
Scalable Optimal Transport in High Dimensions for Graph Distances, Embedding Alignment, and More

A. Complexity analysis
Sparse Sinkhorn. A common way of achieving a high
p1 and low p2 in LSH is via the AND-OR construction.
In this scheme we calculate B · r hash functions, di-
vided into B sets (hash bands) of r hash functions each.
A pair of points is considered as neighbors if any hash
band matches completely. Calculating the hash buckets
for all points with b hash buckets per function scales as
O((n +m)dBbr) for the hash functions we consider. As
expected, for the tasks and hash functions we investigated
we obtain approximately m/br and n/br neighbors, with
br hash buckets per band. Using this we can fix the num-
ber of neighbors to a small, constant β in expectation with
br = min(n,m)/β. We thus obtain a sparse cost matrix
Csp with O(max(n,m)β) non-infinite values and can cal-
culate s and t in linear time O(Nsink max(n,m)β), where

Nsink ≤ 2+
−4 ln(mini,j{K̃ij |K̃ij>0}mini,j{pi,qj})

ε (see The-
orem 4) denotes the number of Sinkhorn iterations. Calcu-
lating the hash buckets with r = logmin(n,m)−log β

log b takes
O((n +m)dBb(logmin(n,m) − log β)/ log b). Since B,
b, and β are small, we obtain roughly log-linear scaling with
the number of points overall, i.e. O(n log n) for n ≈ m.

LCN-Sinkhorn. Both choosing landmarks via k-means++
sampling and via k-means with a fixed number of itera-
tions have the same runtime complexity of O((n+m)ld).
Precomputing W can be done in time O(nl2+l3). The low-
rank part of updating the vectors s and t can be computed in
O(nl+ l2 + lm), with l chosen constant, i.e. independently
of n and m. Since sparse Sinkhorn with LSH has a log-
linear runtime we again obtain log-linear overall runtime
for LCN-Sinkhorn.

B. Limitations
Sparse Sinkhorn. Using a sparse approximation for K
works well in the common case when the regularization
parameter λ is low and the cost function varies enough
between data pairs, such that the transport plan P resembles
a sparse matrix. However, it can fail if the cost between
pairs is very similar or the regularization is very high, if the
dataset contains many hubs, i.e. points with a large number
of neighbors, or if the distributions p or q are spread very
unevenly. Furthermore, sparse Sinkhorn can be too unstable
to train a model from scratch, since randomly initialized
embeddings often have no close neighbors (see Sec. 8). Note
also that LSH requires the cost function to be associated
with a metric space, while regular Sinkhorn can be used
with arbitrary costs.

Note that we are only interested in an approximate solution
with finite error ε. We therefore do not need the kernel
matrix to be fully indecomposable or have total support,
which would be necessary and sufficient for a unique (up to

a scalar factor) and exact solution, respectively (Sinkhorn
& Knopp, 1967). However, the sparse approximation is not
guaranteed to have support (Def. 1), which is necessary and
sufficient for the Sinkhorn algorithm to converge. The ap-
proximated matrix is actually very likely not to have support
if we use one LSH bucket per sample. This is due to the non-
quadratic block structure resulting from every point only
having non-zero entries for points in the other data set that
fall in the same bucket. We can alleviate this problem by
using unbalanced OT, as proposed in Sec. 6, or (empirically)
the AND-OR construction. We can also simply choose to
ignore this as long as we limit the maximum number of
Sinkhorn iterations. On the 3D point cloud and random
data experiments we indeed ignored this issue and actually
observed good performance. Experiments with other LSH
schemes and the AND-OR construction showed no perfor-
mance improvement despite the associated cost matrices
having support. Not having support therefore seems not to
be an issue in practice, at least for the data we investigated.

LCN-Sinkhorn. The LCN approximation is guaranteed to
have support due to the Nyström part. Other weak spots of
sparse Sinkhorn, such as very similar cost between pairs,
high regularization, or data containing many hubs, are also
usually handled well by the Nyström part of LCN. Highly
concentrated distributions p and q can still have adverse
effects on LCN-Sinkhorn. We can compensate for these
by sampling landmarks or neighbors proportional to each
point’s probability mass.

The Nyström part of LCN also has its limits, though. If
the regularization parameter is low or the cost function
varies greatly, we observed stability issues (over- and un-
derflows) of the Nyström approximation because of the
inverse A−1, which cannot be calculated in log-space. The
Nyström approximation furthermore is not guaranteed to
be non-negative, which can lead to catastrophic failures if
the matrix product in Eq. (2) becomes negative. In these
extreme cases we also observed catastrophic elimination
with the correction Ksp

∆ . Since a low entropy regularization
essentially means that optimal transport is very local, we
recommend using sparse Sinkhorn in these scenarios. This
again demonstrates the complementarity of the sparse ap-
proximation and Nyström: In cases where one fails we can
often resort to the other.

