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Abstract
Quantiles are often used for summarizing and
understanding data. If that data is sensitive, it
may be necessary to compute quantiles in a way
that is differentially private, providing theoretical
guarantees that the result does not reveal private
information. However, when multiple quantiles
are needed, existing differentially private algo-
rithms fare poorly: they either compute quantiles
individually, splitting the privacy budget, or sum-
marize the entire distribution, wasting effort. In
either case the result is reduced accuracy. In this
work we propose an instance of the exponential
mechanism that simultaneously estimates exactly
m quantiles from n data points while guarantee-
ing differential privacy. The utility function is
carefully structured to allow for an efficient imple-
mentation that returns estimates of allm quantiles
in timeO(mn log(n)+m2n). Experiments show
that our method significantly outperforms the cur-
rent state of the art on both real and synthetic data
while remaining efficient enough to be practical.

1. Introduction
Quantiles are a widespread method for understanding real-
world data, with example applications ranging from in-
come (Semega et al., 2020) to birth weight (CDC, 2001)
to standardized test scores (ETS, 2020). At the same time,
the individuals contributing data may require that these
quantiles not reveal too much information about individual
contributions. As a toy example, suppose that an individual
joins a company that has exactly two salaries, and half of
current employees have one salary and half have another. In
this case, publishing the exact median company salary will
reveal the new employee’s salary.

Differential privacy (Dwork et al., 2006) offers a solution

Equal contributions, all authors at Google Research New York.
Correspondence to: Jennifer Gillenwater <jengi@google.com>,
Matthew Joseph <mtjoseph@google.com>, Alex Kulesza
<kulesza@google.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

to this problem. Informally, the distribution over a differen-
tially private algorithm’s outputs must be relatively insen-
sitive to the input of any single data contributor. Returning
to the salary example, a differentially private method for
computing the median company salary would have similar-
looking output distributions regardless of which salary the
new employee receives. The resulting uncertainty about any
single contributor’s data makes the algorithm “private”.

In this work, we study differentially private estimation
of user-specified quantiles q1, . . . , qm ∈ [0, 1] for a one-
dimensional dataset X of size n. The output quantile es-
timates consist of m values, which we denote o1, . . . , om.
Ideally, the oj are as close to the dataset’s actual quantiles
as possible. For example, if qj = 0.5, then our goal is to
output oj close to the median of X .

Several algorithms for computing a single differentially pri-
vate quantile exist (see Section 5). These naturally extend
to multiple quantiles using composition. Basic composi-
tion says that, if we estimate each of m quantiles via an
ε
m -differentially private algorithm, then we will obtain ε-
differential privacy overall for the set of m quantiles. How-
ever, the cost of this generality is the smaller and more
restrictive privacy budget ε

m (or roughly ε√
m

for “advanced”
composition). As a result, this approach yields significantly
less accurate outcomes as m grows. This is unfortunate,
as many applications rely on multiple quantiles: returning
to the opening paragraph, the income statistics use m = 4
(quintiles), the birth weight statistics use m = 9 (deciles),
and the test score statistics use m > 30. Alternatively, there
exist methods for computing a differentially private sum-
mary of the entire distribution from which any quantile can
subsequently be estimated (see Section 1.2). However, un-
less m is very large, such summaries will usually contain
more information than needed, reducing accuracy.

1.1. Contributions

1. We give an instantiation of the exponential mecha-
nism (McSherry & Talwar, 2007), JointExp, that pro-
duces an ε-differentially private collection of m quan-
tile estimates in a single invocation (Section 3.1). This
mechanism uses a utility function that has sensitivity 2
no matter how many quantiles are requested, and does
not need to divide ε based on the number of quantiles.
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2. We provide a dynamic program, related to algorithms
used for inference in graphical models, to implement
JointExp in time O(mn log(n) + m2n) (Section 3.2,
Section 3.3). This significantly improves on naive
sampling, which requires time O(nm).

3. We experimentally evaluate JointExp and find that it
obtains much better accuracy than the existing state-of-
the-art while remaining efficient enough to be practical
for moderate dataset sizes (Section 5).

1.2. Related Work

Discussion of single-quantile estimation algorithms appears
in Section 5. At the other end of the spectrum, one can
use private CDF estimation or private threshold release to
estimate arbitrarily many quantiles. These approaches avoid
splitting ε as m grows but suffer from the need to set hyper-
parameters depending on the discretization of the domain
and assumptions about the data distribution. Moreover, the
best known algorithms for threshold release rely on several
reductions that limit their practicality (Bun et al., 2015; Ka-
plan et al., 2020). A common tree-based approach to CDF
estimation is included in our experiments.

Our algorithm relies on dynamic programming to sample
from the exponential mechanism. Blocki et al. (2016) stud-
ied how to release the counts (but not identities) of items in a
dataset by constructing a relaxation of the exponential mech-
anism and sampling from it using dynamic programming.
However, their utility function more simply decomposes
into individual terms without pairwise interactions, and it is
not clear how this method can be applied to quantiles.

Finally, our dynamic program for sampling from JointExp’s
exponential mechanism is related to inference algorithms
for graphical models. Several papers have studied differ-
ential privacy with graphical models. However, this has
typically meant studying private versions of graphical mod-
eling tasks (Williams & McSherry, 2010; Bernstein et al.,
2017) or using graphical models as a step in private algo-
rithms (Mckenna et al., 2019). Our paper departs from that
past work in that its dynamic program, while related to the
forward-backward algorithm, does not have any conceptual
dependence on graphical models themselves.

2. Preliminaries
We view databases X,X ′ as multisets of elements from
some data domain X where each individual contributes at
most one element to the database. To reason about databases
that are “close”, differential privacy uses neighbors.

Definition 1. Databases X and X ′ ∈ Xn are neighbors,
denoted X ∼ X ′, if they differ in at most one element.

