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Abstract
Several approximate inference algorithms have
been proposed to minimize an alpha-divergence
between an approximating distribution and a tar-
get distribution. Many of these algorithms in-
troduce bias, the magnitude of which becomes
problematic in high dimensions. Other algo-
rithms are unbiased. These often seem to suf-
fer from high variance, but little is rigorously
known. In this work we study unbiased meth-
ods for alpha-divergence minimization through
the Signal-to-Noise Ratio (SNR) of the gradient
estimator. We study several representative scenar-
ios where strong analytical results are possible,
such as fully-factorized or Gaussian distributions.
We find that when alpha is not zero, the SNR
worsens exponentially in the dimensionality of
the problem. This casts doubt on the practicality
of these methods. We empirically confirm these
theoretical results.

1. Introduction
Variational inference (VI) typically minimizes the KL-
divergence from an approximating distribution qw to a target
distribution p (Jordan et al., 1999; Blei et al., 2017; Zhang
et al., 2017). While computationally convenient, the use of
this objective may lead to distributions qw with undesirable
statistical properties (e.g. variance underestimation (Minka,
2005)). To avoid this, recent methods instead attempt to
minimize an alpha-divergence (Amari, 1985). This is a class
of divergences indexed by a parameter α, that reduces to
the typical KL-divergence when α→ 0. The α parameter
determines the divergence’s properties. For instance, for
α� 0, the divergence penalizes distributions qw that place
no mass in regions where p does, penalizing variance under-
estimation. For many use-cases, approximating distributions
minimizing these divergences would be more useful.
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Existing alpha-divergence minimization algorithms can be
classified into two broad groups: biased methods (Li &
Turner, 2016; Regli & Silva, 2018) and unbiased methods
(Kuleshov & Ermon, 2017; Dieng et al., 2017). While some
positive empirical results have been obtained using biased
methods, it has been recently observed that, in problems
with high dimensionality, these often fail to minimize the
target alpha-divergence (Geffner & Domke, 2021).1 Thus,
in this paper we turn our attention to unbiased methods.
These attempt to minimize an alpha-divergence by running
stochastic optimization algorithms with unbiased estimators
of the divergence’s gradient.

The major open question for unbiased methods concerns the
difficulty of the optimization problem. Too much variability
in the gradient estimator would force a very small step-size
and thus a huge number of optimization steps. While some
positive empirical results have been observed, authors have
cautioned the the gradient estimators used can be tempera-
mental (Kuleshov & Ermon, 2017; Dieng et al., 2017). It
is currently unclear when these methods will succeed, and
how their performance depends on α or the dimensionality
of the problem.

We address this question. Informally, our main conclusion
is that methods based on unbiased gradient estimates of an
alpha-divergence will often require catastrophically large
amounts of computation to scale to high dimensional models
for any α 6= 0. This is not always due to high variance
gradients, but to an extremely low Signal-to-Noise ratio
(SNR).

In Section 3 we present two gradient estimators used by
unbiased methods, one obtained using reparameterization,
and a novel one obtained by applying “double” reparameter-
ization. An empirical evaluation shows that, even in simple
scenarios, these methods do not seem scale to problems of
moderately high dimension (d ≈ 100), nor to moderately
large values of α (α ≈ 0.4). Curiously, optimization fails
even in cases where the gradient estimator has provably
low variance. Instead, we propose that this failure is best
explained by the estimator’s (SNR), which is known to be
related to optimization convergence (Section 4.3).

1In fact, it was observed that, in high dimensions, biased meth-
ods often just minimize the typical VI objective, the KL divergence
from qw to p, regardless of the target alpha-divergence chosen.
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The main contribution of this paper is a theoretical analysis
of the gradient estimators’ SNR, given in Section 4. We an-
alyze two representative scenarios: The first is when the tar-
get and approximating family are arbitrary fully-factorized
distributions. The second is when the target and approxi-
mating family are both full-rank Gaussians. We give exact
results and bounds for the SNR in these cases. We show that
for any α 6= 0, under mild assumptions, the SNR decreases
exponentially in the dimensionality of the problem. Thus,
even in these seemingly “easy” scenarios, unbiased methods
will not scale to high dimensional problems. Finally, in
Section 5 we empirically confirm that the same phenomena
seems to occur in real problems.

