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Abstract
In the stochastic submodular cover problem, the
goal is to select a subset of stochastic items of
minimum expected cost to cover a submodular
function. Solutions in this setting correspond to
sequential decision processes that select items one
by one “adaptively” (depending on prior obser-
vations). While such adaptive solutions achieve
the best objective, the inherently sequential nature
makes them undesirable in many applications. We
ask: how well can solutions with only a few adap-
tive rounds approximate fully-adaptive solutions?
We give nearly tight answers for both independent
and correlated settings, proving smooth tradeoffs
between the number of adaptive rounds and the
solution quality, relative to fully adaptive solu-
tions. Experiments on synthetic and real datasets
show qualitative improvements in the solutions
as we allow more rounds of adaptivity; in prac-
tice, solutions with a few rounds of adaptivity are
nearly as good as fully adaptive solutions.

1. Introduction
Submodularity is a fundamental notion that arises in applica-
tions such as image segmentation, data summarization (Si-
mon et al., 2007; Lin & Bilmes, 2011; Sipos et al., 2012),
hypothesis identification (Barinova et al., 2012; Chen et al.,
2014), information gathering (Radanovic et al., 2018), and
social networks (Kempe et al., 2015) . The submodular
cover optimization problem requires us to pick a minimum-
cost subset S of items to cover a monotone submodular
function f . Submodular cover has been extensively stud-
ied in machine learning, computer science and operations
research (Wolsey, 1982; Golovin & Krause, 2011; Mirza-
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soleiman et al., 2015; Bateni et al., 2018): here are two
examples from sensor deployment and medical diagnosis.

In the sensor deployment setting, we consider the problem
of deploying a collection of sensors to monitor some phe-
nomenon (Krause & Guestrin, 2007; Mini et al., 2014; Sun
et al., 2019), for example: we may wish to monitor air
quality or traffic situations. The area each sensor can cover
depends on its sensing range. The goal of the problem is to
deploy as few sensors as possible to cover a desired region
entirely. The area covered as a function of the sensors de-
ployed is a submodular function, and we can cast the sensor
deployment problem as a special case of submodular cover.

In the medical diagnosis example, we have s possible condi-
tions (hypotheses) the patient may suffer from along with the
priors on their occurrence, and our goal is to perform tests to
identify the correct condition as quickly as possible (Garey
& Graham, 1974; Kosaraju et al., 1999; Dasgupta, 2004;
Cicalese et al., 2014). This can be cast as submodular cover
by viewing each test as eliminating all inconsistent hypothe-
ses. Hence we want a coverage value of s− 1: once s− 1
inconsistent hypotheses are eliminated, the remaining one
must be correct.

Observe that both these applications involve uncertain data:
the precise area covered by a sensor is not known before
the sensor is actually setup and the precise outcome (posi-
tive/negative) of a test is not known until the action has been
taken. This uncertainty can be modeled using stochastic
submodular optimization, where the items are stochastic.
As a simple example of the stochastic nature, each item may
be active or inactive (with known probabilities), and only
active items contribute to the submodular function.

A solution for stochastic submodular cover is now a sequen-
tial decision process. At each step, an item is probed and
its realization (e.g., active or inactive) is observed. The pro-
cess is typically adaptive, where all the information from
previously probed items is used to identify the next item to
probe. This process continues until the submodular function
is covered, and the goal is to minimize the expected cost of
probed items. Such adaptive solutions are inherently fully
sequential, which is undesirable if probing an item is time-
consuming. E.g., in sensor deployment, probing a sensor
corresponds to physically deploying a sensor and observing
whether it functions as expected, which may take hours or
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days. Or, probing/performing a test in medical diagnosis
may involve a long wait for test results. Therefore, we prefer
solutions with only few rounds of adaptivity.

Motivated by this, we ask: how well do solutions with only
a few adaptive rounds approximate fully-adaptive solutions
for the stochastic submodular cover problem? We consider
both cases where realizations of different items are indepen-
dent, and where they are allowed to be correlated. For both
these situations we give nearly tight answers, with smooth
tradeoffs between the number r of adaptive rounds and the
solution quality (relative to fully adaptive solutions).

The main contribution of our work is an r-round adaptive
solution for stochastic submodular cover in the “set-based”
model for adaptive rounds. In this model, a fixed subset of
items is probed in parallel every round (and their total cost
is incurred). The decisions in the current round can depend
on the realizations seen in all previous rounds. However, as
noted in (Agarwal et al., 2019), if we require function f to
be covered with probability one then the r-round-adaptivity
gap turns out to be very large. Therefore, we focus on set-
based solutions that are only required to cover the function
with high probability.