C. Proof of Theorem 1
By linearity of expectation we obtain

E[Ki,ik −KNys,i,ik] = E[Ki,ik]− E[KNys,i,ik]

= E[e−δk/λ]− E[KNys,i,ik]
(20)

with the distance to the kth-nearest neighbor δk. Note that
without loss of generality we can assume unit manifold

Scalable Optimal Transport in High Dimensions for Graph Distances, Embedding Alignment, and More

volume and obtain the integral resulting from the first expec-
tation as (ignoring boundary effects that are exponentially
small in n, see Percus & Martin (1998))

E[e−δk/λ] ≈ n!

(n− k)!(k − 1)!

∫ ((d/2)!)1/d√
π

0

e−r/λVd(r)
k−1(1− Vd(r))

n−k ∂Vd(r)

∂r
dr,

(21)

with the volume of the d-ball

Vd(r) =
πd/2rd

(d/2)!
. (22)

Since this integral does not have an analytical solution we
can either calculate it numerically or lower bound it us-
ing Jensen’s inequality (again ignoring exponentially small
boundary effects)

E[e−δk/λ] ≥ e−E[δk]/λ ≈ exp

(
− ((d/2)!)1/d√

πλ

(k − 1 + 1/d)!

(k − 1)!

n!

(n+ 1/d)!

)
.

(23)

To upper bound the second expectation E[KNys,i,ik] we now
denote the distance between two points by ria = ∥xpi −
xa∥2, the kernel by kia = e−ria/λ and the inter-landmark
kernel matrix by KL. We first consider

p(xj | xj is kth-nearest neighbor) =

=

∫
p(δk = rij | xi,xj)p(xi)p(xj) dxi

=

∫
p(δk = rij | rij)p(rij | xj) drij p(xj)

=

∫
p(δk = rij | rij)p(rij) drij p(xj)

=

∫
p(δk = rij) drij p(xj)

= p(xj) = p(xi),

(24)

where the third step is due to the uniform distribution. Since
landmarks are more than 2R apart we can approximate

K−1
L = (Il + 1l×lO(e−2R/λ))−1 = In − 1l×lO(e−2R/λ),

(25)

where 1l×l denotes the constant 1 matrix, with the number
of landmarks l. We can now use (1) the fact that landmarks
are arranged apriori, (2) Hölder’s inequality, (3) Eq. (24),

and (4) Eq. (25) to obtain

E[KNys,i,ik] = E

[
l∑

a=1

l∑
b=1

kia(K
−1
L)abkikb

]
(1)
=

l∑
a=1

l∑
b=1

(K−1
L)abE[kiakikb]

(2)

≤
l∑

a=1

l∑
b=1

(K−1
L)abE[k2ia]1/2E[k2ikb]

1/2

(3)
=

l∑
a=1

l∑
b=1

(K−1
L)abE[k2ia]1/2E[k2ib]1/2

(4)
=

l∑
a=1

E[k2ia]−O(e−2R/λ).

(26)

Since landmarks are more than 2R apart we have VM ≥
lVd(R), where VM denotes the volume of the manifold.
Assuming Euclideanness in Vd(R) we can thus use the fact
that data points are uniformly distributed to obtain

E[k2ia] = E[e−2ria/λ]

=
1

VM

∫
e−2r/λ ∂Vd(r)

∂r
dr

≤ 1

lVd(R)

∫
e−2r/λ ∂Vd(r)

∂r
dr

=
1

lVd(R)

∫ R

0

e−2r/λ ∂Vd(r)

∂r
dr +O(e−2R/λ)

=
d

lRd

∫ R

0

e−2r/λrd−1 dr +O(e−2R/λ)

=
d (Γ(d)− Γ(d, 2R/λ))

l(2R/λ)d
+O(e−2R/λ)

(27)

and finally

E[KNys,i,ik] ≤
l∑

a=1

E[k2ia]−O(e−2R/λ)

≤ d (Γ(d)− Γ(d, 2R/λ))

(2R/λ)d
+O(e−2R/λ).

(28)

D. Proof of Theorem 2
We first prove two lemmas that will be useful later on.

Lemma A. Let K̃ be the Nyström approximation of the
similarity matrix Kij = e−∥xi−xj∥2/λ, with all Nyström
landmarks being at least D apart and data samples being

Scalable Optimal Transport in High Dimensions for Graph Distances, Embedding Alignment, and More

no more than r away from its closest landmark. Then

K̃ij = K̃2L
ij +O(e−2max(D−r,D/2)/λ), (29)

where K̃2L denotes the Nyström approximation using only
the two landmarks closest to the points xi and xj .

Proof. We denote the landmarks closest to the two points
i and j with the indices a and b, or jointly with A, and all
other landmarks with C. We furthermore denote the kernel
between the point i and the point a as kia = e−∥xa−xj∥2/λ

and the vector of kernels between a set of points A and a
point i as kAi.