Our results are pessimistic. Ideally, one might hope to guar-
antee a good SNR under some favorable assumptions about
the target. For example, one might hope that the SNR could
be guaranteed to be reasonably large if the log-posterior
obeyed some common regularity conditions, e.g. that it
were fully-factorized, concave, strongly concave, Lipschitz
smooth, Gaussian, or even a fully-factorized Gaussian. Our
results show that, for general alpha-divergences, no such
guarantee is possible.

We do not rule out the possibility of a good SNR guarantee
under some other assumptions about the target. However,
these assumptions would have to be stronger than any of
those listed above, and also prohibit the cases we typically
think of as easy, e.g. fully-factorized or Gaussian distribu-
tions. This suggests that a general-purpose algorithm for
optimizing an alpha-divergence based on currently available
unbiased gradient estimators may be unachievable.

2. Preliminaries
Variational Inference (VI) is an approximate inference
algorithm that finds w such that the approximating distri-
bution qw(z) is close to some target distribution p(z). This
is usually done by minimizing KL(qw||p). In most cases
the gradient of this objective with respect to w cannot be
computed exactly. However, unbiased estimates are often
available. Two popular alternatives are reparameterization
(Titsias & Lázaro-Gredilla, 2014; Kingma & Welling, 2013;
Rezende et al., 2014) and the “sticking the landing” (STL)
estimator (Roeder et al., 2017). Both require a mapping
Tw that transforms a base density q0 into qw. Then, the
estimators are computed as

grep(p, qw, ε) = ∇w log qw(Tw(ε))
p(Tw(ε))

gSTL(p, qw, ε) = ∇w log qv(Tw(ε))
p(Tw(ε))

∣∣∣
v=w

,

(1)

where ε ∼ q0(ε). While both estimators have shown good
empirical performance, it has been observed that gSTL often
leads to better results (Roeder et al., 2017). Also, it has the

desirable property of being deterministically zero at the op-
timum p = qw, which is not true for the reparameterization
estimator.

While minimizing KL(qw||p) is computationally conve-
nient, it may lead to distributions qw with undesirable prop-
erties. For instance, the resulting qw tends to underestimate
the variance of p (Minka, 2005). This is problematic, for
instance, if qw will be used as a proposal distribution to esti-
mate the expectation Ep f(z) with importance sampling. An
under-dispersed distribution qw leads to importance weights
with high variance (Owen, 2013). For reasons like this,
recent work has developed methods to minimize other di-
vergence measures (Minka, 2004; Hernández-Lobato et al.,
2016; Li & Turner, 2016; Kuleshov & Ermon, 2017; Dieng
et al., 2017; Regli & Silva, 2018; Wang et al., 2018; Wan
et al., 2020; Naesseth et al., 2020).

Alpha-divergences may be used as an objective for VI. The
alpha-divergence between distributions p and qw is given by

Dα(p||qw) =
1

α(α− 1)
E
qw

[(
p(z)

qw(z)

)α
− 1

]
, α ∈ R\{0, 1}.

(2)
For α � 0 the divergence will penalize distributions qw
that place no mass in regions where p does, penalizing
under-dispersion. For instance, minimizing Dα(p||qw) for
α = 2 is equivalent to minimizing the variance of the impor-
tance weights p(z)/qw(z). Also, alpha-divergences recover
several well known divergences for different values of α
(Cichocki & Amari, 2010): the χ2-divergence for α = 2,
and the Hellinger distance for α = 0.5. For α = 0 it is
defined as the limit α→ 0, which result in KL(qw||p), the
divergence typically used for VI. Algorithms to minimize
alpha-divergences can be classified into two groups:

Biased methods (Minka, 2004; Bornschein & Bengio,
2014; Hernández-Lobato et al., 2016; Li & Turner, 2016;
Regli & Silva, 2018). These either minimize local surro-
gates and/or use biased gradient estimators. Therefore, the
distributions qw returned by these methods are not mini-
mizers of Dα(p||qw). Geffner & Domke (2021) present an
extensive empirical evaluation of methods based on biased
gradients showing that, in high dimensions, these methods
often fail to minimize the target alpha-divergence; they re-
turn suboptimal distributions qw that heavily underestimate
the variance of p. This is problematic, since one of the goals
of using alpha-divergences is to avoid under-dispersion.