In designing algorithms, it turns out to be more convenient
to work with the “permutation” model for adaptive rounds,
where the function is covered with probability one. This
model was also used in prior literature (Goemans & Von-
drák, 2006; Agarwal et al., 2019). Here, every round of
an r-round-adaptive solution specifies an ordering of all
remaining items and probes them in this order until some
stopping rule. See Definition 2.1 for a formal definition.
Moreover, our r-round adaptive algorithm in the permu-
tation model can be transformed into an r-round adaptive
algorithm in the set-based model. We obtain algorithms in
the set-based model that:

• for any η ∈ (0, 1), finds an r-round adaptive solution
that has expected cost at most rα

η · OPT and covers the
function with probability at least 1− η.

• finds a 2r-round adaptive solution that has expected
cost at most O(α) · OPT and covers the function with
probability at least 1− e−Ω(r).

Here OPT is the cost of an optimal fully-adaptive solution
and α is the approximation ratio of our algorithm in the
permutation model. The first algorithm above is for the case
where r, the number of rounds of adaptivity, is small (say, a
constant). In this, we keep the number of rounds the same,
but we lose a factor r in the expected cost. The second
algorithm is for the case that r is large, e.g., more than a
constant. Here, the number of set-based rounds increases
by a factor 2, but we only lose a constant factor in expected
cost. We formalize and prove these results in the full version

of the paper. For the rest of the paper, an r-round adaptive
algorithm refers to an an r-round adaptive algorithm in the
permutation model (unless specified otherwise).

1.1. Results

Consider a monotone submodular function f : 2U → Z≥0

with Q := f(U). There are m items, where each item i is
a random variable Xi having cost ci and corresponding to
a random element of U . (Our results extend to the more
general setting where each item realizes to a subset of U .)
The goal is to select a set of items such that the union S
of their corresponding realizations satisfies f(S) = Q, and
the expected cost is minimized. Our first result is when the
items have independent distributions.

Theorem 1.1 (Independent Items). For any integer r ≥ 1,
there is an r-round adaptive algorithm for the stochastic
submodular cover problem with cost O(Q1/r · logQ) times
the cost of an optimal adaptive algorithm.

This improves over an O(r Q1/r logQ log(mcmax))
bound from (Agarwal et al., 2019) by eliminating the de-
pendence on the number of items m and the item costs
(which could be much larger than Q). Moreover, our result
nearly matches the lower bound of Ω( 1

r3Q
1/r) from (Agar-

wal et al., 2019). Setting r = logQ shows that O(logQ)
adaptive rounds give an O(logQ)-approximation. By trans-
forming this algorithm into a set-based solution, we get:

Corollary 1.2. There is an O(logQ) round algorithm for
stochastic submodular cover in the set-based model with
cost O(logQ) times the optimal (fully) adaptive cost.

This approximation ratio of O(logQ) is the best pos-
sible (unless P=NP) even with an arbitrary number
(r = m) of adaptive rounds. Previously, one could
only obtain an O(log2 Q log(mcmax))-approximation in
a logarithmic number of rounds (Agarwal et al., 2019).
In the special case of unit costs, (Esfandiari et al.,
2019) gave an O(log(mQ))-approximation for covering
“adaptive submodular” functions using O(logm log(Qm))
set-based rounds. When costs are arbitrary, their
result implies an O(log(mQcmax))-approximation in
O(logm log(Qmcmax)) set-based rounds.

Moreover, Theorem 1.1 (with r = 1) implies an O(Q logQ)
adaptivity gap for stochastic set cover (a special case of sub-
modular cover), resolving an open question from (Goemans
& Vondrák, 2006) up to an O(logQ) factor, where Q is the
number of objects in set cover.

Our second result is when the items have correlated distribu-
tions. Let s denote the support size of the joint distribution
D, i.e., the number of scenarios.

Theorem 1.3 (Correlated Items). For any integer r ≥ 1,
there is an r-round adaptive algorithm for scenario sub-
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modular cover with cost O
(︁
s1/r(log s+ r logQ)

)︁
times

the cost of an optimal adaptive algorithm.

Again, in the set-based setting, we obtain:

Corollary 1.4. There is an O(log s) round algorithm for
scenario submodular cover in the set-based model with cost
O(log s logQ) times the optimal (fully) adaptive cost.

Scenario submodular cover generalizes the classic optimal
decision tree problem (Garey & Graham, 1974; Hyafil &
Rivest, 1976/77; Loveland, 1985; Kosaraju et al., 1999;
Dasgupta, 2004; Adler & Heeringa, 2012; Gupta et al.,
2017a). A fully-adaptive O(log(sQ))-approximation for
scenario submodular cover was obtained in (Grammel et al.,
2016); see also (Navidi et al., 2020) for a more general re-
sult. In terms of rounds-of-adaptivity, an O(log(mQ cmax

pmin
))-

approximation in O(logm log(Qm cmax

pmin
)) set-based rounds

follows from (Grammel et al., 2016; Esfandiari et al., 2019).
Here pmin ≤ 1

s is the minimum probability of any scenario.
Scenario submodular cover is not “adaptive submodular”,
and so results from (Esfandiari et al., 2019) cannot be used
directly. Still, (Grammel et al., 2016) showed an equiv-
alent goal function for scenario submodular cover that is
indeed adaptive-submodular, but with a larger “Q value” of
Q

pmin
. Then, the algorithm from (Esfandiari et al., 2019)

can be applied to this new goal function. We note that
when the number of rounds is less than logarithmic, our
result provides the first approximation guarantee even in the
well-studied special case of optimal decision tree.