We can split up A−1 used in the Nyström approximation

K̃ = UA−1V , (30)

where Acd = kcd, Uic = kic, and Vdj = kdj , into relevant
blocks via

A−1 =

(
A2L B
BT Aother

)−1

=

(
A−1

2L +A−1
2L B(A/A2L)

−1BTA−1
2L −A−1

2L B(A/A2L)
−1

−(A/A2L)
−1BTA−1

2L (A/A2L)
−1

)
,

(31)

where A/A2L = Aother − BTA−1
2L B denotes the Schur

complement. We can thus write the entries of the Nyström
approximation as

K̃ij = kT
AiA

−1
2L kAj

+ kT
AiA

−1
2L B(A/A2L)

−1BTA−1
2L kAj

− kT
AiA

−1
2L B(A/A2L)

−1kCj

− kT
Ci(A/A2L)

−1BTA−1
2L kAj

+ kT
Ci(A/A2L)

−1kCj

= K̃2L
ij + (kT

Ci − kT
AiA

−1
2L B)

(Aother −BTA−1
2L B)−1

(kCj −BTA−1
2L kAj).

(32)

Interestingly, the difference to K̃2L
ij is again a Nyström ap-

proximation where each factor is the difference between the
correct kernel (e.g. kCj) and the previous Nyström approxi-
mation of this kernel (e.g. BTA−1

2L kAj).

We next bound the inverse, starting with

BTA−1
2L B =

(
kCa kCb

) 1

1− k2ab

(
1 −kab

−kab 1

)(
kT
Ca

kT
Cb

)
=

1

1− k2ab

(
kCak

T
Ca − kabkCak

T
Cb − kabkCbk

T
Ca + kCbk

T
Cb
)

= 1l−2×l−2(1 +O(e−2D/λ)) · 4O(e−2D/λ)

= 1l−2×l−2O(e−2D/λ),

(33)

where 1l−2×l−2 denotes the constant 1 matrix, with the num-
ber of landmarks l. The last steps use the fact that landmarks
are more than D apart and 0 ≤ k ≤ 1 for all k. For this
reason we also have Aother = Il−2 + 1l−2×l−2O(e−D/λ)
and can thus use the Neumann series to obtain

(Aother −BTA−1
2L B)−1 = (Il−2 + 1l−2×l−2O(e−D/λ))−1

= Il−2 − 1l−2×l−2O(e−D/λ).

(34)

We can analogously bound the other terms in Eq. (32) to
obtain

K̃ij = K̃2L
ij + (kT

Ci − 11×l−2O(e−D/λ))

(Il−2 − 1l−2×l−2O(e−D/λ))

(kCj − 1l−2×1O(e−D/λ))

(1)
= K̃2L

ij + kT
CikCj +O(e−(D+max(D−r,D/2))/λ)

= K̃2L
ij +

∑
1≤k≤l
k ̸=a,b

e−(∥xi−xk∥2+∥xk−xj∥2)/λ

+O(e−(D+max(D−r,D/2))/λ)

(2)

≤ K̃2L
ij + de−2max(D−r,D/2)/λ

+O(e−max(2(D−r),(1+
√
3)D/2)/λ)

= K̃2L
ij +O(e−2max(D−r,D/2)/λ),

(35)

where d denotes the dimension of x. Step (1) follows from
the fact that any points’ second closest landmarks must be at
least max(D − r,D/2) away (since landmarks are at least
D apart). This furthermore means that any point can have
at most d second closest landmarks at this distance, which
we used in step (2).

Lemma B. Let K̃ be the Nyström approximation of the
similarity matrix Kij = e−∥xi−xj∥2/λ. Let xi and xj

be data points with equal L2 distance ri and rj to all l
landmarks, which have the same distance ∆ > 0 to each
other. Then

K̃ij =
le−(ri+rj)/λ

1 + (l − 1)e−∆/λ
(36)

Proof. The inter-landmark distance matrix is

A = e−∆/λ1l×l + (1− e−∆/λ)Il, (37)

where 1l×l denotes the constant 1 matrix. Using the identity

(b1n×n + (a− b)In)
−1 =

−b

(a− b)(a+ (n− 1)b)
1n×n +

1

a− b
In

(38)

Scalable Optimal Transport in High Dimensions for Graph Distances, Embedding Alignment, and More

we can compute

K̃ij = Ui,:A
−1V:,j

=
(
e−ri/λ e−ri/λ · · ·

)(−e−∆/λ

(1− e−∆/λ)(1 + (l − 1)e−∆/λ)
1l×l +

1

1− e−∆/λ
Il

)e−rj/λ

e−rj/λ

...


=

e−(ri+rj)/λ

1− e−∆/λ

(
−l2e−∆/λ

1 + (l − 1)e−∆/λ
+ l

)
=

e−(ri+rj)/λ

1− e−∆/λ

l − le−∆/λ

1 + (l − 1)e−∆/λ

=
le−(ri+rj)/λ

1 + (l − 1)e−∆/λ
.