Note that we use the swap definition of differential privacy;

in contrast, the add-remove definition allows the addition
or removal (rather than exchange) of one element between
neighboring databases. We do this for consistent evaluation
against the smooth-sensitivity framework (see Appendix E),
which also uses swap differential privacy. However, we
emphasize that our algorithm JointExp easily adapts to the
add-remove framework (in fact, its sensitivity is lower under
add-remove privacy).

With the notion of neighboring databases in hand, we can
now define differential privacy.

Definition 2 (Dwork et al. (2006)). A randomized algorithm
A : X ∗ → Y is (ε, δ)-differentially private if, for every pair
of neighboring databases X,X ′ and every output subset
Y ⊆ Y ,

PA [A(X) ∈ Y ] ≤ eεPA [A(X ′) ∈ Y ] + δ.

When δ > 0, we say A satisfies approximate differential
privacy. If δ = 0, we sayA satisfies pure differential privacy,
and shorthand this as ε-differential privacy (or ε-DP).

A key benefit of differential privacy is composition: an
algorithm that relies on differentially private subroutines
inherits an overall privacy guarantee by simply adding up
the privacy guarantees of its components.

Lemma 1 (Dwork et al. (2006)). Let A1, . . . ,Ak be k
algorithms that respectively satisfy (ε1, δ1)-, . . . , (εk, δk)-
differential privacy. Then running A1, . . . ,Ak satisfies(∑k

i=1 εi,
∑k
i=1 δi

)
-differential privacy.

We will use composition (or its “advanced” variants) when
evaluating methods that estimate a set ofm quantiles by esti-
mating each quantile individually. By Lemma 1, to achieve
overall ε-DP, it suffices to estimate each quantile under ε

m -
DP. However, since our algorithm JointExp estimates all
quantiles in one invocation, it does not use composition.

We will also rely on the exponential mechanism, a common
building block for differentially private algorithms.

Definition 3 (McSherry & Talwar (2007); Dwork & Roth
(2014)). Given utility function u : X ∗ ×O → R mapping
(database, output) pairs to real-valued scores with L1 sen-
sitivity ∆u = maxX∼X′,o∈O |u(X, o) − u(X ′, o)|, the
exponential mechanism M has output distribution

PM [M(X) = o] ∝ exp

(
εu(X, o)

2∆u

)
,

where ∝ elides the normalization factor.

The exponential mechanism thus prioritizes a database’s
higher-utility outputs while remaining private.

Lemma 2 (McSherry & Talwar (2007)). The mechanism
described in Definition 3 is ε-DP.
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The above material suffices to understand the bulk of our
algorithm, JointExp. The algorithms used for our experi-
mental comparisons will also require some understanding
of smooth sensitivity and concentrated differential privacy,
but since these concepts will be relevant only as points of
experimental comparison, we discuss them in Section 5.

3. JointExp
This section provides an exposition of our quantiles algo-
rithm, JointExp. Recall that our goal is to take as input
quantiles q1 < q2 < . . . < qm ∈ [0, 1] and database X
and output quantile estimates o1, . . . , om such that, for each
j ∈ [m], Px∼UX [x ≤ oj ] ≈ qj .

In Section 3.1, we start with an instance of the exponential
mechanism whose continuous output space makes sampling
impractical. In Section 3.2, we construct a mechanism with
the same output distribution (and, importantly, the same
privacy guarantees) and a bounded but inefficient sampling
procedure. Finally, in Section 3.3 we modify our sampling
procedure once more to produce an equivalent and polyno-
mial time method, which we call JointExp.

3.1. Initial Solution

We start by formulating an instance of the exponential
mechanism for our quantiles setting. First, we will re-
quire the algorithm user to input a lower bound a and
upper bound b for the data domain.1 We assume that all
x ∈ X are in [a, b]; if this is not the case initially, then
we clamp any outside points to [a, b]. The output space is
O↗ = {(o1, . . . , om) | a ≤ o1 ≤ · · · ≤ om ≤ b}, the set
of sequences of m nondecreasing values from [a, b]. For a
given o = (o1, . . . , om), the utility function will compare
the number of points in each proposed quantile interval
[oj−1, oj) to the expected number of points in the correct
quantile interval. We denote the number of data points be-
tween adjacent quantiles qj−1 and qj by nj = (qj−qj−1)n.
We fix q0 = 0 and qm+1 = 1, so that n1 = q1n and
nm+1 = (1 − qm)n. We also denote the number of data
points from X between any two values u and v by

n(u, v) = |{x ∈ X | u ≤ x < v}|.

We can now define our utility function

uQ(X, o) = −
∑

j∈[m+1]

|n(oj−1, oj)− nj | ,

where we fix o0 = a and om+1 = b + 1 (setting om+1

to a value strictly larger than b simply ensures that points

1Lower and upper bounds are also necessary for the private
quantile algorithms that we compare to in our experiments. We
find that choosing loose bounds a and b does not greatly affect
utility (see experiments in Section 5).

equal to b are counted in the final term of the sum). uQ thus
assigns highest utility to the true quantile values and lower
utility to estimates that are far from the true quantile values.

Lemma 3. uQ has L1 sensitivity ∆uQ = 2.

Proof. Fix an output o. Let X and X ′ be neighboring
databases. Since we use swap differential privacy, |X| =
|X ′|, so uQ(X, o) and uQ(X ′, o) only differ in their n(·, ·)
(respectively denoted n′(·, ·) for X ′). Since X and X ′ are
neighbors, there are at most two intervals (oj−1, oj) and
(oj′−1, oj′) on which n and n′ differ, each by at most one.
Thus |uQ(X, o)− uQ(X ′, o)| ≤ 2.

For add-remove privacy, the sensitivity is slightly lower at
∆uQ = 2[1−minj∈[m+1](qj − qj−1)]. A full proof of this
and other results appears in Appendix A.