Unbiased methods (Kuleshov & Ermon, 2017; Dieng
et al., 2017). These methods were developed for the χ2-
divergence. However, as mentioned by the authors, the
same approach can be used for α 6= 2. These methods at-
tempt to minimize Dα(p||qw) exactly by running SGD with
an unbiased estimator of ∇wDα(qw||p). Under an appro-
priate choice for the step-size this is guaranteed to converge
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(Bottou et al., 2018). As mentioned previously, these meth-
ods often present scalability issues, and it is unclear when
they may be successfully applied.2

The signal-to-noise ratio (SNR) can be used as a measure
of an estimator’s quality. We define the SNR of a random
vector X as

SNR[X] =
‖EX‖2

E‖X‖2 =
‖EX‖2

‖EX‖2 + V‖X‖
, (3)

which is always less than or equal to one, with equality
holding if and only if the variance of the random variable
is zero. If some of the expectations do not exist, the SNR
is not defined. We will use this quantity to evaluate the
quality of an estimator. This has been previously done in the
context of importance weighted auto-encoders (Rainforth
et al., 2018).

3. Gradient Estimators
We present two unbiased estimators for∇wDα(p||qw). The
first one, obtained via reparameterization, is given by (Dieng
et al., 2017)

grepα (p, qw, ε) =


1

α2 − α∇w
(
p(Tw(ε))
qw(Tw(ε))

)α
if α 6∈ {0, 1}

∇w log
qw(Tw(ε))
p(Tw(ε))

if α→ 0,

(4)
where ε ∼ q0(ε). For α → 0 this estimator recovers grep
from eq. 1. As presented, this estimator is not defined for
α→ 1. A second unbiased estimator, obtained by applying
reparameterization twice, is given by

gdrepα (p, qw, ε) =


− 1

α
∇w

(
p(Tw(ε))
qv(Tw(ε))

)α∣∣∣∣
v=w

if α 6= 0

∇w log
qv(Tw(ε))
p(Tw(ε))

∣∣∣∣
v=w

if α→ 0.

(5)
This estimator is novel. We show its derivation in Ap-
pendix C. For α → 0 it recovers gSTL from eq. 1. For
α 6= 0 it is derived by applying the reparameterization trick
twice. This is similar to the derivation for the “doubly-
reparameterized” gradient estimator (Tucker et al., 2018)
for importance weighted auto-encoders (Burda et al., 2016).
A third unbiased estimator may be obtained via the score
function method (Williams, 1992). In this work we do not
focus on this one since it has been consistently observed
that reparameterization estimators outperform their score
function counterparts.

In practice, we observed that gdrepα often works better than
grepα (Appendix A shows an empirical comparison). This
may not be surprising since (i) gdrepα is a natural extension

2While in their simulations (Dieng et al., 2017) use a biased
algorithm, their whole formulation was carried out for unbiased
divergence minimization.

of gSTL, which often works better than grep when α → 0;
(ii) gdrepα has the property of being deterministically zero
at the optimum p = qw, which is not true for grepα ; (iii)
The use of double reparameterization has led to significant
improvements over “plain” reparameterization for multi-
samples objectives (Tucker et al., 2018).

Empirical evaluation. We now present empirical results
that motivate this work. These demonstrate two important
phenomena. First, for larger α, optimization scales poorly
to high dimensions. Understanding this is the central goal of
this paper. Second, this may happen even when the gradient
estimator’s variance is very small. This explains why we
study SNR rather than “raw” variance.

We set p to be a standard Gaussian in d dimensions and qw to
be a mean-zero fully-factorized Gaussian. The parameters
of qw are w = σ ∈ λd, representing the standard deviation
of each dimension of qw. We initialize σi = 2, and optimize
Dα(p||qw) from eq. 2. We do so by running SGD with the
gradient estimator gdrepα for 1000 steps. (Appendix A shows
results using grepα , which are worse.)

We perform this optimization for three different dimension-
alities, d ∈ {8, 32, 128}, for α ∈ {0, 0.4, 0.9, 1.5}, and
for gradient estimators obtained averaging N samples, for
N ∈ {1, 10, 102, 103, 104}. For each triplet (d, α,N) we
tuned the step-size; we ran simulations for all step-sizes
in the set {10i}7i=−7 and selected the one that lead to the
best final performance. All results are averages over 15
simulations.

Fig. 1 shows the results. Optimization succeeds when the
dimensionality d is small or α is small. Indeed, for α→ 0,
optimization converges in approximately 30 steps, regard-
less of the dimensionality and the number of samples used
to estimate each gradient. However, when α is larger, in-
creasing d seems to cause major difficulties. For instance,
for d = 32 and α = 1.5, optimization does not meaning-
fully converge within 1000 steps, even using 104 samples
to estimate gradients. Furthermore, for d = 128 and α 6= 0
optimization barely makes any progress regardless of the
number of samples used to estimate gradients.

