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Abstract 

Methods that infer causal dependence from obser-
vational data are central to many areas of science, 
including medicine, economics, and the social 
sciences. A variety of theoretical properties of 
these methods have been proven, but empirical 
evaluation remains a challenge, largely due to the 
lack of observational data sets for which treatment 
effect is known. We describe and analyze obser-
vational sampling from randomized controlled 
trials (OSRCT), a method for evaluating causal 
inference methods using data from randomized 
controlled trials (RCTs). This method can be used 
to create constructed observational data sets with 
corresponding unbiased estimates of treatment ef-
fect, substantially increasing the number of data 
sets available for empirical evaluation of causal 
inference methods. We show that, in expectation, 
OSRCT creates data sets that are equivalent to 
those produced by randomly sampling from em-
pirical data sets in which all potential outcomes 
are available. We then perform a large-scale eval-
uation of seven causal inference methods over 37 
data sets, drawn from RCTs, as well as simula-
tors, real-world computational systems, and ob-
servational data sets augmented with a synthetic 
response variable. We find notable performance 
differences when comparing across data from dif-
ferent sources, demonstrating the importance of 
using data from a variety of sources when evalu-
ating any causal inference method. 

1. Introduction 

Researchers in machine learning and statistics have become 
increasingly interested in methods that estimate causal ef-
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fects from observational data. Such interest is understand-
able, given the centrality of causal questions in fields such as 
medicine, economics, sociology, and political science (Mor-
gan & Winship, 2015). Causal inference has also emerged as 
an important class of methods for improving the explainabil-
ity and fairness of machine learning systems, since causal 
models can explicitly represent the underlying mechanisms 
of systems and their likely behavior under counterfactual 
conditions (Kusner et al., 2017; Pearl, 2019). 

However, evaluating causal inference methods is far more 
challenging than evaluating purely associational methods. 
Both types of methods can be analyzed theoretically. How-
ever, empirical analysis—long a driver of research progress 
in machine learning and statistics—has been increasingly 
recognized as vital for research progress in causal inference 
(e.g., Dorie et al., 2019; Gentzel et al., 2019), and empiri-
cal evaluation is substantially more challenging to perform 
in the case of causal inference. Many associational mod-
els (e.g., classifiers and conditional probability estimators) 
can be evaluated using cross-validation or held-out test sets. 
However, causal inference aims to estimate the value or 
distribution of an outcome variable under intervention, and 
evaluating such estimates requires an alternative route to 
estimating the effects of such interventions. 

Most available data sets are either experimental (which can 
yield unbiased estimates of treatment effect) or observa-
tional (for which treatment effect is unknown). Since most 
causal inference methods are designed to infer causal de-
pendence from observational data, accurate evaluation re-
quires both observational data and corresponding unbiased 
estimates of treatment effect. Several recent efforts have 
attempted to address this problem (e.g., Dorie et al., 2019; 
Gentzel et al., 2019; Tu et al., 2019; Shimoni et al., 2018), 
most of which collect or modify data specifically for the 
purpose of evaluation. Some approaches induce dependence 
between variables in specially constructed or selected data, 
while others re-purpose a simulator to produce data for eval-
uation. These approaches are promising and beneficial to 
the community, but creating individual, specialized new data 
sets is difficult and time-consuming, limiting the number 
of data sets available. To this point, most data sets that are 
easy to collect (such as synthetic data and simulators) are 
generally unrealistic, while data sets with a high degree of 
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realism require significant effort to obtain. 

We argue for exploiting a largely untapped source of data for 
evaluating causal inference methods: randomized controlled 
trials (RCTs). RCTs are designed and conducted for the 
express purpose of providing unbiased estimates of treat-
ment effect. Many RCT data sets are publicly available, and 
that number is only increasing, allowing for the collection 
of a large number of realistic data sets. Previous work has 
described how to non-randomly sample a specialized type 
of experimental data (one in which all potential outcomes 
are observed) to create constructed observational data sets.1 

Surprisingly, this basic approach can be modified to produce 
constructed observational data from RCTs as well. 

The core idea of non-random sampling of data from RCTs is 
not original to this paper. This basic approach has been used 
sporadically for at least a decade to evaluate algorithms for 
observational causal inference (Hill, 2011). However, these 
uses have typically been described only in passing and have 
often been limited to a single data set. This basic approach 
has also been used more widely to evaluate algorithms for 
learning policies for contextual bandits (Li et al., 2011). 
However, this work is almost unknown within the commu-
nity of researchers studying observational causal inference. 
The properties and wide utility of this approach are suffi-
ciently unknown that a more general analysis and discussion 
is warranted. Section 3 provides additional discussion of 
related work. 