The results in Theorem 1.1 and Theorem 1.3 are incom-
parable: while the independent case has more structure in
the distribution D, its support size is exponential. Finally,
the dependence on the support size s is necessary in the
correlated setting, as our next result shows.

Theorem 1.5 (Lower Bound). For any integer r ≥ 1, there
is an instance of scenario submodular cover with Q = 1
where the cost of any r-round adaptive solution is Ω( 1

r2 log s ·
s1/r) times the optimal adaptive cost.

This lower bound is information-theoretic and does not
depend on computational assumptions, whereas the upper
bound of Theorem 1.3 is given by a polynomial algorithm.

Finally, we note that our algorithms are also easy to im-
plement. We tested both algorithms on synthetic and real
datasets that validate the practical performance of our algo-
rithms. Specifically, we test our algorithm for the indepen-
dent case (Theorem 1.1) on instances of stochastic set cover,
and our algorithm for the correlated case (Theorem 1.3)
on instances of optimal decision tree. For stochastic set
cover, we use real-world datasets to generate instances with
≈ 1200 items. We observe a sharp improvement in per-
formance within a few rounds of adaptivity, and that 6-7
rounds of adaptivity are nearly as good as fully adaptive

solutions. For optimal decision tree, we use both real-world
data and synthetic data. The real-world data has ≈ 400 sce-
narios and the synthetic data has 10, 000 scenarios. Again,
we find that about 6 rounds of adaptivity suffice to obtain
solutions as good as fully adaptive ones. We also compared
our algorithms’ cost to information-theoretic lower bounds
for both applications: our costs are typically within 50% of
these lower bounds.

1.2. Techniques

The algorithms for the independent and correlated cases are
similar, with some crucial differences. In each round of
both algorithms, we iteratively compute a “score” for each
item and greedily select the item of maximum score. This
results in a non-adaptive list of all remaining items, and the
items are probed in this order until a stopping rule. The
PARCA stopping rule in the independent case corresponds
to reducing the remaining target (on the function value) by a
factor of Q1/r, whereas the SPARCA rule involves reducing
the number of “compatible scenarios” by an s1/r factor in
the correlated case.

The analysis for both Theorems 1.1 and 1.3 follows parallel
lines at the beginning. For each i ≥ 0, we relate the “non-
completion” probabilities of the algorithm after cost α · 2i
to the optimal adaptive solution after cost 2i. The “stretch”
factor α corresponds to the approximation ratio, which is
different for the independent and correlated cases. In order
to relate these non-completion probabilities, we consider the
total score G of items selected by the algorithm between cost
α2i−1 and α2i. The crux of the analysis lies in giving lower
and upper bounds on the total score G; the arguments here
are different for the independent and correlated settings.

In the independent case, the score of any item Xe is an
estimate of its relative marginal gain, where we take an
expectation over all previous items as well as Xe. We also
normalize this gain by the item’s cost. See Equation (1) for
the definition. In lower bounding the total score G, we use
a variant of a sampling lemma from (Agarwal et al., 2019)
as well as the constant-factor adaptivity gap for submodular
maximization (Bradac et al., 2019). We also need to par-
tition the outcome space (of all previous realizations) into
“good” and bad outcomes: conditional on a good outcome,
OPT has a high probability of completing before cost 2i.
Good outcomes are necessary in our proof of the sampling
lemma, but luckily the total probability of bad outcomes
is small (and they can be effectively ignored). In upper
bounding G, we consider the total score as a sum over deci-
sion/sample paths and use the fact that the sum of relative
gains corresponds to a harmonic series.

In the correlated case, the score of any item Xe is the sum
of two terms (i) its expected relative marginal gain as in the
independent case, and (ii) an estimate of the probability on
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“eliminated” scenarios. Both terms are needed because the
algorithm needs to balance (i) covering the function and (ii)
identifying the realized scenario (after which it is trivial to
cover f ). Again, we normalize by the item’s cost. See Equa-
tion (2). In lower bounding the total score G, we partition
the outcome space into good/okay/bad outcomes that corre-
spond to a high conditional probability of OPT (i) covering
function f by cost 2i, (ii) eliminating a constant fraction
of scenarios by cost 2i, or (iii) neither of the two cases.
Further, by restricting to outcomes that have a “large” num-
ber of compatible scenarios (else, the algorithm’s stopping
rule would apply), we can bound the number of “relevant”
outcomes by s1/r. Then we consider OPT (up to cost 2i)
conditional on all good/okay outcomes and show that one of
these items has a high score. To upper bound G, we again
consider the total score as a sum over decision paths.