Optimization results using Adam (Kingma & Ba, 2014) are
shown in Fig. 7 (Appendix B). The same effect is observed;
optimization converges properly when the dimensionality or
α are low, but fails in high dimensions for larger values of
α. (We include a brief discussion of Adam’s performance
in Section 6.)

For α = 2, previous work has attributed the scaling issues of
unbiased methods to the use of gradient estimates with high
variance (Kuleshov & Ermon, 2017; Dieng et al., 2017).
While correct in spirit, care is needed. Some of the failures
in Fig. 1 happen despite low-variance gradients, because the
true gradient is even smaller. Take d = 128, and let σi = σ
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Figure 1. Running SGD with unbiased gradient estimates becomes inefficient for moderately large dimensions and α. Each plot
shows the optimization results for each pair (d, α) for all values of N considered. Plots show “Error vs. Iteration”, where error is the
normalized distance between the scale parameters of p and qw, computed as (1/d)

∑
i(σqi − 1)2.

for all i, so that qw is isotropic. Fig. 2 (left) shows the vari-
ance of the gradient estimator for different values of σ and
α. We see that increasing α sometimes decreases gradient
variance. Instead, we attribute optimization’s scaling issues
to the estimator’s SNR. As shown in Fig. 2 (center) we see
that this decreases very rapidly with higher α.3

4. SNR Analysis
In this section we present a detailed analysis of the SNR
of gradient estimators for two general and representative
scenarios. First, we consider the case where p and qw are
arbitrary fully-factorized distributions. Second, we consider
the case where p and qw are Gaussians with an arbitrary full-
rank covariance matrices. This case is particularly relevant,
since Gaussians are a good approximation of a huge range
of posteriors (Bayesian central limit theorem). We show
that, in both cases, for α 6= 0 the gradient estimator’s SNR
becomes very small for problems with high dimensionality
d. In fact, we present examples for which the SNR decreases
exponentially in d. In contrast to this, we show that, for
α→ 0 (typical VI), the SNR of the estimator decreases at
most as 1/d, and does not depend on d if both p and qw are
factorized. Intuitively, a low SNR means that the level of
noise present in the estimator is considerably larger than the
“learning signal”, which difficults optimization.

3In Appendix E we give an upper bound for the variance, and
show that the variance of gdrepα for α = 0.4 becomes “small” for
high dimensional problems. Surprisingly, the variance of each
component of the estimator decreases as the dimension increases.

We proceed in a similar way for all scenarios considered.
We first present a rigorous result, and then give a simple and
intuitive interpretation and examples.

4.1. Fully-Factorized Distributions

We begin by studying the case where both p and qw are
arbitrary fully-factorized distributions. Of course, if we
knew that p is fully factorized, it would make sense to
perform inference on each component separately. The point
of examining this case is the insight it gives us into how
gradient estimators behave as dimensionality changes. For
simplicity, we assume that there is one parameter wi for
each coordinate zi. This assumption is used to simplify
notation and can be removed, as long as each component is
determined by disjoint sets of parameters.

Theorem 1. Let p(z) =
∏d
i=1 pi(zi), qw(z) =∏d

i=1 qwi(zi), and gα ∈ {grepα , gdrepα }.
If pj 6= qwj and gα has finite variance, the SNR of the j-th
component of the estimator, gαj , is given by

SNR[gαj(p, qw, ε)] = SNR
[
gα(pj , qwj , εj)

]
(6)

for α→ 0, and by

SNR[gαj(p, qw, ε)] =

SNR
[
gα(pj , qwj , εj)

] d∏
i=1
i 6=j

SNR
[
D̃α(pi, qwi , εi)

]
(7)

for α 6= 0, where D̃α(pi, qwi , εi) =
(
pi(Twi (εi))
qwi (Twi (εi))

)α
is an

unbiased estimator of α(α− 1)Dα(pi||qwi) + 1.
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Figure 2. Optimization difficulty is explained not by high variance but by low SNR. p is a standard Gaussian in d = 128 dimensions
and qw is an isotropic Gaussian with standard deviation σq . Left: Variance of gradient estimator. Center: SNR. Right: Squared norm of
the true gradient, E[g].