We use data from multiple RCTs and also from a wide vari-
ety of other data sources to perform a large-scale evaluation 
of several causal inference methods. These data sources 
can be broadly categorized as RCTs, simulators (Guillaume 
& Rougemont, 2006; Tu et al., 2019; Miller et al., 2020), 
real-world computational systems (Gentzel et al., 2019) and 
observational data sets augmented with a synthetic response 
variable (Dorie et al., 2019; Shimoni et al., 2018). This type 
of large-scale evaluation from a diverse set of data sources 
provides us with an unprecedented opportunity to analyze 
systematic differences in the performance of the methods 
not only due to characteristics of the algorithms but also due 
to differences in data source. 

Specifically, we: (1) Propose that a known, but sporadically 
used, method for inducing confounding bias in RCT data 
become part of the standard evaluation suite for causal infer-
ence methods; (2) Prove that this approach is equivalent, in 
expectation, to the data generating process assumed by the 
potential-outcomes framework, a longstanding theoretical 

1The term “constructed observational data” denotes empirical 
data to which additional properties common in observational data 
(e.g., confounding) have been synthetically introduced. This term 
is distinct from constructed observational studies, which are stud-
ies that collect and compare both experimental and observational 
data from the same domain (see Section 3). 

framework for causal inference; (3) Demonstrate the feasi-
bility of this approach by applying multiple causal inference 
methods to observational data constructed from RCTs; and 
(4) Perform a large-scale evaluation of seven causal infer-
ence methods on 37 data sets drawn from multiple empirical 

2data sources. 

2. Creating Observational Data from 
Randomized Controlled Trials 

Consider a data generating process that produces a binary 
treatment T ∈ {0, 1}, outcome Y , and multiple covariates 
C = {C1, C2, ...Ck}, each of which may be causal for out-
come.3 We define Yi(t) to be the outcome for unit i under 
treatment t, referred to as a potential outcome. For each 
unit i, both treatment values Ti = 0 and Ti = 1 are set by 
intervention and both potential outcomes Yi(1) and Yi(0) 
are measured. We refer to this type of data, where all po-
tential outcomes are observed, as all potential outcomes 
(APO) data, denoted DAP O . Note that, due to the use of ex-
plicit interventions, such a data generating process produces 
experimental, rather than observational, data. 

Recently, some researchers (Louizos et al., 2017; Gentzel 
et al., 2019) have proposed sampling from APO data to 
produce constructed observational data. Such data sets are 
produced by probabilistically sampling a treatment value 
(and its corresponding outcome value) for every unit based 
on the values of one or more covariates. We refer to Cb ⊆ C 
as the biasing covariates and selected treatment random 
variable as T s , thus P (T s|Cb) := f(Cb). This procedure, 
shown in Algorithm 1, induces causal dependence between 
Cb and T s, creating a confounder when Cb also causes Y . 
We refer to such a data generating process as observational 
sampling from all potential outcomes (OSAPO) and denote 
a given data set generated in this way as DOSAP O . OSAPO 
is the data generating process assumed under the potential 
outcomes framework (Rubin, 2005). 

Data sets produced by OSAPO are extremely useful for eval-
uating causal inference methods. Causal inference methods 
can estimate treatment effect in DOSAP O , and these esti-
mates can be compared to estimates derived from DAP O . 
Furthermore, the process of inducing bias by sub-sampling 
allows for a degree of control that can be exploited to evalu-
ate a method’s resilience to confounding, by systematically 
varying the strength and form of dependence and whether 
variables in Cb are observed. However, very few experimen-
tal data sets exist that record all potential outcomes for every 

2Pointers to the data sets used in this paper, and 
R code to perform observational sampling, are available 
at https://github.com/KDL-umass/papers/tree/ 
main/causal-eval-rct-icml-2021. 

3For ease of exposition, we describe the approach using binary 
treatment, but the approach is more general. 
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unit, severely limiting the applicability of this approach. 

2.1. Observational Sampling of RCTs 

Now consider a slightly different data generating process, in 
which treatment is randomly assigned and only one potential 
outcome is measured for each unit i, producing either Yi(1) 
or Yi(0), but not both. This is the data generating process 
typically implemented by RCTs, in which every unit is 
randomly assigned a single treatment value, and the outcome 
for that treatment is measured. Vast numbers of RCTs are 
conducted each year, and data sets from many of them are 
available publicly. In addition, growing efforts toward open 
science are continually increasing the number of publicly 
available RCT data sets. 