The corresponding mechanism MQ has output density

fQ(o) ∝ · exp

(
ε

2∆uQ

· uQ(X, o)

)
. (1)

Since this is an instantiation of the exponential mechanism,
we can apply Lemma 2 to get:

Lemma 4. The mechanism MQ defined by output density
fQ satisfies ε-differential privacy.

However, as is typically a drawback of the exponential mech-
anism, it is not clear how to efficiently sample from this dis-
tribution, which is defined over a continuousm-dimensional
space. The following sections address this issue. Since the
output distribution itself remains fixed through these sam-
pling procedure changes, these improvements will preserve
the privacy guarantee of Lemma 4. The remaining proofs
will therefore focus on verifying that subsequent sampling
procedures still sample according to Eq. 1.

3.2. Finite Sampling Improvement

In this section, we describe how to sample from the con-
tinuous distribution defined by MQ by first sampling from
an intermediate discrete distribution. This is similar to the
single-quantile sampling technique given by Smith (2011)
(see their Algorithm 2). The basic idea is that we split the
sampling process into three steps:

1. Sample m intervals from the set of intervals between
data points.

2. Take a uniform random sample from each of the m
sampled intervals.

3. Output the samples in increasing order.

This will require some additional notation. Denote the ele-
ments of X in nondecreasing order by x1 ≤ · · · ≤ xn, fix
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x0 = a and xn+1 = b, and let I = {0, . . . , n}, where we
associate i ∈ I with the interval between points xi and xi+1.
Define S↗ to be the set of nondecreasing sequences of m
intervals,

S↗ = {(i1, . . . , im) | i1, . . . , im ∈ I, i1 ≤ · · · ≤ im}.

S↗ will be the discrete output space for the first sampling
step above. We can define a utility function uQ′ on s =
(i1, . . . , im) ∈ S↗ by slightly modifying uQ:

uQ′(X, s) = −
∑

j∈[m+1]

|(ij − ij−1)− nj |,

where we fix i0 = 0 and im+1 = n.

In order to reproduce MQ from Section 3.1, our sequence
sampler will also need to weight each sequence s by the total
measure of the outputs o ∈ O↗ that can be sampled from
s in the second step. This is nontrivial due to the ordering
constraint on o: if an interval appears twice in s, the measure
of corresponding outputs must be halved to account for the
fact that the two corresponding samples in the second step
can appear in either order, but will be mapped to a fixed
increasing order in the third step. In general, if an interval
appears k times, the measure must be scaled by a factor of
1/k!, the volume of the standard k-simplex. We account for
this by dividing by the scale function

γ(s) =
∏
i∈I

counts(i)! ,

where counts(i) is the number of times i appears in s and
we take 0! = 1.

The mechanism MQ′ is now defined as follows:

1. Draw s = (i1, . . . , im) according to

PMQ′ [s] ∝ exp

(
ε · uQ′(X, s)

2∆uQ

)
·
∏m
j=1(xij+1 − xij )

γ(s)
.

2. For j ∈ [m], draw oj uniformly at random from
[xij , xij+1).

3. Output o1, . . . , om in increasing order.

It remains to verify that MQ′ actually matches MQ.
Lemma 5. MQ′ has the same output distribution as MQ.

Proof Sketch (see Appendix A for full proof). Given poten-
tial outputs o and o′, if the corresponding quantile estimates
fall into the same intervals between data points in X , then
the counts n(·, ·) are unchanged and uQ(X, o) = uQ(X, o′).
Since uQ is constant over intervals between data points, it is
equivalent to sample those intervals and then sample points
uniformly at random from the chosen intervals. The only
complication is accounting for the γ scaling introduced by
repeated intervals.

The benefit of MQ′ over MQ is that the first step samples
from a finite space, and the second sampling step is simply
uniform sampling. However, the size of the space for the
first step is still O(nm), which remains impractical for all
but the smallest datasets. In the next section, we develop a
dynamic programming algorithm that allows us to sample
from PMQ′ in time O(mn log(n) +m2n).

3.3. Polynomial Sampling Improvement

Notice that the bulk of our probability distribution over
sequences s = (i1, . . . , im) can be decomposed as a prod-
uct of scores, where each score depends only on adjacent
intervals ij−1 and ij . In particular,

PMQ′ [s] ∝ 1

γ(s)

∏
j∈[m+1]

φ(ij−1, ij , j)
∏
j∈[m]

τ(ij) ,

where for i ≤ i′ and j ∈ [m+ 1] we define

φ(i, i′, j) = exp

(
− ε

2∆uQ

|(i′ − i)− nj |
)

τ(i) = xi+1 − xi.

For i > i′ and any j, φ(i, i′, j) = 0. Fig. 1 illustrates this
structure graphically, suggesting a dynamic programming
algorithm similar to the “forward-backward” algorithm from
the graphical models literature (see, e.g., Chapter 15 of
Russell & Norvig (2010)).

Unfortunately, γ(s) does not factor in the same way. How-
ever, it has its own special structure: since s is required to be
nondecreasing, γ(s) decomposes over contiguous constant
subsequences of s. We will use this to design an efficient
dynamic programming algorithm for sampling PMQ′ .

Define the function α : [m]× I× [m]→ R so that α(j, i, k)
is the total unnormalized probability mass for prefix se-
quences of length j that end with exactly k copies of the
interval i. For all i ∈ I , let α(1, i, 1) = φ(0, i, 1)τ(1) and
α(1, i, k) = 0 for k > 1. Now, for j = 2, . . . ,m, we have
the following recursion for all i ∈ I:

α(j, i, 1) = τ(i)
∑
i′<i

φ(i′, i, j)
∑
k<j

α(j − 1, i′, k)

α(j, i, k > 1) = τ(i) · φ(i, i, j) · α(j − 1, i, k − 1)/k

Intuitively, if the sequence ends with a single i, we need to
sum over all possible preceding intervals i′, which could
have been repeated up to k < j times. On the other hand, if
the sequence ends with more than one i, we know that the
preceding interval was also i, and we simply divide by k to
account for the scale function γ.

