Let ε ą 0 and η P p0, 1q. Let d be the number of superpixels used by LIME. Then, there exists
βf P Rd`1 such that, for every

n ě

S

max
˜

215d4e
2
ν2 ,

221d7 maxpM,M2qe
4
ν2

ε2

¸

log 8d
η

W

,

we have Pp‖β̂n ´ βf‖ ě εq ď η.

Proof. As in Garreau and von Luxburg [2020], the key idea of the proof is to notice that

‖β̂n ´ βf‖ ď 2
∥∥Σ´1∥∥

op ‖Γ̂´ Γf‖` 2
∥∥Σ´1∥∥2

op

∥∥Γf
∥∥ ‖Σ̂´ Σ‖op , (21)

provided that (i) ‖Σ´1pΣ̂´Σq‖op ď 0.32 (this is Lemma 27 in Garreau and von Luxburg [2020]. We are
going to build an event of probability at least 1´ η such that Σ̂n is close to Σ and Γ̂n is close from Γf .
The deterministic bound obtained on

∥∥Σ´1
∥∥

op together with the boundedness of f will allow us to show
that (ii)

∥∥Σ´1
∥∥

op ‖Γ̂´ Γf‖ ď ε{4 and (iii)
∥∥Σ´1

∥∥2
op

∥∥Γf
∥∥ ‖Σ̂´ Σ‖op ď ε{4.

We first show (i). Let us set n1 :“
Q

215d4e
2
ν2 log 8d

η

U

and t1 :“ 1
25de

1
ν2

. According to Proposition 5,
for any n ě n1,

P
ˆ∥∥∥Σ̂n ´ Σ

∥∥∥
op
ě t1

˙

ď 4d ¨ exp
ˆ

´n1t
2
1

32d2

˙

ď
η

2 .

Moreover, we know that
∥∥Σ´1

∥∥
op ď 8de

1
ν2 (Corollary 1). Since the operator norm is sub-multiplicative,

with probability greater than 1´ η{2, we have∥∥∥Σ´1pΣ̂n ´ Σq
∥∥∥

op
ď

∥∥Σ´1∥∥
op ¨

∥∥∥Σ̂n ´ Σ
∥∥∥

op
ď 8de

1
ν2 ¨ t1 “ 0.32 .

Now let us show (ii). Let us define n2 :“
R

215Md4e
2
ν2

ε2 log 8d
η

V

and t2 :“ ε

32de
1
ν2

. According to

Proposition 10, for any n ě n2, we have

P
´∥∥∥Γ̂n ´ Γ

∥∥∥ ě t2

¯

ď 4d ¨ exp
ˆ

´n2t
2
2

32Md2

˙

ď
η

2 .

Recall that
∥∥Σ´1

∥∥
op ď 8de

1
ν2 (Corollary 1): with probability higher than 1´ η{2,∥∥Σ´1∥∥

op ¨
∥∥∥Γ̂n ´ Γf

∥∥∥ ď 8de
1
ν2 ¨ t2 “

ε

4 .

Finally let us show (iii). Let us define n3 :“
R

221d7M2e
4
ν2

ε2 log 8d
η

V

and t3 :“ ε

28Md5{2e
2
ν2

. According to

Proposition 5, for any n ě n3, we have

P
ˆ∥∥∥Σ̂n ´ Σ

∥∥∥
op
ě t3

˙

ď 4d ¨ exp
ˆ

´n3t
2
3

32d2

˙

ď
η

2 .
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Since f is bounded by M , it is straightforward to show that
∥∥∥Γ̂f

∥∥∥ ď M ¨ d1{2. Moreover, recall that∥∥Σ´1
∥∥2

op ď 64d2e
2
ν2 . We deduce that, with probability at least η{2,

∥∥Σ´1∥∥2
op ¨

∥∥Γf
∥∥ ¨ ∥∥∥Σ̂n ´ Σ

∥∥∥
op
ď 64d2e

2
ν2 ¨Md1{2 ¨ t3 “

ε

4 .