This raises an intriguing research question: Can RCTs be 
sub-sampled to produce constructed observational data sets 
with the same properties as those produced by APO sam-
pling? 

We describe one such sampling procedure in Algorithm 2 — 
observational sampling from randomized controlled trials 
(OSRCT)—which produces a data sample denoted DOSRCT . 
As in APO sampling, covariates Cb bias the selection of a 
single treatment value, ts, for every unit i. If unit i actu-
ally received the selected treatment ts, we add i to DOSRCT . 
Otherwise, that unit is ignored. As we show below in The-
orem 2, when treatment is binary and the treatment and 
control groups are equal in size, the resulting constructed 
observational data set is, in expectation, half the size of the 
original, regardless of the form of the biasing. As discussed 
in Section 2.2, a causal inference method can then be ap-
plied to this data, and the results can be compared to the 
unbiased effect estimate from the original RCT data. This 
basic approach is shown in Figure 2. 

D

An RCT can be thought of as a data set where one poten-
tial outcome for every unit is missing at random. Since 
OSRCT uses the biasing covariates to select treatment, and 
treatment was assigned randomly, the sub-sampling process 
only changes the dependence between the biasing covariates 
and treatment. This is the same as in APO sampling. The 
probability of a given unit-treatment pair being included 
in the sub-sample is proportional in APO and RCT sam-
pling. That is, DOSRCT is equivalent to a random sample of 

OSAP O . We demonstrate this empirically, using an APO 
data set converted into an RCT data set, and provide a proof, 
in the supplementary material. 

Theorem 1. For RCT data set DRCT , APO data set DAP O , 
and binary treatment T ∈ {0, 1} with P (T = 1) = P (T = 
0) = 0.5 in DRCT , and units i, PDOSRCT (Ti = t) = 0.5 ∗ 

(Ti = t), for all units i and treatment values t.PDOSAP O 

Note that while Theorem 1 assumes equal probability of 
treatment and control, the approach generally applies even 

when P (T = 1) =6 0.5. In this case, instead of sub-
sampling DOSAP O by a factor of 0.5, the scaling factor 
is selected based on the treatment value. Since treatment is 
based solely on the value of the biasing covariates, this is 
equivalent to modifying the form of the biasing function. 

One potential disadvantage of this approach is that sub-
sampling to induce bias necessarily reduces the size of the 
resulting sample. Somewhat surprisingly, however, the de-
gree of this reduction does not depend on the intensity of 
the biasing. 

Theorem 2. For binary treatment T ∈ {0, 1} and RCT 
data set DRCT , if either P (T = 1) = P (T = 0) = 0.5, or 
E[P (T s = 1|Cb)] = 0.5, then E[|DOSRCT |] = 0.5|DRCT |. 

A proof is provided in the Supplementary Material. 

One downside of OSRCT is that it reduces the sample 
size available for causal inference. One alternative is to 
reweight units, rather than sub-sample them, according to 
P (T s = ti|Ci

b). This has the benefit of basing causal es-i 
timates on every unit in the RCT rather than only those in 
the sub-sample. This approach requires that the causal in-
ference method under evaluation accepts unit-level weights. 
However, when this is an option, using weighting rather than 
sub-sampling can be a useful alternative when RCTs with 
small sample size 4. We compared the estimates obtained 
by weighting to the estimates obtained by sub-sampling 
for causal inference methods that accept unit-level weights 
and found the results to be similar. Comparison results are 
provided in the supplementary material. 

2.2. What Can OSRCT Evaluate? 

The constructed observational data created by OSRCT has a 
substantial benefit over purely observational data: Unbiased 
estimates of causal effect can be obtained from the original 
RCT data, which can be compared to effect estimates from 
causal inference methods. A well-designed RCT enables the 
unbiased estimation of the sample average treatment effect 
(ATE) as E[yi(1)]−E[yi(0)] = E[yi|ti = 1]−E[yi|ti = 0], 
where ti denotes the actual treatment received by unit i. 
This estimate can be compared to estimates made by causal 
inference methods applied to the constructed observational 
data. 