Having computed α(·, ·, ·), we can now use these quantities
to sample in the reverse direction as follows. First, draw a
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i1 i2
φ(i1, i2, 2)

i3 im
φ(i2, i3, 3)

i0 = 0
φ(im, im+1, m+ 1)φ(i0, i1, 1)

im+1 = n

τ(i0) τ(i1) τ(i2) τ(i3) τ(im)

Figure 1. Illustration of pairwise dependencies for interval sequence s = (i1, . . . , im).

pair (i, k) ∝ α(m, i, k)φ(i, n,m+ 1) (the φ term accounts
for the final edge in the graph; see Appendix A for details).
This determines that the last k sampled intervals are equal
to i. We can then draw another pair (i′ < i, k′) ∝ α(m−
k, i′, k′)φ(i′, i,m− k + 1), which determines that the last
k′ remaining intervals in the sequence are i′, and so on until
we have a complete sample.

We will verify that this procedure actually samples from the
correct distribution in the proof of Theorem 1. For now, we
turn to an optimized version of this procedure, presented
in Algorithm 1. The main optimization leverages the struc-
ture of φ(·, ·, j): fixing j, φ(i, i′, j) depends only on i′ − i.
φ(·, ·, j) is therefore a matrix with constant diagonals, i.e. a
Toeplitz matrix. A key benefit of n × n Toeplitz matrices
is that matrix-vector multiplication can be implemented in
time O(n log(n)) using the Fast Fourier Transform (see,
e.g., (Bindel, 2019)). This becomes useful to us once we
rewrite the computation of α(j, ·, ·) using

α̂(j − 1, ·) =
∑
k<j

α(j − 1, ·, k)

α(j, ·, 1) = τ(·)×
(
φ(·, ·, j)T α̂(j − 1, ·)

)
where × denotes element-wise product. This reduces each
computation of α(j, ·, 1) in Line 9 of Algorithm 1 to time
O(n log(n)) and space O(n).

In total, we spend time O(m2n) computing α̂(·, ·), time
O(mn log(n)) computing α(·, ·, 1), and time O(m2) com-
puting α(·, ·, k) for k > 1. The result is overall time
O(mn log(n) + m2n). The space analysis essentially re-
duces to the space needed to store α while computing φ as
needed. Details appear in the proof of Theorem 1.

Theorem 1. JointExp satisfies ε-differential privacy, takes
time O(mn log(n) +m2n), and uses space O(m2n).

Numerical improvements. Note that the quantities in-
volved in computing φ and α may be quite small, so we
implement JointExp using logarithmic quantities to avoid
underflow errors in our experiments. This is a common trick
and is a numerical rather than algorithmic change, but for
completeness we include its details in Appendix B. After
computing these quantities, to avoid underflow in our final
sampling steps, we use a “racing” sampling method that
was previously developed for single-quantile exponential
mechanisms. Since this is again a numerical improvement,
details appear in Appendix C.

Algorithm 1 Pseudocode for JointExp
1: Input: sorted X = (x1 ≤ . . . ≤ xn) clamped to data

range [a, b], quantiles q1, . . . , qm, privacy parameter ε
2: Set x0 = a, xn+1 = b, and ∆uQ = 2
3: Set I = {0, . . . , n}, i0 = 0, and im+1 = n
4: for i ∈ I do
5: Set α(1, i, 1) = φ(0, i, 1)τ(1)

6: = exp
(
− ε

2∆uQ
|1− n1|

)
· (x1 − x0)

7: for j = 2, . . . ,m do
8: for i ∈ I do
9: Set α̂(j − 1, i) =

∑
k<j α(j − 1, i, k)

10: Set α(j, ·, 1) = τ(·)×
(
φ(·, ·, j)T α̂(j − 1, ·)

)
11: for k = 2, . . . , j do
12: Set α(j, i, k) = τ(i)φ(i, i, j)α(j − 1, i, k − 1)/k
13: Sample (i, k) ∝ α(m, i, k)φ(i, n,m+ 1)
14: Set im−k+1, . . . , im = i, and j = m− k
15: while j > 0 do
16: Sample (i, k) ∝ α(j, i, k)φ(i, ij+1, j + 1)τ(ij+1)
17: Set ij−k+1, . . . , ij = i, and j = j − k
18: Output uniform samples {oj ∼U [xij , xij+1)}mj=1 in

increasing order

Connection to graphical models. As mentioned above, the
dynamic program in Algorithm 1 is similar to the forward-
backward algorithm from the graphical models literature,
modulo accounting for γ(s). In graphical models, it is often
necessary to compute the probability of a sequence of hidden
states. This requires normalizing by a sum of probabilities of
sequences, and, naively, this sum has an exponential number
of terms. However, when probabilities decompose into
products of score functions of adjacent states, the forward-
backward algorithm makes the process efficient. The extra
γ(s) term makes our sampling process more complex in a
way that is similar to semi-Markov models (Yu, 2010). In
graphical model terms, γ can be thought of as a prior that
discourages repeats: pprior(s) ∝ 1/γ(s). This prior can also
be written as a product of n Poisson distributions, each with
parameter λ = 1.

4. Accuracy Intuition
JointExp applies the exponential mechanism once to out-
put m quantiles. The closest competitor algorithms also
apply the exponential mechanism but use m invocations to
produce m quantiles. To build intuition for why the for-
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mer approach achieves better utility, we recall the standard
accuracy guarantee for the exponential mechanism:

Lemma 6 (McSherry & Talwar (2007)). Let M be an ε-
DP instance of the exponential mechanism having score
function u with sensitivity ∆u and output space Y . Then for
database X , with probability at least 1 − β, M produces
output y such that

u(X, y) ≥ max
y∗∈Y

u(X, y∗)− 2∆u log(|Y|/β)

ε
.