Finally, we notice that both n2 and n3 are smaller than

n4 :“
S

221d7 maxpM,M2qe
4
ν2

ε2
log 8d

η

W

.

Thus (ii) and (ii) simultaneously happen on an event of probability greater than η{2 when n is larger
than n4. We conclude by a union bound argument.

Remark 2. In view of Remark 1, it seems difficult to improve much the rate of convergence given by
Theorem 1 with the current proof technology. Indeed, a careful inspection of the proof reveals that,
starting from Eq. (21), the control of

∥∥Σ´1
∥∥

op is key. Since the dependency in d seems tight, there is not
much hope for improvement.

3.2 General expression of βf

We are now able to recover Proposition 2 of the paper: the expression of βf is obtained simply by
multiplying Eq. (3) and (16). We also give the value of the intercept (β0 with our notation), which is
omitted in the paper for simplicity’s sake.

Corollary 2 (Computation of βf). Under the assumptions of Theorem 1.

βf0 “ c´1
d

"

σ0E rπfpxqs ` σ1

d
ÿ

j“1
E rπzjfpxqs

*

, (22)

and, for any 1 ď j ď d,

βfj “ c´1
d

"

σ1E rπfpxqs ` σ2E rπzjfpxqs ` σ3

d
ÿ

k“1
k‰j

E rπzkfpxqs
*

. (23)

3.3 Shape detectors
We now specialize Corollary 2 to the case of elementary shape detectors.

Proposition 11 (Expression of βf , shape detector). Let f be written as in Eq. (17). Assume that
for any j P E´, Jj X S´ “ H (otherwise βf “ 0). Let p and q as before. Then

βf0 “ c´1
d tσ0αp,q ` pσ1αp,q ` pd´ p´ qqαp`1,qu ,

for any j P E´,

βfj “ c´1
d tσ1αp,q ` σ2αp,q ` pp´ 1qσ2αp,q ` pd´ p´ qqσ3αp`1,qu ,

for any j P E` such that Jj X S´ ‰ H,

βfj “ c´1
d tσ1αp,q ` pσ3αp,q ` pd´ p´ qqαp`1,qu ,

and
βfj “ c´1

d tσ1αp,q ` σ2αp`1,q ` pσ3αp,q ` pd´ p´ q ´ 1qσ3αp`1,qu

otherwise.

Proof. Straightforward from Corollary 2 and Proposition 8.

Note that taking q “ 0 in Proposition 11 yields Proposition 3 of the paper.
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3.4 Linear models
We deduce from Proposition 9 the expression of βf for linear models. Let us define Mj the binary mask
associated to superpixel Jj and let ˝ be the termwise product.

Proposition 12 (Computation of βf , linear case). Assume that f is defined as in Eq. (20). Then

βf0 “
D
ÿ

u“1
λuξu “ fpξq ,

and, for any 1 ď j ď d,
βfj “

ÿ

uPJj

λupξu ´ ξuq “ fpMj ˝ pξ ´ ξqq .

It is interesting to compute prediction of the surrogate model at ξ:

βf0 ` β
f
1 ` ¨ ¨ ¨ ` β

f
d “ fpξq ` fpM1 ˝ pξ ´ ξqq ` ¨ ¨ ¨ ` fpMd ˝ pξ ´ ξqq “ fpξq .

Thus in the case of linear models, the limit explanation is faithful.

Proof. By linearity, we can start by computing βf for the function x ÞÑ xu. Assume that j P t1, . . . , du
is such that u P Jj . According to Corollary 2 and Proposition 9,

βf0 “
1
cd

"

σ0E rπfpxqs ` σ1

d
ÿ

j“1
E rπzjfpxqs

*

“
1
cd

"

σ0pα1pξu ´ ξuq ` α0ξuq ` σ1pα1pξu ´ ξuq ` α1ξuq ` pd´ 1qσ1pα2pξu ´ ξuq ` α1ξuq

*

“
1
cd

"

pσ0α1 ` σ1α1 ` pd´ 1qσ1α2qpξu ´ ξuq ` pσ0α0 ` dσ1α1qξu

*

βf0 “ ξu ,

where we used Eqs. (8) and (12) in the last display.