(39)

Moving on to the theorem, first note that it analyzes the
maximum error realizable under the given constraints, not
an expected error. Ksp is correct for all pairs inside a cluster
and 0 otherwise. We therefore obtain the maximum error by
considering the closest possible pair between clusters. By
definition, this pair has distance D − 2r and thus

max
xpi,xqj

K −Ksp = e−(D−2r)/λ (40)

LCN is also correct for all pairs inside a cluster, so we
again consider the closest possible pair xi, xj between
clusters. We furthermore use Lemma A to only consider the
landmarks of the two concerned clusters, adding an error of
O(e−2(D−r)/λ), since r ≪ D. Hence,

K2L
LCN,ij =

(
e−r/λ e−(D−r)/λ

)(1 e−D/λ

e−D/λ 1

)−1(
e−(D−r)/λ

e−r/λ

)
=

1

1− e−2D/λ

(
e−r/λ e−(D−r)/λ

)(1 −e−D/λ

−e−D/λ 1

)(
e−(D−r)/λ

e−r/λ

)
=

1

1− e−2D/λ

(
e−r/λ e−(D−r)/λ

)(e−(D−r)/λ − e−(D+r)/λ)
e−r/λ − e−(2D−r)/λ

)
=

1

1− e−2D/λ
(e−D/λ − e−(D+2r)/λ + e−D/λ − e−(3D−2r)/λ)

=
e−D/λ

1− e−2D/λ
(2− e−2r/λ − e−(2D−2r)/λ)

= e−D/λ(2− e−2r/λ)−O(e−2(D−r)/λ)

(41)

and thus

max
xpi,xqj

K −KLCN = e−(D−2r)/λ(1− e−2r/λ(2− e−2r/λ)

+O(e−2D/λ)).

(42)

For pure Nyström we need to consider the distances inside
a cluster. In the worst case two points overlap, i.e. Kij = 1,
and lie at the boundary of the cluster. Since r ≪ D we
again use Lemma A to only consider the landmark in the
concerned cluster, adding an error of O(e−2(D−r)/λ).

KNys,ij = e−2r/λ +O(e−2(D−r)/λ) (43)

Note that when ignoring the effect from other clusters we
can generalize the Nyström error to l ≤ d landmarks per

cluster. In this case, because of symmetry we can opti-
mize the worst-case distance from all cluster landmarks by
putting them on an (l − 1)-simplex centered on the cluster
center. Since there are at most d landmarks in each clus-
ter there is always one direction in which the worst-case
points are r away from all landmarks. The circumradius

of an (l − 1)-simplex with side length ∆ is
√

l−1
2l ∆. Thus,

the maximum distance to all landmarks is
√

r2 + l−1
2l ∆

2.
Using Lemma B we therefore obtain the Nyström approxi-
mation

Kmulti
Nys,ij =

le−2
√

r2+ l−1
2l ∆2/λ

1 + (l − 1)e−∆/λ
+O(e−2(D−r)/λ) (44)

E. Notes on Theorem 3
Lemmas C-F and and thus Theorem 1 by Altschuler et al.
(2019) are also valid for Q outside the simplex so long as
∥Q∥1 =

∑
i,j |Qij | = n and it only has non-negative en-

tries. Any P̃ returned by Sinkhorn fulfills these conditions
if the kernel matrix is non-negative and has support. There-
fore the rounding procedure given by their Algorithm 4 is
not necessary for this result.

Furthermore, to be more consistent with Theorems 1 and 2
we use the L2 distance instead of L2

2 in this theorem, which
only changes the dependence on ρ.

F. Notes on Theorem 4
To adapt Theorem 1 by Dvurechensky et al. (2018) to sparse
matrices (i.e. matrices with some Kij = 0) we need to
redefine

ν := min
i,j

{Kij |Kij > 0}, (45)

i.e. take the minimum only w.r.t. non-zero elements in their
Lemma 1. We furthermore need to consider sums exclu-
sively over these non-zero elements instead of the full 1
vector in their Lemma 1.

The Sinkhorn algorithm converges since the matrix has
support (Sinkhorn & Knopp, 1967). However, the point
it converges to might not exist because we only require
support, not total support. Therefore, we need to consider
slightly perturbed optimal vectors for the proof, i.e. define a
negligibly small ε̃ ≪ ε, ε′ for which |B(u∗, v∗)1− r| ≤ ε̃,
|B(u∗, v∗)T1 − c| ≤ ε̃. Support furthermore guarantees
that no row or column is completely zero, thus preventing
any unconstrained uk or vk, and any non-converging row or
column sum of B(uk, vk). With these changes in place all
proofs work the same as in the dense case.