For simplicity, suppose we have uniform data where all
interval widths xi+1 − xi are identical. As shown by the
experiments in the next section, this is not necessary for
JointExp to obtain good utility, but we assume it for eas-
ier intuition. Then (modulo the minor term γ(s) that ac-
counts for rare repeated intervals in the output), PMQ′ [s] ∝
exp

(
ε·uQ′ (X,s)

2∆uQ

)
. This means that JointExp’s process of

sampling intervals draws from a distribution whose shape
is identical to an exponential mechanism with utility func-
tion uQ′ , but mismatched sensitivity term ∆uQ = 2. Since
the proof of Lemma 6 does not rely on the utility function
matching the sensitivity term, we can still apply it to de-
termine the accuracy of this interval sampling procedure.
The output space Y for JointExp’s interval-sampling has
size |S↗| ≤ nm, so we expect to sample intervals yielding
quantiles that in total misclassify O(m log(n)/ε) points.

In contrast, m invocations of a single-quantile exponen-
tial mechanism requires each invocation to satisfy roughly
εi = ε/

√
m-DP (advanced composition). Because each

invocation uses an output space of size O(n), the total error
guarantee via Lemma 6 scales like O(m log(n)/εi). Since
m/εi = ω(m)/ε for even the best known composition
bounds for the exponential mechanism (Dong et al., 2020),
these approaches incur error with a superlinear dependence
on m. This contrasts with JointExp’s error, which has only
a linear dependence on m.

5. Experiments
We now empirically evaluate JointExp against three alter-
natives: AppIndExp, CSmooth, and AggTree. Discussion
of some omitted alternatives appears in Appendix D. All
experiment code is publicly available (Google, 2021).

5.1. Comparison Algorithms

AppIndExp: Our first comparison algorithm AppIn-
dExp uses independent applications of the exponential
mechanism. Smith (2011) introduced the basic IndExp al-
gorithm for estimating one quantile, and it has since been
incorporated into the SmartNoise (SmartNoise, 2020) and
IBM (IBM, 2019) differential privacy libraries. IndExp thus
gives us a meaningful baseline for a real-world approach.

IndExp uses the exponential mechanism to estimate a single
quantile q via the utility function u(X, o) = ||{x ∈ X |
x ≤ o}| − qn|.
Lemma 7. u defined above has L1 sensitivity ∆u = 1.

Proof. Consider swapping x ∈ X for x′, and fix some o. If
x, x′ ≤ o or x, x′ > o, then u(X, o) = u(X ′, o). If exactly
one of x or x′ is ≤ o, then |u(X, o)− u(X ′, o)| = 1.

IndExp takes user-provided data bounds a and b and runs
on X+ = X ∪ {a, b}. After sorting X+ into intervals of
adjacent data points I0, . . . , In, IndExp selects an interval
Ij with probability proportional to

score(X, Ij) = exp(−ε|j − qn|/2) · |Ij |

and randomly samples the final quantile estimate from Ij .

To estimatem quantiles with AppIndExp, we call IndExp m
times with ε computed using the exponential mechanism’s
nonadaptive composition guarantee (Dong et al., 2020). De-
tails appear in Appendix E, but we note that this is the
tightest known composition analysis for the exponential
mechanism. Since our experiments use n = 1000 data
points, we always use δ = 10−6 in accordance with the
recommendation that δ � 1

n (see the discussions around
the definition of differential privacy from Dwork & Roth
(2014) and Vadhan (2017)).

CSmooth : Our second comparison algorithm is CSmooth,
which combines the smooth sensitivity framework intro-
duced by Nissim et al. (2007) with concentrated differential
privacy (CDP) (Dwork & Rothblum, 2016; Bun & Steinke,
2016). The basic idea of smooth sensitivity is to circumvent
global sensitivity by instead using a smooth analogue of lo-
cal sensitivity. This is useful for problems where the global
sensitivity is large only for “bad” datasets.

Definition 4. For function f : Xn → R, the local sensitivity
∆f (X) of f for datasetX is maxX′|X∼X′ |f(X)−f(X ′)|.

Recall that global sensitivity is defined over all possible pairs
of datasets. In contrast, local sensitivity is also parameter-
ized by a fixed datasetX and defined only over neighbors of
X . It is therefore possible that ∆f (X)� ∆f . For example,
if M is the median function and we set X = [−100, 100],
then ∆M ({−1, 0, 1}) = 1 while ∆M ({−100, 0, 100}) =
100. However, this also shows that local sensitivity itself
reveals information about the dataset. The insight of Nissim
et al. (2007) is that it is possible to achieve differential pri-
vacy and take advantage of lower local sensitivity by adding
noise calibrated to a “smooth” approximation of ∆f (X).

Definition 5 (Nissim et al. (2007)). For t > 0, the t-smooth
sensitivity of f on database X of n points is

Stf (X) = max
X′∈Xn

e−t·d(X,X′) ·∆f (X ′).
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Figure 2. Histograms for the four datasets. Each plot uses 10,000 random samples, and the data range is divided into 100 equal-width bins.

Details for computing the median’s smooth sensitivity ap-
pear in Appendix E. We now turn to the CDP portion of
CSmooth. CDP is a variant of differential privacy that offers
comparable privacy guarantees with often tighter privacy
analyses. Bun & Steinke (2019) showed how to combine
CDP with the smooth sensitivity framework. Our experi-
ments use the Laplace Log-Normal noise distribution, which
achieved the strongest accuracy results in the experiments
of Bun & Steinke (2019).