βfj “
1
cd

"

σ1E rπfpxqs ` σ2E rπzjfpxqs ` σ3

d
ÿ

k“1
k‰j

E rπzkfpxqs
*

“
1
cd

"

σ1pα1pξu ´ ξuq ` α0ξuq ` σ2pα1pξu ´ ξuq ` α1ξuq ` pd´ 1qσ3pα2pξu ´ ξuq ` α1ξuq

*

“
1
cd

"

pσ1α1 ` σ2α1 ` pd´ 1qσ3α2qpξu ´ ξuq ` pσ1α0 ` σ2α1 ` pd´ 1qσ3α1qξu

*

βfj “ ξu ´ ξu ,

where we used Eqs. (9) and (11) in the last display. Finally, let k ‰ j:

βfk “
1
cd

"

σ1E rπfpxqs ` σ2E rπzkfpxqs ` σ3

d
ÿ

k1“1
k1‰j,k

E rπzk1fpxqs
*

“
1
cd

"

σ1pα1pξu ´ ξuq ` α0ξuq ` σ2pα2pξu ´ ξuq ` α1ξuq ` σ3pα1pξu ´ ξuq ` α1ξuq

` pd´ 2qσ3pα2pξu ´ ξuq ` α1ξuq

*

“
1
cd

"

pσ1α1 ` σ2α2 ` σ3α1 ` pd´ 2qσ3α2qpξu ´ ξuq ` pσ1α0 ` σ2α1 ` pd´ 1qσ3α1qξu

*

βfk “ 0 ,

where we used Eqs. (10) and (11) in the last display. We deduce the result by linearity.

4 Technical results
4.1 Probability computations
In this section we collect all elementary probability computations necessary for the computation of the
α coefficients and the generalized α coefficients.
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Lemma 3 (Activated only). Let p ě 0 be an integer. Then

Ps pz1 “ 1, . . . , zp “ 1q “ pd´ pq!
d! ¨

pd´ sq!
pd´ s´ pq! .

Proof. Conditionally to S “ s, the choice of S is uniform among all subsets of t1, . . . , du. Therefore we
recover the proof of Lemma 4 in Mardaoui and Garreau [2021].

The following lemma is a slight generalization, which coincides when q “ 0.

Lemma 4 (Activated and deactivated). Let p, q be integers. Then

Ps pz1 “ ¨ ¨ ¨ “ zp “ 1, zp`1 “ ¨ ¨ ¨ “ zp`q “ 0q “
ˆ

d´ p´ q

s´ q

˙ˆ

d

s

˙´1
.

Proof. Conditionally to S “ s, the deletions are uniformly distributed. Therefore, the total number of
cases is

`

d
s

˘

. Now, the favorable cases correspond to superpixels p` 1, . . . , p` q deleted: these are q fixed
deletions. We also need to have superpixels 1, . . . , p activated, these are p indices that are not available
to deletions. In total, we need to place s ´ q deletions among d ´ p ´ q possibilities. We deduce the
result.

4.2 Algebraic identities
In this section we collect some identities used throughout the proofs.

Proposition 13 (Four letter identity). Let A, B, C, and D be four finite sequences of real numbers.
Then it holds that

ÿ

j

AjCj ¨
ÿ

j

BjDj ´
ÿ

j

AjBj ¨
ÿ

CjDj “
ÿ

jăk

pAjDk ´AkDjqpCjBk ´ CkBjq .

Proof. See the proof of Exercise 3.7 in Steele [2004].

Proposition 14 (A combinatorial identity). Let d ě 1 be an integer. Then

Vd :“
ÿ

jăk

ˆ

d

j

˙ˆ

d

k

˙

pj ´ kq2 “ d ¨ 4d´1 .