Scalable Optimal Transport in High Dimensions for Graph Distances, Embedding Alignment, and More

G. Proof of Proposition 1
Theorem A (Danskin’s theorem). Consider a continuous
function ϕ : Rk × Z → R, with the compact set Z ⊂ Rj . If
ϕ(x, z) is convex in x for every z ∈ Z and ϕ(x, z) has a
unique maximizer z̄, the derivative of

f(x) = max
z∈Z

ϕ(x, z) (46)

is given by the derivative at the maximizer, i.e.

∂f

∂x
=

∂ϕ(x, z̄)

∂x
. (47)

We start by deriving the derivatives of the distances. To
show that the Sinkhorn distance fulfills the conditions for
Danskin’s theorem we first identify x = C, z = P , and
ϕ(C,P) = −⟨P ,C⟩F +λH(P). We next observe that the
restrictions P1m = p and P T1n = q define a compact,
convex set for P . Furthermore, ϕ is a continuous function
and linear in C, i.e. both convex and concave for any finite
P . Finally, ϕ(C,P) is concave in P since ⟨P ,C⟩F is
linear and λH(P) is concave. Therefore the maximizer P̄
is unique and Danskin’s theorem applies to the Sinkhorn
distance. Using

∂CNys,ij

∂Ukl
=

∂

∂Ukl

(
−λ log(

∑
a

UiaWaj)

)

= −λδik
Wlj∑

a UiaWaj
= −λδik

Wlj

KNys,ij
,

(48)

∂CNys,ij

∂Wkl
=

∂

∂Wkl

(
−λ log(

∑
a

UiaWaj)

)

= −λδjl
Uik∑

a UiaWaj
= −λδjl

Uik

KNys,ij
,

(49)

P̄Nys,ij

KNys,ij
=

∑
b P̄U,ibP̄W,bj∑
a UiaWaj

=
s̄it̄j

∑
b UibWbj∑

a UiaWaj

= s̄it̄j

∑
b UibWbj∑
a UiaWaj

= s̄it̄j

(50)

and the chain rule we can calculate the derivative w.r.t. the
cost matrix as

∂dλc
∂C

= − ∂

∂C

(
−⟨P̄ ,C⟩F + λH(P̄)

)
= P̄ , (51)

∂dλLCN,c

∂Ukl
=
∑
i,j

∂CNys,ij

∂Ukl

∂dλLCN,c

∂CNys,ij
= −λ

∑
i,j

δikWlj
P̄Nys,ij

KNys,ij

= −λ
∑
i,j

δikWlj s̄it̄j = −λs̄k
∑
j

Wlj t̄j

=
(
−λs̄(Wt̄)T

)
kl
,

(52)

∂dλLCN,c

∂Wkl
=
∑
i,j

∂CNys,ij

∂Wkl

∂dλLCN,c

∂CNys,ij
= −λ

∑
i,j

δjlUik
P̄Nys,ij

KNys,ij

= −λ
∑
i,j

δjlUiks̄it̄j = −λ

(∑
i

s̄iUik

)
t̄l

=
(
−λ(s̄TU)T t̄T

)
kl
,

(53)

and
∂dλ

LCN,c

∂ logKsp and
∂dλ

LCN,c

∂ logKsp
Nys

follow directly from ∂dλ
c

∂C . We

can then backpropagate in time O((n+m)l2) by computing
the matrix-vector multiplications in the right order.

H. Choosing LSH neighbors and Nyström
landmarks

We focus on two LSH methods for obtaining near neighbors.
Cross-polytope LSH (Andoni et al., 2015) uses a random
projection matrix R ∈ Rd×b/2 with the number of hash
buckets b, and then decides on the hash bucket via h(x) =
argmax([xTR ∥ −xTR]), where ∥ denotes concatenation.
k-means LSH computes k-means and uses the clusters as
hash buckets.

We further improve the sampling probabilities of cross-
polytope LSH via the AND-OR construction. In this scheme
we calculate B · r hash functions, divided into B sets (hash
bands) of r hash functions each. A pair of points is con-
sidered as neighbors if any hash band matches completely.
k-means LSH does not work well with the AND-OR con-
struction since its samples are highly correlated. For large
datasets we use hierarchical k-means instead (Paulevé et al.,
2010; Nistér & Stewénius, 2006).

The 3D point clouds, uniform data and the graph transport
network (GTN) use the L2 distance between embeddings
as a cost function. For these we use (hierarchical) k-means
LSH and k-means Nyström in both sparse Sinkhorn and
LCN-Sinkhorn.

Word embedding similarities are measured via a dot product.
In this case we use cross-polytope LSH for sparse Sinkhorn
in this case. For LCN-Sinkhorn we found that using k-
means LSH works better with Nyström using k-means++
sampling than cross-polytope LSH. This is most likely due
to a better alignment between LSH samples and Nyström.
We convert the cosine similarity to a distance via dcos =√

1− xT
p xq

∥xp∥2∥xq∥2
(Berg et al., 1984) to use k-means with

dot product similarity. Note that this is actually based on
cosine similarity, not the dot product. Due to the balanced
nature of OT we found this more sensible than maximum
inner product search (MIPS). For both experiments we also
experimented with uniform and recursive RLS sampling but
found that the above mentioned methods work better.