One complication of CSmooth is the need to select sev-
eral parameters to specify the noise distribution. We tuned
these parameters on data from N(0, 1) to give CSmooth the
strongest utility possible without granting it distribution-
specific advantages. Details appear in Appendix E. To com-
pare the JointExp’s pure DP guarantee to CSmooth ’s CDP
guarantee, we use the following lemma:

Lemma 8 (Proposition 1.4 (Bun & Steinke, 2016)). If an
algorithm is ε-DP, then it is also ε2

2 -CDP.

We thus evaluate our ε-DP algorithm JointExp against an
ε2

2 -CDP CSmooth. This comparison favors CSmooth : re-
calling our requirement that approximate DP algorithms
have δ ≤ 10−6, the best known generic conversion from
CDP to approximate DP only says that a 1

2 -CDP algorithm is
(ε, 10−6)-DP for ε ≥ 5.76 (Proposition 1.3, (Bun & Steinke,
2016)). A more detailed discussion of DP and CDP appears
in Section 4 of the work of Canonne et al. (2020).

As with AppIndExp, to estimate m quantiles with CSmooth,
we call it m times with an appropriately reduced privacy
parameter. This time, we use CDP’s composition guarantee:

Lemma 9 (Proposition 1.7 (Bun & Steinke, 2016)). The
composition of k ρ-CDP algorithms is kρ-CDP.

From Lemma 8 the overall desired privacy guarantee is
ε2

2 -CDP, so we use ε′ = ε√
m

in each call.

AggTree: The final comparison algorithm, AggTree, im-
plements the tree-based counting algorithm (Dwork et al.,
2010; Chan et al., 2011) for CDF estimation. This ε-DP
algorithm produces a data structure that yields arbitrarily
many quantile estimates. Informally, AggTree splits the
data domain into buckets and then builds a tree with branch-

ing factor b and height h where each leaf corresponds to a
bucket. Each node of the tree has a count, and each data
point increments the count of h nodes. It therefore suffices
to initialize each node with Lap (h/ε) noise to guarantee
ε-DP for the overall data structure, and the data structure
now supports arbitrary range count queries. A more de-
tailed exposition appears in the work of Kamath & Ullman
(2020). As with CSmooth, our experiments tune the hy-
perparameters b and h on N(0, 1) data. We also use the
aggregation technique described by Honaker (2015), which
combines counts at different nodes to produce more accurate
estimates.

5.2. Data Description

We evaluate our four algorithms on four datasets: synthetic
Gaussian data from N(0, 5), synthetic uniform data from
U(−5, 5), and real collections of book ratings and page
counts from Goodreads (Soumik, 2019) (Figure 2).

5.3. Accuracy Experiments

Our error metric is the number of “missed points”: for each
desired quantile qj , we take the true quantile estimate oj
and the private estimate ôj , compute the number of data
points between oj and ôj , and sum these counts across all
m quantiles. For each dataset, we compare the number of
missed points for all five algorithms as m grows. Additional
plots for distance error appear in Appendix E.

In each case, the requested quantiles are evenly spaced.
m = 1 is median estimation, m = 2 requires estimating the
33rd and 67th percentiles, and so on. We average scores
across 20 trials of 1000 random samples. For every experi-
ment, we take [−100, 100] as the (loose) user-provided data
range. For the Goodreads page numbers dataset, we also
divide each value by 100 to scale the values to [−100, 100].
Experiments for ε = 1 appear in Figure 3.

Across all datasets, a clear effect appears: for a wide range
of the number of quantiles m, JointExp dominates all other
algorithms. At m = 1, JointExp matches AppIndExp and
obtains roughly an order of magnitude better error than
CSmooth or AggTree. As m grows, JointExp consistently
obtains average quantile error roughly 2-3 times smaller
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Figure 3. Average # misclassified points per quantile vs. # quantiles, averaged over 50 trials with ε = 1. Note the logarithmic y-axis.

than the closest competitor, until the gap closes around
m = 30. JointExp thus offers both the strongest privacy
guarantee and the highest utility for estimating any number
of quantiles between m = 1 and approximately m = 30.

5.4. Time Experiments

We conclude by evaluating the methods by runtime. The
number of data points and quantiles are the main determi-
nants of time, so we only include time experiments using
Gaussian data. All experiments were run on a machine with
two CPU cores and 100GB RAM. As seen in Fig. 6, Joint-
Exp has time performance roughly in between that of the
slowest algorithm, CSmooth, and AppIndExp or AggTree.
For estimating m = 30 quantiles, JointExp takes roughly
1 ms for n = 1, 000 points and slightly under 1 minute for
n = 1 million points.

6. Future Directions
In this work we constructed a low-sensitivity exponential
mechanism for differentially private quantile estimation and
designed a dynamic program to sample from it efficiently.
The result is a practical algorithm that achieves much better
accuracy than existing methods. A possible direction for fu-
ture work is exploring other applications of the exponential
mechanism where the utility function is low sensitivity and
can be decomposed into “local” score functions, as in the
pairwise interval terms of φ. More precisely, by analogy to
the graphical models techniques generally known as belief

Figure 4. Time vs # quantiles m for ε = 1, averaged across 50
trials of 1,000 samples.

propagation (Pearl, 1982), any utility function whose out-
puts have a chain or tree dependency structure should be
tractable to sample.
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A. Full Proofs
We start with the add-remove version of the sensitivity analysis for ∆uQ . We proved the swap version as Lemma 3 in
the main body, and this was the focus of the paper. The (slightly more favorable) add-remove version appears below for
completeness.
Lemma 10. In the add-remove model, ∆uQ = 2[1−minj∈[m+1](qj − qj−1)].