1.3. Other related work

The role of adaptivity has been extensively studied for var-
ious stochastic “maximization” problems such as knap-
sack (Dean et al., 2008; Bhalgat et al., 2011), match-
ing (Bansal et al., 2012; Behnezhad et al., 2020), matroid-
constrained probing (Gupta & Nagarajan, 2013) and
submodular-maximization (Asadpour & Nazerzadeh, 2016;
Gupta et al., 2017b; Bradac et al., 2019). In all these cases,
constant-factor adaptivity gaps are known.

Recently, there have been several results examining the
role of adaptivity in (deterministic) submodular optimiza-
tion (Balkanski & Singer, 2018a; Balkanski et al., 2018;
Balkanski & Singer, 2018b; Balkanski et al., 2019; Chekuri
& Quanrud, 2019). The motivation in these works was par-
allelizing function queries that are often expensive. In many
settings, there are now algorithms using (poly)logarithmic
number of rounds that nearly match the best sequential (or
fully adaptive) approximation algorithms. While our mo-
tivation is similar (in parallelizing the expensive probing
steps), the techniques used are completely different.

2. Definitions
In the stochastic submodular cover problem, the input
is a collection of m random variables (or items) X =
{X1, . . . ,Xm}. Each item Xi has a cost ci ∈ R+, and real-
izes to a random element of groundset U . Let the joint distri-
bution of X be denoted byD. The random variables Xi may
or may not be independent; we discuss this issue in more de-
tail below. The realization of item Xi is denoted by Xi ∈ U ;
this realization is only known when Xi is probed at a cost of
ci. Extending this notation, given a subset of items S ⊆ X ,
its realization is denoted S = {Xi : Xi ∈ S} ⊆ U .

In addition, we are given an integer-valued monotone sub-
modular function f : 2U → Z+ with f(U) = Q. A realiza-

tion S of items S ⊆ X is feasible if and only if f(S) = Q
the maximal value; in this case, we also say that S covers f .
The goal is to probe (possibly adaptively) a subset S ⊆ X
of items that gets realized to a feasible set. We use the
shorthand c(S) :=

∑︁
i:Xi∈S ci to denote the total cost of

items in S ⊆ X . The objective is to minimize the expected
cost of probed items, where the expectation is taken over
the randomness in X . We consider the following types of
solutions.

Definition 2.1. For an integer r ≥ 1, an r-round-adaptive
solution proceeds in r rounds of adaptivity. In each round
k ∈ {1, . . . , r}, the solution specifies an ordering of all
remaining items and probes them in this order until some
stopping rule. The decisions in round k can depend on the
realizations seen in all previous rounds 1, . . . , k − 1.

Setting r = 1 gives us a non-adaptive solution, and setting
r = m gives us a (fully) adaptive solution. Having more
rounds leads to a smaller objective value, so adaptive solu-
tions have the least objective value. Our performance guar-
antees are relative to an optimal fully adaptive solution; let
OPT denote this solution and its cost. The r-round-adaptivity
gap is defined as follows:

sup
instance I

E[cost of best r-round adaptive solution on I]

E[cost of best adaptive solution on I]

Setting r = 1 gives the adaptivity gap.

Independent and Correlated Distributions We first
study the case where the random variables X are indepen-
dent. In keeping with existing literature (Im et al., 2016;
Deshpande et al., 2016; Agarwal et al., 2019), we refer to
this problem simply as the stochastic submodular cover
problem. We then consider the case when the random vari-
ables X are correlated with a joint distribution of polyno-
mial size, and refer to it as the scenario submodular cover
problem (Grammel et al., 2016).

3. Stochastic Submodular Cover
We now consider the (independent) stochastic submodular
cover problem and prove Theorem 1.1. For simplicity, we
assume that costs ci are integers. Our results also hold
for arbitrary costs (by replacing certain summations in the
analysis by integrals).

We find it convenient to solve a partial cover version of the
stochastic submodular cover problem. In this partial cover
version, we are given a parameter δ ∈ [0, 1] and the goal
is to probe someR that realizes to a set R achieving value
f(R) > Q(1− δ). We are interested in a non adaptive algo-
rithm for this problem. Clearly, if δ = 1/Q, the integrality
of the function f means that f(R) = Q, and we solve the
original (full coverage) problem. Moreover, we can use this
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algorithm with different thresholds to also get the r-round
version of the problem. The main result of this section is:
Theorem 3.1. There is a non-adaptive algorithm for the
partial cover version of stochastic submodular cover with
cost O

(︁ ln 1/δ
δ

)︁
times the optimal adaptive cost for the (full)

submodular cover.

The algorithm first creates an ordering/list L of the items
non-adaptively; that is, without knowing the realizations of
the items. To do so, at each step we pick a new item that
maximizes a carefully-defined score function (Equation (1)).
The score of an item cannot depend on the realizations
of previous items on the list (since we are non-adaptive).
However, it depends on the marginal relative increase for
a random draw from the previously chosen items. Once
this ordering L is specified, the algorithm starts probing
and realizing the items in this order, and does so until the
realized value exceeds (1− δ)Q.