If pj = qwj , the SNR is 0 for grepα and is undefined for gdrepα

(because gdrepα is deterministically zero).

To clarify the Theorem’s notation, gαj(p, qw, ε) is the j-th
component of the estimator gα for the vector ∇wDα(p‖qw).
On the other hand, gα(pj , qwj , εj) is the estimator for the
scalar quantity ∇wjDα(pj‖qwj ), the derivative (with respect
to wj) of the divergence between the one dimensional distri-
butions pj and qwj .

What does the theorem say? If α→ 0 (eq. 6), the SNR of
each component of the estimator consists on a single term,
which is the same as if inference were performed on each
dimension of p separately. That is, the SNR of the estima-
tor’s j-th component only depends on pj and qwj , and is not
affected by the dimensionality of the problem d in any way.
In contrast, if α 6= 0 (eq. 7), there are d−1 additional terms.
These determine how the SNR scales with dimensionality.
Since these terms can be expressed as the SNR of an estima-
tor for Dα(pi‖qwi) (for each i 6= j, up to scaling constants),
each of them is at most one, with equality only if pi = qwi .
Thus, for α 6= 0, discrepancies in several dimensions of p
and qw accumulate (as products of terms strictly smaller
than one), leading to a large detrimental effect on the esti-
mator’s SNR. Intuitively, the larger the dimensionality of
the problem d, the worse this effect becomes.

An example that clearly illustrates this curse of dimension-
ality is given by the case where p and q are isotropic distri-
butions. Suppose each component of p and qw are the same,
that is, pi = p1 and qwi = qw1

for all i. Following eq. 7,
if α 6= 0, the SNR of the j-th component of the gradient
estimator is given by

SNR [gα(p1, qw1 , ε1)]
(
SNR

[
D̃α(p1, qw1 , ε1)

])d−1

, (8)

which worsens exponentially in d. In contrast, if α→ 0, the
SNR does not depend on d at all (eq. 6).

4.1.1. FULLY-FACTORIZED GAUSSIANS

As a second example of fully-factorized distributions, we
consider the case where p and qw are d-dimensional diag-

onal Gaussians with mean zero. The parameters are the
standard deviations of each component of qw, i.e. w =
{σq1, . . . , σqd}. In this case we can compute each term in
eq. 7 in closed form.

Corollary 2. Let p and q be two fully-factorized d-
dimensional Gaussian distributions with mean zero and
variances σ2

pi and σ2
qi. Let λi = σ2

qi/σ2
pi and gα = gdrepα .

If λj 6= 1 and 1 + 2α(λi − 1) > 0 for all i,

SNR[gαj(p, qw, ε)] =

1 + 2α(λj − 1)

3
f(λj , α)

3︸ ︷︷ ︸
SNR

[
gα(pj ,qwj ,εj)

]
d∏
i=1
i6=j

f(λi, α)︸ ︷︷ ︸
SNR[D̃α(pi,qwi ,εi)]

(9)

where
f(λ, α) =

1√
1 + α2 (λ−1)2

1+2α(λ−1)

. (10)

Otherwise, the SNR is not defined. If λj = 1 this is because
the estimator gαj is 0 deterministically. If 1+2α(λi−1) ≤ 0
for any i, this is because the estimator has infinite variance.

Corollary 2 gives conditions under which the SNR of the
gradient estimator is well-defined (i.e. estimator has finite
variance), and gives an expression for the SNR in such
cases. In order to understand this expression, it is important
to understand the behavior of the function f(λ, α). Fig. 3
shows a visualization. It can be observed that (i) f(λ, α)
achieves its maximum value of 1 if and only if λ = 1 or α =
0; and (ii) f(λ, α) decreases as α moves aways from 0 or λ
moves away from 1. We present a formal characterization
of this function in Lemma 5 (Appendix D.1).

Again, the behavior of the SNR for problems with high
dimensionalities is determined by the d-term product∏
i f(λi, α) in eq. 9. We see that, if α → 0, each term

in this product is just one (because f(λ, 0) = 1), and thus
the SNR is just 1/3. On the other hand, if α 6= 0, each
of the terms is at most one (with equality only if the cor-
responding λi = 1). Therefore, if α 6= 0, discrepancies
in several dimensions of p and qw accumulate, leading to
a large detrimental effect on the SNR of every component
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Figure 3. f(λ, α). White (rightmost plot) indicates regions where 1 + 2α(λ− 1) > 0 is not satisfied (in this region the estimator has
infinite variance, and thus the SNR is not defined).

of the estimator. In addition, in this case we can exactly
quantify this deterioration in terms of α and λi: The SNR
worsens for α values with large absolute value and when
discrepancies between components is large (i.e. λi far from
1), since for these cases f(λ, α) is significantly less than
one (see Fig. 3).