Proof. Consider neighboring databases X ′ = X ∪ {x′} where |X ′| = n′ = n + 1 and |X| = n. Let n′(·, ·) denote an
interval count using X ′, and let n(·, ·) denote an interval count using X . All data points are clipped to [a, b], o0 = a, and
om+1 = b+ 1, so there exists some [oj∗−1, oj∗) containing x′. o is nondecreasing and these intervals are half-open, so these
intervals do not intersect. Thus, there is exactly one [oj∗−1, oj∗) containing x′. Then for j 6= j∗, n′(oj−1, oj) = n(oj−1, oj)
and (qj − qj−1)n′ − (qj − qj−1)n = qj − qj−1. Thus

uQ(X, o) = −|n(oj∗−1, oj∗)− nj∗ | −
∑
j 6=j∗
|n(oj−1, oj)− nj |

and
uQ(X ′, o) = −|n(oj∗−1, oj∗) + 1− (q∗j − qj∗−1)(n+ 1)| −

∑
j 6=j∗
|n(oj−1, oj)− (qj − qj−1)(n+ 1)|.

The distance between uQ(X, o) and uQ(X ′, o) contributed by the first term is

||n(oj∗−1, oj∗)− (qj∗ − qj∗−1)n| − |n(oj∗−1, oj∗) + 1− (qj∗ − qj∗−1)(n+ 1)|| = 1− (qj∗ − qj∗−1),

and the distance contributed by the second term is∑
j 6=j∗
||n(oj−1, oj)− (qj − qj−1)n| − |n(oj−1, oj)− (qj − qj−1)(n+ 1)|| ≤

∑
j 6=j∗

(qj − qj−1).

Thus

|uQ(X, o)− uQ(X ′, o)| ≤ 1− (qj∗ − qj∗−1) +
∑
j 6=j∗

(qj − qj−1)

= 2[1− (qj∗ − qj∗−1)].

The last equality follows from the fact that the sum over all quantile gaps is 1, so the sum over all but the qj∗ − qj∗−1 gap is
1 − (qj∗ − qj∗−1). The quantity 2[1 − (qj∗ − qj∗−1)] is maximized by minimizing (qj∗ − qj∗−1), which gives the final
sensitivity bound.

Next, we verify that the finite sampling improvement from Section 3.2 still samples from the correct distribution.
Lemma 5. MQ′ has the same output distribution as MQ.

Proof. Recall that the output space for MQ was O↗ = {o = (o1, . . . , om) | a ≤ o1 ≤ · · · ≤ om ≤ b}. Define
function h on [a, b] by h(y) = |{x ∈ X | x < y}|. Then n(u, v) = h(v) − h(u), h(o0) = h(a) = 0 = i0, and
h(om+1) = h(b+ 1) = n = im+1. Thus

uQ(X, o) = −
∑

j∈[m+1]

|n(oj−1, oj)− nj |

= −
∑

j∈[m+1]

|h(oj)− h(oj−1)− nj |

= uQ′(X, (h(o1), . . . , h(om))).

Therefore the normalization term for the distribution defined in Eq. 1 is

ZQ =

∫
O↗

exp

(
ε

2∆uQ

· uQ(X, o)

)
do

=

∫
O↗

exp

(
ε

2∆uQ

· uQ′(X, (h(o1), . . . , h(om))

)
do. (2)
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Note that each o = (o1, . . . , om) ∈ O↗ has o1 ∈ [xi1 , xi1+1), . . . , om ∈ [xim , xim+1) for exactly one s = (i1, . . . , im) ∈
S↗. Shorthand this by o ∈ s, and let gO(s) = {o ∈ O↗ | o ∈ s}. Then

(2) =
∑
s∈S↗

∫
gO(s)

exp

(
ε

2∆uQ

· uQ′(X, (h(o1), . . . , h(om))

)
do

=
∑
s∈S↗

∫
gO(s)

exp

(
ε

2∆uQ

· uQ′(X, s)
)
do

=
∑
s∈S↗

exp

(
ε

2∆uQ

· uQ′(X, s)
)
·
∫
gO(s)

do. (3)

We focus on the
∫
gO(s)

do term. If h(o1), . . . , h(om) are all distinct, i.e. o1, . . . , om come from distinct intervals between
data points, then ∫

gO(s)

do =

m∏
j=1

(xij+1 − xij ).

The remaining (and more complex) case is when h(o1), . . . , h(om) are not distinct. Suppose h(o1), . . . , h(ok) are not
distinct but the remaining h(ok+1), . . . , h(om) are distinct and different from h(o1). Note that the non-distinct elements
are consecutive since o1 ≤ · · · ≤ om. Then there is some i ∈ I such that o1, . . . , ok ∈ [xi, xi+1). Thus the set of valid
o1, . . . , ok is exactly {(o1, . . . , ok) | xi ≤ o1 ≤ · · · ≤ ok < xi+1}.

We need to determine the volume of this set. First, note that the collection consisting of all sets of k values from interval i
has volume (xi+1 − xi)k. Then, note that the probability that k values selected at random from an interval will be perfectly
sorted is 1/k!; this is the volume of the standard k-simplex, which is the set {(x1, . . . , xk) | 0 ≤ x1 ≤ · · · ≤ xk ≤ 1}.
Hence, for the set that we are interested in, {(o1, . . . , ok) | xi ≤ o1 ≤ · · · ≤ ok < xi+1}, the volume is (xi+1−xi)k

k! .

More generally, this leads us to define the scaling factor γ in Section 3.2:

γ(s) =
∏
i∈I

counts(i)!

where counts(i) is the number of times i appears in s, and we take 0! = 1. γ thus repeats the above scaling process for each
interval according to its number of repetitions in h(o1), . . . , h(om). It follows that for any s ∈ S↗,∫

gO(s)

do =

∏m
j=1(xij+1 − xij )

γ(s)
.

Returning to our original chain of equalities, we get

(3) =
∑
s∈S↗

exp

(
ε

2∆uQ

· uQ′(X, s)
)
·
∏m
j=1(xij+1 − xij )

γ(s)

= ZQ′ .

Turning to the output density fQ for MQ, by above

fQ(o) =
1

ZQ′
· exp

(
ε

2∆uQ

· uQ(X, o)

)
.