Scalable Optimal Transport in High Dimensions for Graph Distances, Embedding Alignment, and More

I. Implementational details
Our implementation runs in batches on a GPU via Py-
Torch (Paszke et al., 2019) and PyTorch Scatter (Fey &
Lenssen, 2019). To avoid over- and underflows we use
log-stabilization throughout, i.e. we save all values in log-
space and compute all matrix-vector products and addi-
tions via the log-sum-exp trick log

∑
i e

xi = maxj xj +
log(

∑
i e

xi−maxj xj). Since the matrix A is small we com-
pute its inverse using double precision to improve stability.
Surprisingly, we did not observe any benefit from using
the Cholesky decomposition or not calculating A−1 and
instead solving the equation B = AX for X . We fur-
thermore precompute W = A−1V to avoid unnecessary
operations.

We use 3 layers and an embedding size HN = 32 for GTN.
The MLPs use a single hidden layer, biases and LeakyReLU
non-linearities. The single-head MLP uses an output size of
HN, match = HN and a hidden embedding size of 4HN, i.e.
the same as the concatenated node embedding, and the multi-
head MLP uses a hidden embedding size of HN. To stabilize
initial training we scale the node embeddings by d̄

n̄
√

HN, match

directly before calculating OT. d̄ denotes the average graph
distance in the training set, n̄ the average number of nodes
per graph, and HN, match the matching embedding size, i.e.
32 for single-head and 128 for multi-head OT.

For the graph datasets, the 3D point clouds and random
data we use the L2 distance for the cost function. For word
embedding alignment we use the dot product, since this best
resembles their generation procedure.

J. Graph dataset generation and experimental
details

The dataset statistics are summarized in Table 5. Each
dataset contains the distances between all graph pairs in
each split, i.e. 10 296 and 1128 distances for preferential
attachment. The AIDS dataset was generated by randomly
sampling graphs with at most 30 nodes from the original
AIDS dataset (Riesen & Bunke, 2008). Since not all node
types are present in the training set and our choice of GED
is permutation-invariant w.r.t. types, we permuted the node
types so that there are no previously unseen types in the vali-
dation and test sets. For the preferential attachment datasets
we first generated 12, 4, and 4 undirected “seed” graphs
(for train, val, and test) via the initial attractiveness model
with randomly chosen parameters: 1 to 5 initial nodes, ini-
tial attractiveness of 0 to 4 and 1/2n̄ and 3/2n̄ total nodes,
where n̄ is the average number of nodes (20, 200, 2000, and
20 000). We then randomly label every node (and edge) in
these graphs uniformly. To obtain the remaining graphs we
edit the “seed” graphs between n̄/40 and n̄/20 times by ran-
domly adding, type editing, or removing nodes and edges.

Editing nodes and edges is 4x and adding/deleting edges 3x
as likely as adding/deleting nodes. Most of these numbers
were chosen arbitrarily, aiming to achieve a somewhat rea-
sonable dataset and process. We found that the process of
first generating seed graphs and subsequently editing these
is crucial for obtaining meaningfully structured data to learn
from. For the GED we choose an edit cost of 1 for changing
a node or edge type and 2 for adding or deleting a node or
an edge.

We represent node and edge types as one-hot vectors. We
train all models except SiamMPNN (which uses SGD) and
GTN on Linux with the Adam optimizer and mean squared
error (MSE) loss for up to 300 epochs and reduce the learn-
ing rate by a factor of 10 every 100 steps. On Linux we
train for up to 1000 epochs and reduce the learning rate
by a factor of 2 every 100 steps. We use the parameters
from the best epoch based on the validation set. We choose
hyperparameters for all models using multiple steps of grid
search on the validation set, see Tables 6 to 8 for the final
values. We use the originally published result of SimGNN
on Linux and thus don’t provide its hyperparameters. GTN
uses 500 Sinkhorn iterations. We obtain the final entropy
regularization parameter from λbase via λ = λbase

d̄
n̄

1
logn ,

where d̄ denotes the average graph distance and n̄ the av-
erage number of nodes per graph in the training set. The
factor d̄/n̄ serves to estimate the embedding distance scale
and 1/ log n counteracts the entropy scaling with n log n.
Note that the entropy regularization parameter was small,
but always far from 0, which shows that entropy regulariza-
tion actually has a positive effect on learning. On the pref.
att. 200 dataset we use no L2 regularization, λbase = 0.5,
and a batch size of 200. For pref. att. 2k we use λbase = 2
and a batch size of 20 for full Sinkhorn and 100 for LCN-
Sinkhorn. For pref. att. 20k we use λbase = 50 and a batch
size of 4. λbase scales with graph size due to normalization
of the PM kernel.