In addition, there are entirely non-pathological cases for
which the estimator has infinite variance. This occurs when-
ever the condition 1 + 2α(λi − 1) > 0 is not satisfied for
some i. For instance, this happens if we set α = 1, σpi = 1
and σqi = 0.7. More generally, the condition is equiva-
lent to ασ2

q > (α − 1/2)σ2
p. This is always satisfied for

0 ≤ α < 1/2. If α ≥ 1/2, this means that the variance of qw
cannot be much smaller than that of p. If α < 0, this means
that the variance of qw cannot be much larger than that of p.

Example. Consider the case where α = 0.4, p is a standard
Gaussian with dimension d = 128, and qw is a mean zero
factorized Gaussian with σqi = 2 for all i. Eq. 9 yields
SNR[gαj ] ≈ 1.2× 10−10. This means that the variance of
the estimator is approximately 8 × 109 times larger than
the actual signal. In contrast, for α → 0, the SNR is just
1/3. Obtaining an estimator with a similar SNR for α = 0.4
would require averaging N ≈ 4× 109 independent samples
(this quantity grows exponentially if problems of larger
dimensionality are considered).

4.2. Gaussians with arbitrary Covariances

We now move away from factorized distributions and con-
sider the case in which both p and qw are d-dimensional
Gaussians with mean zero and arbitrary full-rank covari-
ances Σp and Σq . The set of parameters is given by w = S,
where S is a matrix such that SS> = Σq , and reparameteri-
zation is given by Tw(ε) = Sε, where ε ∼ N (0, I).

Theorem 3. Let p(z) = N (z|0,Σp) and q(z) =
N (z|0,Σq). Let λ1, . . . , λd be the eigenvalues of Σ−1p Σq
and gα = gdrepα .

If Σp 6= Σq and 1 + 2α(λi − 1) > 0 for all i we get

SNR[gα(p, qw, ε)] =
1

d+ 2
(11)

for α→ 0,

SNR[gα(p, qw, ε)] ≤
(

1 + α(λmin − 1)

1 + 2α(λmax − 1)

)2 d∏
i=1

f(λi, α)

(12)
for α > 0, and

SNR[gα(p, qw, ε)] ≤
(

1 + α(λmax − 1)

1 + 2α(λmin − 1)

)2 d∏
i=1

f(λi, α)

(13)
for α < 0, where λmax = maxi λi, λmin = mini λi (these
are both positive), and f(λ, α) is defined in eq. 10.

Otherwise, the SNR is not defined. If Σp = Σq, this is be-
cause the estimator is zero deterministically. If 1 + 2α(λi−
1) ≤ 0 for any i, this is because the estimator has infinite
variance.

The results in Theorem 3 can be interpreted similarly to
those in Corollary 2. If α→ 0, the SNR is just 1/(d+ 2),
independent of p and qw. If α 6= 0, the SNR’s upper bound
contains the product of d terms, all at most 1, with equal-
ity only if the corresponding λi = 1. As with factorized
distributions, for α 6= 0, discrepancies between several di-
mensions of p and qw accumulate, leading to a small SNR.
As with fully-factorized Gaussians, this deterioration wors-
ens for α values with large magnitude and for λi far from
one. The condition that must be satisfied to get an estimator
with finite variance is similar to the one for factorized Gaus-
sians. The only difference is that, in this case, λi represents
an eigenvalue of Σ−1p Σq , instead of the ratio σ2

qi/σ2
pi.

Example. Consider the case where p and qw are d dimen-
sional isotropic Gaussians with covariances σ2

pI and σ2
qI ,

with σp 6= σq. If α 6= 0, the estimator’s SNR is upper
bounded by ∝ f(λ, α)d, where f(λ, α) is strictly less than
1. This upper bound goes to zero exponentially as a function
of d. In contrast, for α→ 0, the SNR decreases as 1/d.