Unlike APO data, RCT data only contains one treatment-
outcome pair for every unit, limiting both the available 
effect estimates and how these data sets can be used. RCTs 
measure the effect of a single randomized intervention 
do(Ti = ti) for every unit in the data set. Thus, we cannot 
estimate individual treatment effect (ITE) from RCT data, a 

4Thanks to an anonymous reviewer for the recommendation of 
this approach 
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Algorithm 1 Observational sampling from Algorithm 2 Observational sampling from 
all potential outcomes (OSAPO) randomized controlled trials (OSRCT) 

Input: APO data set DAP O , biasing covariates Cb 

Output: Biased data set DOSAP O 

for all units i ∈ D do 
p ← f(Cb)i 

D

ts ← Bernoulli(p) 
o ← row in DAP O corresponding to (i, ts) 

OSAP O ← DOSAP O ∪ o 
end for 
Return DOSAP O 

Input: RCT data set DRCT , biasing covariates Cb 

Output: Biased data set DOSRCT 

for all unit i ∈ D do 
p ← f(Cb)i 

D

ts ← Bernoulli(p) 
if (i, ts) ∈ D then 
o ← row in DRCT corresponding to (i, ts) 

OSRCT ← DOSRCT ∪ o 
end if 

end for 
Return DOSRCT 

Figure 1. Two procedures for sampling constructed observational data sets from experimental data. Left: From all potential outcomes 
(APO) data. Right: From randomized controlled trial (RCT) data. For some function f : D(Cb) → {x ∈ R : 0 < x < 1} 

Figure 2. The process of creating observational-style data from a randomized controlled trial. 

measurement that is available when using APO data. 

However, while RCTs do not measure individual-level treat-
ment effects, they do measure individual-level outcomes 
under intervention. Thus, OSRCT data can be used to eval-
uate a method’s ability to estimate unit-level outcome under 
intervention. Any causal inference method that can estimate 
E[Y |do(T = t)] can be evaluated by comparing those esti-
mates against measurements in the RCT data. In addition, 
the data discarded during biased sub-sampling in OSRCT 
can be treated as a held out test set, where the dependence 
between the biasing covariates and treatment is the comple-
ment of that in DOSRCT . We call the data discarded during 
OSRCT the “complementary sample”. Because we know 
the functional form of the dependence between the biasing 
covariates and treatment, we can weight the data points in 
the complementary sample according to their probability 
of being included in the accepted sample. In aggregate, 
this type of weighting allows the complementary sample to 
approximate the distribution of the training data, and thus 
be used for testing. This is equivalent to inverse propen-
sity score weighting (Rosenbaum & Rubin, 1983). The 

supplementary material contains more details on using the 
complementary sample for evaluation, including a proof. 

2.3. Assumptions, Limitations, and Opportunities 

The validity of evaluation with OSRCT depends on several 
standard assumptions about the validity of the original RCT. 
Specifically, it assumes that treatment assignment is ran-
domized and that all sampled units complete the study (no 
“drop-out”). Intriguingly, one standard assumption—that 
intent to treat does not differ from actual treatment—is not 
necessary. Even if this assumption is violated, the estimated 
treatment effect will correspond to the effect of intending 
to treat, and this estimand can still be used to evaluate the 
effectiveness of methods for observational causal inference. 

Evaluation with OSRCT has some limitations. OSRCT can 
induce dependence between any covariate and treatment, 
but not between any covariate and outcome. In addition, 
while the original RCT data can yield an unbiased estimate 
of the effect of treatment on outcome, it cannot produce 
such estimates for any other pair of variables. 
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Constructing observational data also provides some unique 
opportunities. OSRCT produces data with non-random treat-
ment assignment, and allows for variation in the level and 
form of that non-randomness. Additional features of obser-
vational studies can also be simulated, such as measurement 
error, selection bias, positivity violations, and hidden con-
founding (by hiding one of the biasing covariates). While 
some of these may further reduce the sample size of the con-
structed observational data due to additional sub-sampling, 
this process of constructing observational data can allow for 
the evaluation of a causal inference method’s robustness to 
many features of real-world data. 

One potential concern about the use of RCTs is their realism. 
While RCTs are empirical, the situations in which RCTs are 
conducted may differ from many observational settings. For 
example, RCTs are performed in settings where treatment 
can be randomized, where relevant covariates can be col-
lected, where outcome can be easily measured, and, in many 
cases, where there is an assumption that a causal effect is 
likely. 

For the purpose of evaluation, though, the important ques-
tion is not whether the causal effect estimates from the RCT 
data are representative of the population of interest, but 
whether the performance of causal inference methods on 
samples from the RCT data are representative of their per-
formance on the population of interest. While this is not 
guaranteed, this is a far weaker assumption than requiring 
that the RCT population match the desired observational 
population. 