Algorithm 1 PARtial Covering Algorithm
PARCA(X , f,Q, δ)

1: S ← ∅, list L← ⟨⟩, τ ← Q(1− δ)
2: while S ≠ X do ▷ Building the list non-adaptively
3: select an item Xe ∈ X \ S that maximizes:

score(Xe) :=
1

ce
·

∑︂
S∼S:f(S)≤τ

P(S = S)·

EXe∼Xe

[︃
f(S ∪Xe)− f(S)

Q− f(S)

]︃
(1)

4: S ← S ∪ {Xe} and list L← L ◦ Xe

5: R ← ∅, R← ∅
6: while f(R) ≤ τ do ▷ Probing items on the list
7: Xe ← first r.v. in list L not inR
8: Xe ∈ U be the realization of Xe

9: R← R ∪ {Xe},R ← R∪ {Xe}
10: return probed itemsR and their realizations R.

Given this partial covering algorithm we immediately get an
algorithm for the r-round version of the problem, where we
are allowed to make r rounds of adaptive decisions. Indeed,
we can first set δ = Q−1/r and solve the partial covering
problem with this value of δ. Suppose we probe variables
R and their realizations are given by the set R ⊆ U . Then
we can condition on these values to get the marginal value
function fR (which is submodular), and inductively get
an r − 1-round solution for this problem. The following
algorithm formalizes this.
Theorem 3.2. Algorithm 2 is an r-round adaptive
algorithm for stochastic submodular cover with cost
O(Q1/r logQ) times the optimal adaptive cost.

The proofs of Theorem 3.1 and Theorem 3.2 can be found

Algorithm 2 r-round adaptive algorithm for stochastic sub-
modular cover SSC(r,X , f)

1: run PARCA (X , f,Q,Q−1/r) for round #1.
2: let R (resp. R) denote the probed items (resp. their

realizations) in PARCA.
3: define residual submodular function ˆ︁f := fR.
4: recursively solve SSC(r − 1,X \ R, ˆ︁f).

in the full version of the paper.

Remark: Assuming that the scores (1) can be computed
in polynomial time, it is clear that our entire algorithm can
be implemented in polynomial time. In particular, if T
denotes the time taken to calculate the score of one item,
then the overall algorithm runs in time poly(m,T ) where m
is the number of items. We are not aware of a closed-form
expression for the scores (for arbitrary submodular functions
f ). However, as discussed in the full version, we can use
sampling to estimate these scores to within a constant factor.
Moreover, our analysis works even if we only choose an
approximate maximizer for (1) at each step. It turns out that
T = poly(m, cmax) many samples suffice to estimate these
scores. So, the final runtime is poly(m, cmax); note that
this does not depend on the number |U | of elements. We
note that even the previous algorithms (Agarwal et al., 2019;
Esfandiari et al., 2019) have a polynomial dependence on
cmax in their runtime. In the following analysis we will
assume that the scores (1) are computed exactly.

3.1. Analysis for a Call to PARCA

We now prove Theorem 3.1. We denote by OPT an optimal
adaptive solution for the covering problem on f . Now we
analyze the cost incurred by following the non-adaptive
strategy (which we call NA): probe variables according to
the order given by the list L generated by PARCA, and stop
when the realized coverage exceeds τ := Q(1 − δ) (see
Algorithm 1 for details). We consider the expected cost of
this strategy, and relate it to the cost of OPT.

We refer to the cumulative cost incurred (either by OPT or
by NA) until any point in a solution as time elapsing. We say
that OPT is in phase i when it is in the time interval [2i, 2i+1)

for i ≥ 0. Let α := O
(︂

ln 1/δ
δ

)︂
. We say that NA is in phase

i when it is in time interval [α ·2i−1, α ·2i) for i ≥ 1; phase
0 refers to the interval [1, α). Define

• ui: probability that NA goes beyond phase i; that is, has
cost at least α · 2i.

• u∗
i : probability that OPT goes beyond phase i− 1; that

is, costs at least 2i.

Since all costs are integers, u∗
0 = 1. For ease of notation,

we also use OPT and NA to denote the random cost incurred
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by OPT and NA respectively. The following lemma forms the
crux of the analysis.

Lemma 3.3. For any phase i ≥ 1, ui ≤ ui−1

4 + 6
5u

∗
i .

This lemma implies Theorem 3.1. We include the proofs of
Theorem 3.1 and Lemma 3.3 in the full version of the paper.

4. Scenario Submodular Cover
In this section, we describe an r-round adaptive algorithm
for the scenario submodular cover problem. In contrast to
the independent case, the stochastic items here are corre-
lated, and their joint distribution D is given as input.