It is worth mentioning that the bounds in Theorem 3 are
obtained as a relaxation of an exact but much more technical
result, shown in Section 6 (Theorem 4). While this latter
result is fully precise (it gives an exact expression for the
SNR) it is hard to interpret, so we do not include it here.
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4.3. Effect of SNR on Optimization

We presented general and representative scenarios for which
the gradient estimator’s SNR becomes extremely small as
the dimensionality of the problem increases. How does this
affect optimization convergence? Under some regularity
assumptions, an SGD convergence guarantee assuming a
bound on the SNR is known. See, for instance, Theorem
4.8 by (Bottou et al., 2018). Their eq. 4.9 is equivalent to
an SNR bound. They show that (under some assumptions)
SGD requires a number of iterations that is O(1/SNR) to
converge. Thus, an exponentially small SNR translates to an
exponentially large number of SGD iterations. Intuitively,
this is because a small SNR leads to a small step-size, which
in turn leads to a large number of SGD iterations.

In addition, there are papers that analyze this from a more
empirical perspective. For instance, (Shalev-Shwartz et al.,
2017) relate gradient estimators with extremely low SNRs
to complete failures of gradient-based optimization methods.
They mention that when the SNR approaches small values,
the noise can completely mask the signal, and thus gradients
are not sufficiently informative for optimization to succeed.

5. Experiments and Results
Results in this work show that, for the scenarios considered,
if α 6= 0 unbiased estimates of ∇wDα(p||qw) suffer from
a low SNR, which worsens fast with the dimensionality
of the problem. Thus, methods based on these estimates
will not scale to high dimensional problems. In this section
we empirically show similar severe scalability issues for
Bayesian logistic regression models.

We use two datasets: Iris and Australian, which have di-
mensionalities 4 and 14, respectively. For both datasets we
used a subset of 100 samples. For Iris this reduced to keep-
ing only data-points from two classes (out of the original
three), while for Australian we subsampled 100 data-points.
We use a diagonal Gaussian as variational distribution qw,
initialized to have mean zero and covariance identity.

When p is a posterior, we cannot directly estimate gradients
of the alpha-divergence since p(z|x) is intractable. However,
if we define the “α-ELBO”

Lα(w) =
1

α(1− α)
E

qw(z)

[(
p(x, z)

qw(z)

)α
− 1

]
, (14)

then it’s easy to show that maximizing Lα is equivalent to
minimizing the alpha-divergence, since

fα(p(x)) = Lα(w) + p(x)αDα(p(z|x)||q(z)) (15)

for fα(x) = 1
α(1−α) (x

α−1). Thus a gradient ofLα is equal
to a gradient of Dα up to a sign change and a multiplication
by the constant factor of p(x)α. Eq. 15 gives a lower-
bound on p(x) for α < 1 and an upper-bound for α >

1 (corresponding to the cases where fα is increasing and
decreasing, respectively).

We optimize Lα by running SGD with unbiased gradient es-
timates for 1000 steps. We do this for α ∈ {0, 0.1, 0.2, 0.3}
and for N ∈ {1, 10, 102, 103, 104} (number of samples
used to estimate the gradient at each step). For each
pair (α,N) we tuned the step-size; we ran simulations for
all step-sizes in the set {10i}7i=−7 and selected the top-
performing one. All results shown are averages over 15
simulations.

Optimization results are shown in Fig. 4. For the smaller
dataset, Iris (d = 4), optimization converges properly for all
values of α considered regardless of the number of samples
N used to estimate the gradient. The situation is different
for the Australian dataset (d = 14). In this case, optimiza-
tion converges properly for α→ 0, but as α is increased a
much larger number of samples N is required to retain con-
vergence (N ≥ 1000 for α = 0.3). This shows that, even
for a simple logistic regression model of low dimension
(d = 14), alpha-divergence minimization methods based
on unbiased gradient estimates scale very poorly with the
dimensionality of the problem when α 6= 0. We also ran
simulations with larger datasets (d ≈ 40), for which opti-
mization barely made any progress at all regardless of the
number of samples N used. Similar results are obtained
using the Adam optimizer (shown in Fig. 8, Appendix B).

Fig. 5 shows the SNR of the estimator for different values of
α along a single optimization path, obtained by minimizing
Lα forα→ 0 (equivalent to maximizing the ELBO). For the
smaller dataset, Iris (d = 4), all values of α considered lead
to comparable SNRs. In contrast, for the Australian dataset
(d = 14), the SNR descreases rapidly as α is increased.