3. Related Work 

OSRCT has been used for at least a decade in two different 
settings. The first is the most similar to what we describe in 
this paper, in which OSRCT has been applied sporadically 
to evaluate methods for causal inference from observational 
data. An early use is Hill (2011), in which the author non-
randomly samples data from an RCT—the Infant Health 
and Development Program (IHDP)—to produce a single 
observational-style data set for evaluating Bayesian additive 
regression trees (BART). The resulting constructed obser-
vational data set has subsequently been reused by others to 
evaluate a variety of methods for observational causal infer-
ence (e.g., Shalit et al., 2017; Atan et al., 2018; Yao et al., 
2018; Saito & Yasui, 2020). Less frequently, researchers 
have applied OSRCT or closely related approaches to other 
data sets drawn from RCTs or natural experiments (e.g., 
Arceneaux et al., 2006; Kallus et al., 2018b; Kallus & Zhou, 
2018; Witty et al., 2020; Zhang & Bareinboim, 2021). 

Despite these sporadic uses, observational sampling from 
RCTs is not widely known or used within the causal infer-
ence community. For example, two recent papers that sys-

tematically review existing evaluations of causal inference 
methods—Dorie et al. (2019) and Gentzel et al. (2019)— 
do not even mention this approach, despite the fact that 
it overcomes many of the most serious threats to validity 
for evaluation studies (e.g., reproducibility, realistic data 
distributions and complexity of treatment effects, multiple 
possible levels of confounding). It has not been explicitly 
formalized nor have its advantages been clearly described. 
As a result, it is rarely used and it has never been systemati-
cally compared to alternative approaches to evaluation. 

The second setting in which OSRCT has been applied is off-
line evaluation of contextual bandit policies (Li et al., 2011). 
Specifically, Li et al. show how to evaluate a (non-random) 
contextual bandit policy by sampling from the data produced 
by a randomized policy.This method is widely employed to 
evaluate methods in fields such as computational advertising 
and recommender systems (e.g., Tang et al., 2013; 2014; 
Zeng et al., 2016), and it has been extended with approaches 
such as bootstrapping (Mary et al., 2014). 

Our use of OSRCT in this paper exploits the same idea but in 
a subtly different setting. In our setting, we have no interest 
in estimating the effect of a contextual policy that is known 
to the agent. Instead, our goal is to determine how well a 
given method estimates the average or conditional treatment 
effect (which, in contextual bandits, would be formulated as 
the reward difference between two specific policies), even 
though the algorithm only has access to the actions and 
outcomes of a single unknown and non-randomized policy. 

In addition to these two settings that have directly used OS-
RCT, other prior work has explicitly focused on empirical 
evaluation methods for observational causal inference. The 
ideal method would score highly on at least three character-
istics: data availability (many data sets with the required 
characteristics can be easily obtained to avoid overgeneral-
izing from a small sample); internal validity (differences 
between estimated treatment effect and the standard can 
only be attributed to bias in the estimator rather than biases 
due to how data sets were created); and external validity 
(the performance of the estimator will generalize well to 
other settings). Of three broad classes of prior work, each 
suffers from deficiencies and none clearly dominate. 

Some prior work uses observational data sets with known 
treatment effect. One approach gathers observational data 
about phenomena that are so well-understood that the causal 
effect is obvious (e.g., Mooij et al., 2016), but such situa-
tions are rare, limiting data availability. Another approach 
uses data from matched pairs of observational and experi-
mental studies (e.g., Dixit et al., 2016; Sachs et al., 2005; 
Jaciw, 2016). Such data sets appear to represent a nearly 
ideal scenario for evaluating methods for inferring causal 
effect from observational data, but pairs of directly compa-
rable observational and experimental studies have low data 
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availability and using paired studies with different settings 
or variable definitions can greatly reduce internal validity. 
Some “constructed observational studies” intentionally cre-
ate matched pairs of experimental and observational data 
sets (e.g., LaLonde, 1986; Hill et al., 2004; Shadish et al., 
2008), but these studies also have low data availability. 

Another class of prior work generates observational data 
from synthetic or highly controlled causal systems (e.g., Tu 
et al., 2019; Gentzel et al., 2019; Louizos et al., 2017; Kallus 
et al., 2018a; Athey et al., 2021). In this way, the treatment 
effect is either directly known or can be easily derived from 
experimentation. Observational data is typically obtained 
via some biased sampling of the experimental data, often a 
variety of APO sampling. In the case of entirely synthetic 
data, data availability and internal validity are both high, 
but external validity is low, and such studies are often criti-
cized as little more than demonstrations. External validity 
typically increases somewhat for highly controlled causal 
systems, but data availability drops significantly. 