For LCN-Sinkhorn we use roughly 10 neighbors for LSH
(20 k-means clusters) and 10 k-means landmarks for Nys-
tröm on pref. att. 200. We double these numbers for pure
Nyström Sinkhorn, sparse Sinkhorn, and multiscale OT. For
pref. att. 2k we use around 15 neighbors (10 · 20 hierar-
chical clusters) and 15 landmarks and for pref. att. 20k we
use roughly 30 neighbors (10 · 10 · 10 hierarchical clusters)
and 20 landmarks. The number of neighbors for the 20k
dataset is higher and strongly varies per iteration due to the
unbalanced nature of hierarchical k-means. This increase in
neighbors and landmarks and PyTorch’s missing support for
ragged tensors largely explains LCN-Sinkhorn’s deviation
from perfectly linear runtime scaling.

We perform all runtime measurements on a compute node
using one Nvidia GeForce GTX 1080 Ti, two Intel Xeon
E5-2630 v4, and 256GB RAM.

Scalable Optimal Transport in High Dimensions for Graph Distances, Embedding Alignment, and More

Table 5: Graph dataset statistics.

Distance (test set) Graphs Avg. nodes Avg. edges Node Edge
Graph type Distance Mean Std. dev. train/val/test per graph per graph types types

AIDS30 Molecules GED 50.5 16.2 144/48/48 20.6 44.6 53 4
Linux Program dependence GED 0.567 0.181 600/200/200 7.6 6.9 7 -
Pref. att. Initial attractiveness GED 106.7 48.3 144/48/48 20.6 75.4 6 4
Pref. att. 200 Initial attractiveness PM 0.400 0.102 144/48/48 199.3 938.8 6 -
Pref. att. 2k Initial attractiveness PM 0.359 0.163 144/48/48 2045.6 11330 6 -
Pref. att. 20k Initial attractiveness PM 0.363 0.151 144/48/48 20441 90412 6 -

Table 6: Hyperparameters for the Linux dataset.

lr batchsize layers emb. size L2 reg. λbase

SiamMPNN 1×10−4 256 3 32 5×10−4 -
GMN 1×10−4 20 3 64 0 -
GTN, 1 head 0.01 1000 3 32 1×10−6 1.0
8 OT heads 0.01 1000 3 32 1×10−6 1.0
Balanced OT 0.01 1000 3 32 1×10−6 2.0

Table 7: Hyperparameters for the AIDS dataset.

lr batchsize layers emb. size L2 reg. λbase

SiamMPNN 1×10−4 256 3 32 5×10−4 -
SimGNN 1×10−3 1 3 32 0.01 -
GMN 1×10−2 128 3 32 0 -
GTN, 1 head 0.01 100 3 32 5×10−3 0.1
8 OT heads 0.01 100 3 32 5×10−3 0.075
Balanced OT 0.01 100 3 32 5×10−3 0.1
Nyström 0.015 100 3 32 5×10−3 0.2
Multiscale 0.015 100 3 32 5×10−3 0.2
Sparse OT 0.015 100 3 32 5×10−3 0.2
LCN-OT 0.015 100 3 32 5×10−3 0.2

Table 8: Hyperparameters for the preferential attachment GED dataset.

lr batchsize layers emb. size L2 reg. λbase

SiamMPNN 1×10−4 256 3 64 1×10−3 -
SimGNN 1×10−3 4 3 32 0 -
GMN 1×10−4 20 3 64 0 -
GTN, 1 head 0.01 100 3 32 5×10−4 0.2
8 OT heads 0.01 100 3 32 5×10−3 0.075
Balanced OT 0.01 100 3 32 5×10−4 0.2
Nyström 0.02 100 3 32 5×10−5 0.2
Multiscale 0.02 100 3 32 5×10−5 0.2
Sparse OT 0.02 100 3 32 5×10−5 0.2
LCN-OT 0.02 100 3 32 5×10−5 0.2

Scalable Optimal Transport in High Dimensions for Graph Distances, Embedding Alignment, and More

0 100 200

Neighbors + landmarks

0

100

200

300

R
un

tim
e

(m
s)

Multsc. OT
Nys. Skh.
Sparse Skh.
LCN-Skh.

Figure 3: Runtime scales linearly with the number of neigh-
bors/landmarks for all relevant Sinkhorn approximation
methods.