6. Discussion
We study unbiased methods for alpha-divergence minimiza-
tion with the goal of understanding when these methods
may be successfully applied. We present a detailed analysis
of the SNR of unbiased gradient estimates for different sce-
narios. Our results are pessimistic. Suppose the variational
family is any fully-factorized family, or the set of full-rank
Gaussians. We show that in the favorable case where the
posterior is inside the variational family, the SNR degrades
catastrophically in the dimensionality. Optimization theory
suggests that an exponential amount of computation time
would be needed to optimize the objectives.

Interestingly, results in this work rule out some potential
“intuitive” solutions. For instance, one might think that,
for α > 0, using an over-dispersed distribution qw could
mitigate variance issues. However, Theorem 1 shows this
is not the case. While an over-dispersed distribution might
help avoid estimators with infinite variance, it would not
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Figure 4. Optimization results for each α for all values of N considered. The loss at each step (eq. 14) is estimated using 2.5 × 105

samples for both datasets.

Figure 5. Direct test of SNR for different values of α along a single
shared optimization path.

avoid the exponential deterioration of the SNR in terms of
the dimensionality of the problem.

In addition, one could also consider using an adaptive gra-
dient optimization method, such as Adam (Kingma & Ba,
2014). As it can be observed in Figs. 7 and 8 in Appendix B,
this does not solve the issue. This is not really surpris-
ing. Intuitively, this is because the extremely low SNR is a
property of the gradient estimator, and thus will difficult op-
timization regardless of the gradient-based optimizer used.
Indeed, Section 2.1 of the original Adam paper (Kingma &
Ba, 2014) states4 “With a smaller SNR the effective step-
size ∆t will be closer to zero. This is a desirable property,
since a smaller SNR means that there is greater uncertainty
about whether the direction of m corresponds to the di-
rection of the true gradient.” In addition, the theoretical
results by Shalev-Shwartz et al. (2017) are independent of
the optimization algorithm used, and some of their negative
empirical results were obtained using Adam.

Why is the behavior for α 6= 0 so different to α→ 0? Our
understanding is that that the problematic terms vanish in
the limit of α→ 0. For example, eq. 7 becomes eq. 6, due to
the fact that D̃α → 1 as α→ 0. Similarly, in eq. 9, we get

4v9 on arxiv.

that f(λ, α) → 1 as α → 0, meaning that only SNR[gα]
remains. For full-rank Gaussians, it is probably easiest
to understand via the exact result in Thm. 4 (see below).
There, if α→ 0, we have that f(λ, α)→ 1, U → I , V →
I , meaning the overall SNR becomes 1/(d + 2) (exactly
eq. 11) which has no problematic exponential dependence
on dimensionality.

Given the failure of unbiased methods, one could consider
using some biased alternative. However, it has been re-
cently observed that, in high dimensions, these methods
return suboptimal solutions that fail to minimize the target
alpha-divergence (Geffner & Domke, 2021). An analysis
analogous to the one presented in this work is needed to un-
derstand this failure. We believe that such an analysis might
be related to the curse of dimensionality for self-normalized
importance sampling, which conjectures that to get mean-
ingful results the number of samples used from the proposal
distribution should be exponential in the dimensionality of
the problem (Bengtsson et al., 2008; Bugallo et al., 2017).

Exact result for Gaussians. Theorem 3 bounds the gra-
dient estimator’s SNR for Gaussians with arbitrary covari-
ances. While it admits a nice interpretation, it is not tight.
As mentioned previously, an exact result is possible. We
include it here. While this result is fully precise, it is harder
to interpret than the bounds from Theorem 3. It may be
possible to find tighter bounds that are still “simple”, or
to find an intuitive interpretation of the exact result. We
believe a step in these directions may further increase our
understanding of these methods.

Theorem 4. Take the setting of Theorem 3 with Σp 6= Σq
and 1 + 2α(λi − 1) > 0 for all i. Let S be a matrix such
that Σq = SS> and let α 6= 0. Then,

SNR[gα(p, qw, ε)] =
‖BU−1‖2F ×

∏d
i=1 f(λi, α)

tr(V −1)tr(BV −1B>) + 2‖BV −1‖2F
,



On the Difficulty of Unbiased Alpha Divergence Minimization

where B = (Σ−1p − Σ−1q )S, U = (1 − α)I + αS>Σ−1p S,
and V = (1− 2α)I + 2αS>Σ−1p S.
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