The final and newest class of existing work augments an 
existing observational study with a synthetic outcome, re-
placing the original outcome measurement with the result 
of a synthetic function (e.g., Dorie et al., 2019; Shimoni 
et al., 2018). Given the synthetic nature of the outcome 
function, the causal effect is known. This class of approach 
has relatively high data availability, and it trades some loss 
of external validity (because real outcome measurements 
are replaced with synthetic ones) to gain internal validity 
(because the true treatment effect is known). Note particu-
larly that both the treatment effect and the confounding are 
synthetic, because the function that determines the synthetic 
outcome determines how both the treatment and potential 
confounders affect the value of outcome. 

The approach proposed here—OSRCT—augments, rather 
than replaces, existing approaches. It occupies a unique 
position because it simultaneously has fairly high data avail-
ability, internal validity, and external validity. OSRCT’s 
data availability is relatively high because it can use data 
from any moderately large RCT. Only synthetic data gen-
erators and synthetic outcome approaches have higher data 
availability, but both suffer in terms of external validity. OS-
RCT’s internal validity is relatively high because there exist 
many well-designed RCTs. Using synthetic data generators 
or highly controlled causal systems will typically produce 
somewhat higher internal validity, as will observational data 
with synthetic outcomes, but this is done at the cost of exter-
nal validity or data availability. Finally, OSRCT’s external 
validity is relatively high because the distributions of all vari-
ables and the outcome function occur naturally, while only 
the confounding is synthetic. Only observational studies 
with known treatment effect have higher external validity, 
and these suffer from severe limitations on data availability. 

4. Are RCT Data Sets Available? 

OSRCT has the benefit of leveraging existing empirical data 
rather than requiring the creation of new data sets specifi-
cally for evaluating causal inference methods, but it does 
require that data from RCTs be available and generally 
accessible to causality researchers. Fortunately, this is in-
creasingly the case. While many repositories that host RCTs 
are restricted for reasons of privacy and security, many other 
repositories allow access with only minimal restrictions. In 
some cases, access requires only registering with the reposi-
tory and agreeing not to re-distribute the data or attempt to 
de-anonymize it. As long as these data sharing agreements 
are adhered to, such data can be easily acquired by causal-
ity researchers. An even larger set of repositories restricts 
access but will make data available upon reasonable request. 
Additional information about some such repositories can be 
found in the supplementary material. 

In addition, funding agencies and journals are increasingly 
requiring that researchers make anonymized individual pa-
tient data available upon reasonable request (Godlee & 
Groves, 2012; Ohmann et al., 2017). For example, the 
United States’ National Institutes of Health (NIH) recently 
requested public feedback on a proposed data sharing policy 
with the aim of improving data management and the sharing 
of data created by NIH-funded projects (Request for Public 
Comment on DRAFT NIH Policy for Data Management and 
Sharing and Supplemental DRAFT Guidance, 2019). There 
is also increasing awareness and discussion in the medical 
community about the importance of sharing individual pa-
tient data, to allow for greater transparency and re-analysis 
(Drazen, 2015; Kuntz et al., 2019; Banzi et al., 2019; Su-
varna, 2015). All of this suggests increasing availability of 
individual patient data from randomized controlled trials. 

5. Evaluation 

To assess how well RCT data sets work for evaluation, we 
performed a large-scale evaluation using RCT data, as well 
as data from three additional sources: computational sys-
tems, synthetic-response data, and simulators. 

5.1. Data 

Computational Systems. We use the computational sys-
tem data sets provided by Gentzel et al. (2019). In these 
data sets, all potential outcomes are observed, so we refer 
to these as APO data sets. These data sets are collected 
from three computational systems: queries executed by a 
Postgres database, HTTP requests executed by web servers 
on the open internet, and programs compiled under the Java 
Development Kit. For each data set, we selected a single 
treatment-outcome pair and a biasing covariate, matching 
the setup in Gentzel et al. (2019). 
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Synthetic-Response Data. Many data sets for evaluation 
were created for the ACIC Competition (Dorie et al., 2019) 
and the IBM Causal Inference Benchmarking Framework 
(Shimoni et al., 2018). These data sets were created using a 
set of real-world covariates and then simulating both a treat-
ment and an outcome. As in APO and RCT data, treatment 
is selected synthetically based on values of one or more 
covariates. However, the outcome (sometimes referred to 
as the ‘response surface’) is also generated synthetically. 
Both the ACIC Competition and the IBM Causal Inference 
Benchmarking Framework created a large number of data 
sets, with varying treatment and outcome functions. We 
selected five data sets from each, for a total of ten data sets, 
to use for our evaluation. 

Simulators. We used data sets from three simulators of 
varying complexity: a simulator of neuropathic pain (Tu 
et al., 2019); Nemo (Guillaume & Rougemont, 2006), a sim-
ulator of population dynamics; and three simple simulators 
from the WhyNot Python package (Miller et al., 2020). For 
both Nemo and the neuropathic pain simulator, we chose 
three distinct treatment-outcome pairs, generating three data 
sets for each. For the WhyNot simulators, we chose three 
separate simulators and generated a single data set from 
each, resulting in nine total data sets from simulators. 