The joint distribution D specifies the (joint) probability that
X realizes to any outcome X ∈ Um. We refer to the
realizations X ∈ Um that have a non-zero probability of
occurrence as scenarios. Let s = |D| denote the number
of scenarios in D. The set of scenarios is denoted M =
{1, · · · , s} and pω denotes the probability of each scenario
ω ∈M . Note that

∑︁s
ω=1 pω = 1. For each scenario ω ∈M

and item Xe, we denote by Xe(ω) ∈ U the realization of
Xe in scenario ω. The distribution D can be viewed as
selecting a random realized scenario ω∗ ∈M according to
the probabilities {pω}, after which the item realizations are
deterministically set to ⟨X1(ω

∗), · · · , Xm(ω∗)⟩. However,
an algorithm does not know the realized scenario ω∗: it only
knows the realizations of the probed items (using which
it can infer a posterior distribution for ω∗). As stated in
§2, our performance guarantee in this case depends on the
support-size s. We will also show that such a dependence is
necessary (even when Q is small).

For any subset S ⊆ X of items, we denote by S(ω), the
realizations for items in S under scenario ω. We say that
scenario ω is compatible with a realization of S ⊆ X if and
only if, Xe realizes to Xe(ω) for all items Xe ∈ S.

4.1. The Algorithm

Similar to the algorithm for the independent case, it is conve-
nient to solve a partial cover version of the scenario submod-
ular cover problem. However, the notion of partial progress
is different: we will use the number of compatible scenarios
instead of function value. Formally, in the partial version,
we are given a parameter δ ∈ [0, 1] and the goal is to probe
some itemsR that realize to a set R such that either (i) the
number of compatible scenarios is less than δs or (ii) the
function f is fully covered. Clearly, if δ = 1/s then case (i)
cannot happen (it corresponds to zero compatible scenarios),
so the function f must be fully covered. We will use this
algorithm with different parameters δ to solve the r-round
version of the problem. The main result of this section is:

Theorem 4.1. There is a non-adaptive algorithm for the
partial cover version of scenario submodular cover with

(a) We have S = {Xe1 ,Xe2},
and we partition the set of
scenarios M based on out-
comes of S to get H(S) =
{Y1, Y2, Y3}.

(b) We further partition scenar-
ios Y2 based on realizations of
Xe3 .The part of Y2 compatible
with outcome Xe3 = 2 is the
largest cardinality part, that is,
Be3(Y2). The shaded region
represents Le3(Y2).

Figure 1. Illustrations of Key Definitions

cost O
(︁
1
δ (ln

1
δ + logQ)

)︁
times the optimal adaptive cost

for the (full) submodular cover.

The algorithm first creates an ordering/list L of the items
non-adaptively; that is, without knowing the realizations
of the items. To do so, at each step we pick a new item
that maximizes a carefully-defined score function (Equa-
tion (2)). The score of an item depends on an estimate of
progress towards (i) eliminating scenarios and (ii) covering
function f . Before we state this score formally, we need
some definitions.
Definition 4.1. For any S ⊆ X letH(S) denote the parti-
tion {Y1, · · · , Yℓ} of the scenarios M where all scenarios
in a part have the same realization for items in S. Let
Z := {Y ∈ H(S) : |Y | ≥ δs} be the set of “large” parts
having size at least δs.

In other words, scenarios ω and σ lie in the same part of
H(S) if and only if S(ω) = S(σ). Note that partitionH(S)
does not depend on the realization of S. Moreover, after
probing and realizing items S, the set of compatible sce-
narios must be one of the parts inH(S). Also, the number
of “large” parts |Z| ≤ s

δs = 1
δ as the number of scenarios

|M | = s. See Figure 1a for an example.
Definition 4.2. For any Xe ∈ X and subset Z ⊆M of sce-
narios, consider the partition of Z based on the realization
of Xe. Let Be(Z) ⊆ Z be the largest cardinality part, and
define Le(Z) := Z \Be(Z).

Note that Le(Z) is comprised of several parts of the above
partition of Z. If the realized scenario ω∗ ∈ Le(Z) and
Xe is selected then, at least half the scenarios in Z will
be eliminated (as being incompatible with Xe). Figure 1b
illustrates these definitions.

For any Z ∈ H(S), note that the realizations S(ω) are
identical for all ω ∈ Z: we use S(Z) ⊆ U to denote the
realization of S under each scenario in Z.

If S denotes the previously added items in list L, the score
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(2) involves a term for each part Z ∈ Z , which itself comes
from two sources:

• Information gain
∑︁

ω∈Le(Z) pω, the total probability
of scenarios in Le(Z).

• Relative function gain∑︂
ω∈Z

pω ·
f(S(Z) ∪Xe(ω))− f(S(Z))

Q− f(S(Z))
,

the expected relative gain obtained by including ele-
ment Xe, where the expectation is over scenarios Z.