Proof. We first notice that

Vd “
1
2
ÿ

j,k

ˆ

d

j

˙ˆ

d

k

˙

pj ´ kq2 (by symmetry)

“
ÿ

j,k

ˆ

d

j

˙ˆ

d

k

˙

k2 ´
ÿ

j,k

ˆ

d

j

˙ˆ

d

k

˙

jk (developing the square)

“
ÿ

j

ˆ

d

j

˙

ÿ

k

ˆ

d

k

˙

k2 ´

˜

ÿ

j

ˆ

d

j

˙

j

¸2

.

It is straightforward to show that

ÿ

j

ˆ

d

j

˙

“ 2d ,
ÿ

j

ˆ

d

j

˙

j “ d ¨ 2d´1 , and
ÿ

j

ˆ

d

j

˙

j2 “ dpd` 1q ¨ 2d´2 .

We deduce that

cd “ 2d ¨ dpd` 1q ¨ 2d´2 ´ d2 ¨ 22d´2 “ d ¨ 4d´1 .

5 Additional results
In this section, we present additional qualitative results on the three pre-trained models used in the paper:
MobileNetV2 [Sandler et al., 2018], DenseNet121 [Huang et al., 2017], and InceptionV3 [Szegedy et al.,
2016].
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candle (conf. 42%) segmentation ξ LIME int. gradient linear approx.

hornbill (conf. 17%) segmentation ξ LIME int. gradient linear approx.

corn (conf. 29%) segmentation ξ LIME int. gradient linear approx.

liner (conf. 77%) segmentation ξ LIME int. gradient linear approx.

bookshop (conf. 32%) segmentation ξ LIME int. gradient linear approx.

Band_Aid (conf. 13%) segmentation ξ LIME int. gradient linear approx.

wig (conf. 29%) segmentation ξ LIME int. gradient linear approx.

radio_telescope (conf. 13%)segmentation ξ LIME int. gradient linear approx.

Figure 5: Empirical explanations, integrated gradient, and approximated explanations for images from
the ILSVRC2017 dataset. The model explained is the likelihood function associated to the top class given
by MobileNetV2.
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miniskirt (conf. 57%) segmentation ξ LIME int. gradient linear approx.

horse_cart (conf. 17%) segmentation ξ LIME int. gradient linear approx.

lesser_panda (conf. 99%)segmentation ξ LIME int. gradient linear approx.

snail (conf. 84%) segmentation ξ LIME int. gradient linear approx.

damselfly (conf. 63%) segmentation ξ LIME int. gradient linear approx.

meerkat (conf. 15%) segmentation ξ LIME int. gradient linear approx.

otter (conf. 27%) segmentation ξ LIME int. gradient linear approx.

dining_table (conf. 18%)segmentation ξ LIME int. gradient linear approx.

Figure 6: Empirical explanations, integrated gradient, and approximated explanations for images from
the ILSVRC2017 dataset. The model explained is the likelihood function associated to the top class given
by DenseNet121.
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lion (conf. 36%) segmentation ξ LIME int. gradient linear approx.

studio_couch (conf. 9%)segmentation ξ LIME int. gradient linear approx.

abaya (conf. 65%) segmentation ξ LIME int. gradient linear approx.

goldfish (conf. 99%) segmentation ξ LIME int. gradient linear approx.

trailer_truck (conf. 35%)segmentation ξ LIME int. gradient linear approx.

pomegranate (conf. 94%)segmentation ξ LIME int. gradient linear approx.

anole (conf. 65%) segmentation ξ LIME int. gradient linear approx.

stethoscope (conf. 47%)segmentation ξ LIME int. gradient linear approx.

Figure 7: Empirical explanations, integrated gradient, and approximated explanations for images from
the ILSVRC2017 dataset. The model explained is the likelihood function associated to the top class given
by InceptionV3.
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