Randomized Controlled Trials. We selected data sets 
from six repositories: Dryad (2020), the Yale Institution for 
Social and Policy Studies Repository (2020), the NIH Na-
tional Institute on Drug Abuse Data Share Website (2020), 
the University of Michigan’s ICPSR repository (2020), the 
UK Data Service (2020), and the Knowledge Network for 
Biocomplexity (2020). These repositories were selected 
because they contained RCT data, were reasonably well-
documented, and had a simple data access process. None 
of these repositories house RCT data exclusively, so some 
search and filtering was necessary to identify relevant data 
sets. We also used a stand-alone RCT from a study of artifi-
cial cultural markets (Salganik et al., 2006). 

These four sources of data represent a range of realism. 
Of the simulators, the WhyNot simulators are the most 
simplistic and, by design, are not intended to be realistic 
representations of the world. The Nemo and neuropathic 
pain simulators are a bit more realistic, since they were de-
signed by experts within their respective communities with 
the intent of accurately modeling their respective systems. 
The synthetic-response data sets are even more realistic, be-
cause the covariate distribution is from an empirical source. 
However, both the treatment and outcome are synthetic. The 
APO and RCT data sets have realistic covariate distributions 
and response functions, with synthetic treatment functions. 
While the APO data sets are limited to a narrow set of do-
mains, the RCT data sets come from a wide range of studies 
in different fields. This spectrum allows us to assess how 

algorithm performance differs under different levels of real-
ism. Further details about all of the data sets are included in 
the supplementary material. 

5.2. Algorithms 

Due to the nature of the ground truth in the selected data sets 
(treatment effect of a single treatment on a single outcome), 
we focused our evaluation on causal inference methods that 
estimate average treatment effect. We chose seven meth-
ods to evaluate: propensity score matching (PSM), inverse 
probability of treatment weighting (IPTW) (Rosenbaum & 
Rubin, 1983), outcome regression (OR), BART (Chipman 
et al., 2007), causal forests (CF) (Wager & Athey, 2017), 
doubly-robust estimation (DRE) (Funk et al., 2011), and a 
neural network-based method (NN) (Shi et al., 2019). As a 
baseline for comparison, we also included a naive method 
that simply estimates E[Y |T = 1] − E[Y |T = 0] from 
the observational data. Details about these methods can be 
found in the supplementary material. 

5.3. Experiments 

For the RCT, APO and simulator data sets5, we selected a 
single treatment and outcome pair, and selected a biasing co-
variate that was pre-treatment and correlated with outcome. 
For each data set, we calculated the unbiased ATE to use as 
ground truth. We then sub-sampled, as shown in Algorithms 
1 and 2, to produced a biased data set. All algorithms were 
applied to the biased data, producing estimates of ATE.This 
process was repeated for 30 trials. For data sets with more 
than 2,000 individuals, we sub-sampled to 2,000, to keep 
sample sizes comparable between data sets. 

For data sets with a binary outcome, we used risk difference 
instead of ATE, calculated as P (Y = 1|do(T = 1)) − 
P (Y = 1|do(T = 0)). Error in ATE and risk difference 
estimation was calculated as the absolute difference between 
the predicted value and the ground truth value calculated 
on the unbiased data. ATE and outcome estimates were 
normalized by the range of the outcome variable for easier 
comparison. 

It is important to note that, while the biasing procedure was 
the same for all the RCT, Simulator, and APO data sets, the 
strength of the bias may differ substantially. This is because 
two factors influence the strength of the confounding bias: 
(1) the strength of the treatment sampling function f(Cb); 
and (2) the strength of the latent dependence between the 
biasing covariates and outcome. In order to ensure that 
confounding bias was introduced, we only chose biasing 
covariates that were correlated with outcome. However, the 
strength and nature of this dependence can vary significantly. 

5The synthetic-response data sets were, by design, pre-biased, 
so no additional processing was necessary 
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Figure 3. Normalized error in estimating ATE for data sets with continuous outcome. Sim denotes simulator, SR denotes synthetic-response 
data sets, RCT denotes randomized controlled trials and APO denotes computational systems. 

This means that even if we induce strong dependence in the 
sampling procedure, the overall confounding bias may be 
weak, due to a weak effect of the biasing covariates on 
outcome. To assess how much confounding bias is intro-
duced in each data set, the naive algorithm (described above) 
serves as a simple estimate of that bias, by showing the error 
induced by not accounting for the biasing covariates. 