The overall score of item Xe is the sum of these terms (over
all parts in Z) normalized by the cost ce of item Xe. In
defining the score, we only focus on the “large” parts Z . If
the realization of S corresponds to any other part then the
number of compatible scenarios would be less than δs (and
the partial-cover algorithm would have terminated).

Once the list L is specified, the algorithm starts probing and
realizing the items in this order, and does so until either (i)
the number of compatible scenarios drops below δs, or (ii)
the realized function value equals Q. Note that in case (ii),
the function is fully covered. See Algorithm 3 for a formal
description of the non-adaptive partial-cover algorithm.

Algorithm 3 Scenario PARtial Covering Algorithm
SPARCA(X ,M, f,Q, δ)

1: S ← ∅ and list L← ⟨⟩.
2: while S ≠ X do ▷ Building the list non-adaptively
3: define Z and Le(Z) as in Definitions 4.1 and 4.2.
4: select an item Xe ∈ X \ S that maximizes:

score(Xe) =
1

ce
·
∑︂
Z∈Z

(︄ ∑︂
ω∈Le(Z)

pω+

∑︂
ω∈Z

pω ·
f(S(Z) ∪Xe(ω))− f(S(Z))

Q− f(S(Z))

)︄
(2)

5: S ← S ∪ {Xe} and list L← L ◦ Xe

6: R ← ∅, R← ∅, H ←M .
7: while |H| ≥ δ|M | and f(R) < Q do
8: Xe ← first r.v. in list L not inR
9: Xe = v ∈ U be the realization of Xe.

10: R← R ∪ {v},R ← R∪ {Xe}
11: H ← {ω ∈ H : Xe(ω) = v}
12: return probed itemsR, realizations R and compatible

scenarios H .

Given this partial covering algorithm we immediately get an
algorithm for the r-round version of the problem, where we
are allowed to make r rounds of adaptive decisions. Indeed,

we can first set δ = s−1/r and solve the partial covering
problem. Suppose we probe the itemsR (with realizations
R ⊆ U ) and are left with compatible scenarios H ⊆ M .
Then we can condition on scenarios H and the marginal
value function fR (which is submodular), and inductively
get an r − 1-round solution for this problem. The following
algorithm and result formalizes this.

Algorithm 4 r-round adaptive algorithm for scenario sub-
modular cover NSC(r,X ,M, f)

1: run SPARCA(X ,M, f,Q, |M |−1/r) for round one.
Let R denote the probed items, R their realizations,
and H ⊆ M the compatible scenarios returned by
SPARCA.

2: define residual submodular function ˆ︁f := fR.
3: recursively solve NSC(r − 1,X \ R, H, ˆ︁f).

Theorem 4.2. Algorithm 4 is an r-round adaptive
algorithm for scenario submodular cover with cost
O
(︁
s1/r(log s+ r logQ)

)︁
times the optimal adaptive cost,

where s is the number of scenarios.

We defer the proofs of Theorems 4.1 and 4.2 to the full
version of the paper.

5. Computational Results
We provide a summary of computational results of our r-
round adaptive algorithms for the stochastic set cover and
optimal decision tree problems. We conducted all of our
computational experiments using Python 3.8 and Gurobi
8.1 with a 2.3 Ghz Intel Core i5 processor and 16 GB 2133
MHz LPDDR3 memory.

5.1. Stochastic Set Cover

Instances. We use the Epinions network1 and a Facebook
messages dataset described in (Rossi & Ahmed, 2015) to
generate instances of the stochastic set cover problem. The
Epinions network consists of 75 879 nodes and 508 837
directed edges. We compute the subgraph induced by the top
1000 nodes with the highest out-degree (this subgraph has
57 092 directed edges) and use this to generate the stochastic
set cover instance. The Facebook messages dataset consists
1 266 nodes and 6 451 directed edges. Given an underlying
directed graph, we generate an instance of the stochastic
set cover problem as follows. We associate the ground
set U with the set of nodes of the underlying graph. We
associate an item with each node. Let Γ(u) denote the
out-neighbors of u. We sample a subset of Γ(u) using the
binomial distribution with p = 0.1 for 500 times. Let S ⊆
Γ(u) be sampled αS times: thenXu realizes to S∪{u} with

1http://snap.stanford.edu/
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Figure 2. Computational results for Stochastic Set Cover

probability αS/500. This ensures that Xu always covers u.
We set f to be the coverage function and set Q = δn where
n represents the number of nodes in the underlying network.
We use δ = 0.5 for the Epinions network. However, since
the Facebook messages network is sparse, we set δ = 0.25
in the second instance.
Results. We test our r-round adaptive algorithm on the
two kinds of instances described above. We vary r over
integers in the interval [1, log n], where n ≈ 1000. To
compute an estimate of the expected cost, we sample new
realizations 20 times and take the average cost incurred
by the algorithm over these trials. In each trial, we also
solve an integer linear program (using the Gurobi solver) to
determine the optimal offline cost to cover Q elements for
the given realization: we use the average cost over the trials
as an estimate on an information-theoretic lower bound: no
adaptive policy can do better than this lower bound. In fact,
the gap between this information-theoretic lower bound and
an optimal adaptive solution may be as large as Ω(Q) on
worst-case instances. We observe that in both cases, the
expected cost of our solution after only a few rounds of
adaptivity is within 50% of the information-theoretic lower
bound. Moreover, in 6− 7 rounds of adaptivity we notice a
decrease of ≈ 8% in the expected cost and these solutions
are nearly as good as fully adaptive solutions. We plot
this trend in Figure 2. Finally, note that the increase in