K. Runtimes
Table 9 compares the runtime of the full Sinkhorn dis-
tance with different approximation methods using 40 neigh-
bors/landmarks. We separate the computation of approxi-
mate K from the optimal transport computation (Sinkhorn
iterations), since the former primarily depends on the LSH
and Nyström methods we choose. We observe a 2-4x
speed difference between sparse (multiscale OT and sparse
Sinkhorn) and low-rank approximations (Nyström Sinkhorn
and LCN-Sinkhorn), while factored OT is multiple times
slower due to its iterative refinement scheme. In Fig. 3
we observe that this runtime gap stays constant indepen-
dent of the number of neighbors/landmarks, i.e. the relative
difference decreases as we increase the number of neigh-
bors/landmarks. This gap could either be due to details in
low-level CUDA implementations and hardware or the fact
that low-rank approximations require 2x as many multiplica-
tions for the same number of neighbors/landmarks. In either
case, both Table 9 and Fig. 3 show that the runtimes of all
approximations scale linearly both in the dataset size and
the number of neighbors and landmarks, while full Sinkhorn
scales quadratically.

We furthermore investigate whether GTN with approximate
Sinkhorn indeed scales log-linearly with the graph size by
generating preferential attachment graphs with 200, 2000,
and 20 000 nodes (±50 %). We use the Pyramid match-
ing (PM) kernel (Nikolentzos et al., 2017) as prediction
target. Fig. 4 shows that the runtime of LCN-Sinkhorn
scales almost linearly (dashed line) and regular full Sinkhorn
quadraticly (dash-dotted line) with the number of nodes,
despite both achieving similar accuracy and LCN using
slightly more neighbors and landmarks on larger graphs to
sustain good accuracy. Full Sinkhorn went out of memory
for the largest graphs.

100 1000 10000
Avg. graph size

10

100

1000

10000

Ti
m

e
pe

re
po

ch
(s

)

Full
LCN

Figure 4: Log-log runtime per epoch for GTN with full
Sinkhorn and LCN-Sinkhorn. LCN-Sinkhorn scales almost
linearly with graph size while sustaining similar accuracy.

L. Distance approximation
Fig. 5 shows that for the chosen λ = 0.05 sparse Sinkhorn
offers the best trade-off between computational budget and
distance approximation, with LCN-Sinkhorn and multiscale
OT coming in second. Factored OT is again multiple times
slower than the other methods. Note that dλc can be neg-
ative due to the entropy offset. This picture changes as
we increase the regularization. For higher regularizations
LCN-Sinkhorn is the most precise at constant computa-
tional budget (number of neighbors/landmarks). Note that
the crossover points in this figure roughly coincide with
those in Fig. 2. Keep in mind that usually the OT plan is
more important than the raw distance approximation, since
it determines the training gradient and tasks like embed-
ding alignment don’t use the distance at all. This becomes
evident in the fact that sparse Sinkhorn achieves a better
distance approximation than LCN-Sinkhorn but performs
worse in both downstream tasks investigated in Sec. 8.

Scalable Optimal Transport in High Dimensions for Graph Distances, Embedding Alignment, and More

Table 9: Runtimes (ms) of Sinkhorn approximations for EN-DE embeddings at different dataset sizes. Full Sinkhorn
scales quadratically, while all approximationes scale at most linearly with the size. Sparse approximations are 2-4x faster
than low-rank approximations, and factored OT is multiple times slower due to its iterative refinement scheme. Note that
similarity matrix computation time (K) primarily depends on the LSH/Nyström method, not the OT approximation.

N = 10000 N = 20000 N = 50000
K OT K OT K OT

Full Sinkhorn 8 2950 29 11 760 OOM OOM
Factored OT 29 809 32 1016 55 3673
Multiscale OT 90 48 193 61 521 126
Nyström Skh. 29 135 41 281 79 683
Sparse Skh. 42 46 84 68 220 137
LCN-Sinkhorn 101 116 242 205 642 624

0 100 200

Runtime (ms)

−5.0

−2.5

0.0

2.5

d
λ c
/1
0
3

0 100 200

Neighbors + landmarks

−5

0

5

d
λ c
/1
0
3

Fact. OT
Multsc. OT
Nys. Skh.
Sparse Skh.
LCN-Skh.

10−3 10−2 10−1 100

λ

0.0

0.5

1.0

1.5

2.0

R
el

.e
rr

.d
λ c

Figure 5: Sinkhorn distance approximation for different runtimes and computational budgets (both varied via the number of
neighbors/landmarks), and entropy regularization parameters λ. The dashed line denotes the true Sinkhorn distance. The
arrow indicates factored OT results far outside the depicted range. Left: Sparse Sinkhorn consistently performs best across
all runtimes. Center: Sparse Sinkhorn mostly performs best, with LCN-Sinkhorn coming in second, and factored OT being
seemingly independent from the number of neighbors. Right: Sparse Sinkhorn performs best for low λ, LCN-Sinkhorn for
moderate and high λ and factored OT for very high λ.

	Complexity analysis
	Limitations
	Proof of th:uniformerror
	Proof of th:clustererror
	Notes on th:sinkhornerror
	Notes on th:convergence
	Proof of prop:derivatives
	Choosing LSH neighbors and Nyström landmarks
	Implementational details
	Graph dataset generation and experimental details
	Runtimes
	Distance approximation