Figure 4. Error in estimating risk difference for data sets with bi-
nary outcomes. 

5.4. Results 

Effect estimation results for the experimental setup de-
scribed above are shown in Figure 3 for data sets with con-
tinuous outcomes and Figure 4 for data sets with binary 
outcomes. These results can be analyzed in two main ways: 
comparing the performance of different algorithms within 
each data set, and comparing how algorithm performance 
differs between different data sets. Most evaluations in the 
literature focus solely on comparing performance within 
individual data sets. Evaluating across data sources, though, 
can also provide a useful understanding of how different 
data design choices affect estimates of relative performance. 

All methods perform well overall, with error typically cen-
tered around zero. Propensity score matching consistently 
has the highest variability. This is consistent with the litera-
ture, which shows that the pruning done by propensity score 
matching can increase data set imbalance, and thus increase 
estimation bias, when matching solely on the propensity 
score (King & Nielsen, 2019). 

While performance between the methods is very similar 
for most for the RCT data sets, the synthetic-response data 
sets show substantially more variability between different 
algorithms. For example, IPTW has higher variability on 
some synthetic-response data sets, BART performs well 
overall, and BART and IPTW perform poorly on SR-10. 

One interesting feature of these results is that, overall, per-
formance between the RCT and APO data is fairly similar, 
with similar variability ranges and most methods perform-
ing about the same. The simulators have lower variability 
in general, but, for the most part, have similarly equiva-
lent performance across methods. This stands in contrast 
to the synthetic-response data sets, where we see far more 
variability between methods on the same data set. 

The similarity between the RCT and APO data is a good 
sign. APO data can be thought of as an ideal, but hard to 
come by, situation. In practice, we are far more likely to 
only observe one potential outcome for every individual, as 
is the case with RCTs. Thus, OSRCT allows us to get nearly 
identical results using data that is far easier to acquire than 
OSAPO. 

This contrast between the synthetic-response data sets and 
the other three types has several possible explanations. 
One is that the complexity of the response surface in the 
synthetic-response data is far higher than that of the other 
data sets. Given that the response surface in the RCT data 
sets arise naturally in real-world systems, this suggests that 
the level of complexity in the synthetic-response data sets is 
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Figure 5. Normalized error in estimating ATE with two biasing 
covariates, for data sets with continuous outcome 

not realistic. 

Another possible explanation is that the treatment assign-
ment in the RCT data is very simplistic (i.e., based on the 
value of only a single biasing covariate), while the treatment 
in the synthetic-response data sets is assigned based on a 
complex combination of many covariates. To test this hy-
pothesis, we defined a more complicated biasing function, 
using a combination of two covariates that are correlated 
with outcome. Where possible, numeric covariates were 
chosen. However, some data sets have only factor covari-
ates, or a very limited number of numeric covariates, so a 
mix of factor and numeric biasing covariates was used. 

Results with two biasing covariates are shown in Figures 
5 and 6. For the most part, estimates are similar to those 
produced with a single biasing covariate, and we still do 
not see the differences between algorithms that we do for 
the synthetic-response data sets. It is possible that an even 
more complicated biasing function, potentially with many 
more covariates, is necessary for these results to be similar. 
However, if the complexity of the treatment function is the 
cause of the performance difference, we would expect meth-
ods that focus on treatment modeling (such as IPTW and 
propensity score matching) to be performing consistently 
worse in this regime, which is not what we observe. 

In summary, we demonstrate that three types of evaluation 
data (simulators, computational APO data sets, and RCTs) 
all produce results that are markedly different from the re-
sults produced by evaluating on synthetic-response data. 
Specifically, the results from these three types of evalua-
tion data suggest that many modern methods for estimating 
causal effects are roughly equivalent in performance on 
realistic causal inference tasks. 

Figure 6. Error in estimating risk difference with two biasing 
covariates, for data sets with binary outcome 

6. Conclusion 

Research progress in machine learning has long depended 
on high-quality empirical evaluation. Research in causal 
inference has been hindered due to sparse empirical data 
resources. The growth in such data resources is slow, and 
the breadth of such data is still limited, especially when 
compared to the wealth of evaluation data sets available for 
associational machine learning. 

Data from RCTs provides a large and growing source of data 
that can be used to evaluate causal inference methods. RCT 
data has been widely collected by researchers in many fields 
over many years and is increasingly being made available 
for wider use. Harnessing this wealth of data with OSRCT 
can substantially increase what we know about the absolute 
and relative performance of causal inference methods. 
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