expected cost with rounds of adaptivity (see Figure 2a) can
be attributed to the the probabilistic nature of our algorithm
(and the experimental setup). We also notice this in the next
batch of experiments.

5.2. Optimal Decision Tree

Instances. We use a real-world dataset called WISER 2

for our experiments. The WISER dataset describes symp-
toms that one may suffer from after being exposed to certain
chemicals. It contains data corresponding to 415 chemicals
(scenarios for ODT) and 79 symptoms (elements with binary
outcomes). Given a patient exhibiting certain symptoms,
the goal is to identify the chemical that the patient has been
exposed to (by testing as few symptoms as possible). This
dataset has been used for evaluating algorithms for similar
problems in other papers (Bhavnani et al., 2007; Bellala
et al., 2011; Bellala et al., 2012; Navidi et al., 2020). For
each symptom-chemical pair, the data specifies whether or
not someone exposed to the chemical exhibits the given
symptom. However, the WISER data has ‘unknown’ entries
for some pairs. In order to obtain instances for ODT from
this, we generate 10 different datasets by assigning random
binary values to the ‘unknown’ entries. Then we remove
all identical scenarios: to ensure that the ODT instance is
feasible. We use the uniform probability distribution for the
scenarios. Given these 10 datasets, we consider two cases.
The first case considered is one where all tests have unit cost.
We refer to this as the WISER− U case. For the second case,
we generate costs randomly for each test from {1, 4, 7, 10}
according to the weight vector [0.1, 0.2, 0.4, 0.3]; for exam-
ple, with probability 0.4, a test is assigned cost 7. Varying
cost captures the setting where tests may have different
costs, and we may not want to schedule an expensive test
without sufficient information. We refer to this as WISER−R
case.

We also test our algorithm on synthetic data which we gen-
erate as follows. We set s = 10000 and m = 100. For
each y ∈ [s], we randomly generate a binary sequence of
outcomes which corresponds to how y reacts to the tests.
We do this in two ways: for test e, we set y ∈ Te with
probability p ∈ {0.2, 0.5}. If a sequence of outcomes is
repeated, we discard the scenario to ensure feasibility of the
ODT instance. We assign equal probability to each scenario.
We generate instances using unit costs or by assigning a
random cost from {1, 4, 7, 10} to each test according to the
weight vector [0.1, 0.2, 0.4, 0.3] (as described above). Thus,
we generate 4 types of instances with synthetic data. We
refer to the instance generated with p = 0.2 and unit costs
as SYN− U− 0.2. We similarly name the other instances.

2http://wiser.nlm.nih.gov/
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Figure 3. Performance of our algorithm for the Optimal Decision Tree problem on the WISER and synthetic datasets.

Results. We test our r-round adaptive algorithm on all of
the above mentioned datasets. We vary r over integers in the
interval [1, log s]. For the WISER− U datasets, we compute
the expected cost of our algorithm over all scenarios. We
plot the expected costs over all rounds, and compare it to
log(s) which is an information-theoretic lower bound for
the ODT problem with unit costs and uniform probabilities
over the scenarios. We observe that our algorithm gets very
close to this lower bound in only 3 rounds of adaptivity.
See Figure 3a. In the case of WISER − R, we compute the
expected cost incurred by our r-round adaptive algorithm for
r varying over integers in the interval [1, log s] (expectation
taken over all scenarios). We observe a sharp decrease in
costs within 4 rounds of adaptivity. We plot the results in
Figure 3b.

For the synthetic data, we sample scenarios over 100 trials
(since s = 10000, computing expectation over all s would
be very slow). As in the previous case, for each trial, we
compute the cost incurred by our r-round adaptive algorithm
for r varying over integers in the interval [1, log s]. Then,
we average all these costs and use it as an estimate for
the expected cost. For SYN − U − 0.2 and SYN − U − 0.5,
we compare the results to log(s) which is an information-
theoretic lower bound for the instances (since scenarios are
sampled uniformly at random). We observe a improvement
in the costs within 6 rounds of adaptivity. Beyond this
however, the costs do not improve (and we exclude it from
our plot). We observe a similar trend for the case of SYN−

R−0.2 and SYN−R−0.5. We plot the results in Figures 3c-
3f.

Note that we only plot results related to the first dataset for
the WISER− U and WISER− R cases. We include plots for
all 10 datasets in the full version of the paper.
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