For any s ∈ S↗ and any o, o′ ∈ gO(s) we have fQ(o) = fQ(o′) and

PMQ
[MQ(X) ∈ gO(s)] =

1

ZQ′
·
∫
gO(s)

exp

(
ε

2∆uQ

· uQ′(X, (h(o1), . . . , h(om)))

)
do

=
1

ZQ′
· exp

(
ε

2∆uQ

· uQ′(X, s)
)
·
∏m
j=1(xij+1 − xij )

γ(s)

= PMQ′ [MQ′(X) ∈ gO(s)] .
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uQ is constant over o ∈ gO(s) for any s, so conditioned on selecting a given s = (i1, . . . , im) ∈ S↗, MQ has a uniform
output distribution over increasing sequences from gO(s), i.e.

fQ(o) = fQ(o | o ∈ gO(s)) · PMQ
[MQ(X) ∈ gO(s)]

=
∏
j∈[m]

γ(s)

xij+1 − xij
· PMQ

[MQ(X) ∈ gO(s)]

=
∏
j∈[m]

γ(s)

xij+1 − xij
· PMQ′ [MQ′(X) ∈ gO(s)]

= fQ′(o)

where the second and fourth equalities use
∫
gO(s)

do =
∏m
j=1(xij+1−xij )

γ(s) . Thus MQ and MQ′ have identical output
distributions.

We now repeat this process for the efficient sampling improvement from Section 3.3.

Theorem 1. JointExp satisfies ε-differential privacy, takes time O(mn log(n) +m2n), and uses space O(m2n).

Proof. We first verify that JointExp samples from MQ′ , which implies differential privacy. Since the uniform sampling step
is unchanged, it suffices to show that the distribution over sampled sequences of intervals is correct.

Let S↗(j, i, k) = {(i1, . . . , ij) | i1 ≤ · · · ≤ ij−k < ij−k+1 = · · · = ij = i} denote the set of nondecreasing sequences of
length j where exactly the last k intervals are equal to i. We will first show that, for all j ∈ [m], all i ∈ I , and all k ∈ [j],

α(j, i, k) =
∑

s=(i1,...,ij)
s∈S↗(j,i,k)

1

γ(s)

∏
j′∈[j]

φ(ij′−1, ij′ , j
′)τ(ij′). (4)

The base case of j = 1 holds by definition, since we let α(1, i, 1) = φ(0, i, 1)τ(1) and γ(s) = 1 when s is a sequence of
length one. Before the induction step, we make our optimization for computing α explicit. First, we define

α̂(j − 1, ·) =
∑
k<j

α(j − 1, ·, k),

a vector of length n+ 1 that can be computed in time O(mn). Then

α(j, i, 1) = τ(i)
∑
i′<i

φ(i′, i, j)
∑
k<j

α(j − 1, i′, k) = τ(i)
∑
i′<i

φ(i′, i, j)α̂(j − 1, i′).

Each α(j, i, 1) sums O(n) terms, so a straightforward computation of α(j, ·, 1) in its entirety takes time O(n2). However,
we can improve on this by noticing that, after fixing j, each φ(i, i′, j) depends only on i′− i. φ(·, ·, j) is therefore a Toeplitz
matrix, i.e. a matrix with constant diagonals:

φ(·, ·, j) =



exp
(
− εnj

2∆uQ

)
exp

(
− ε|1−nj |2∆uQ

)
exp

(
− ε|2−nj |2∆uQ

)
. . . exp

(
− ε|n−nj |2∆uQ

)
0 exp

(
− εnj

2∆uQ

)
exp

(
− ε|1−nj |2∆uQ

)
· · · exp

(
− ε|n−1−nj |

2∆uQ

)
...

...
. . . · · ·

...

0 0 0 · · · exp
(
− ε|1−nj |2∆uQ

)
0 0 0 · · · exp

(
− εnj

2∆uQ

)


. (5)

It follows that we can use the Fast Fourier Transform (FFT) to multiply φ(·, ·, j) by a vector of length n + 1 in time
O(n log(n)) instead of the typical O(n2) (a brief reference for this fact appears in the following lecture notes (Bindel,
2019)). Letting × denote element-wise product, we now rewrite

α(j, ·, 1) = τ(·)×
(
φ(·, ·, j)T α̂(j − 1, ·)

)
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and use the FFT to compute the second term in time O(n log(n)), since φ(·, ·, j)T is also Toeplitz. It therefore takes overall
time O(mn log(n) +m2n) to repeat this for each j and compute α(·, ·, 1).

Returning to the inductive step, suppose Eq. 4 holds for j′ < j. Then

α(j, i, 1) = τ(i)(φ(·, ·, j)T α̂(j − 1, ·))i
=
∑
i′<i

τ(i)φ(i′, i, j)α̂(j − 1, i′)

=
∑
i′<i

τ(i)φ(i′, i, j)
∑
k<j

α(j − 1, i′, k)

=
∑
i′<i

τ(i)φ(i′, i, j)
∑
k<j

∑
s′=(i1,...,ij−1)

s′∈S↗(j−1,i′,k)

1

γ(s′)

∏
j′∈[j−1]

φ(ij′−1, ij′ , j
′)τ(ij′)

=
∑
i′<i

∑
k<j

∑
s′=(i1,...,ij−1)

s′∈S↗(j−1,i′,k)

τ(i)φ(i′, i, j)
1

γ(s′)

∏
j′∈[j−1]

φ(ij′−1, ij′ , j
′)τ(ij′)

=
∑

s=(i1,...,ij)
s∈S↗(j,i,1)

1

γ(s)

∏
j′∈[j]

φ(ij′−1, ij′ , j
′)τ(ij′),

since every sequence in S↗(j, i, 1) consists of a sequence in S↗(j − 1, i′, k) for some i′ < i and k < j with an i appended
to the end. Note that the appending of only a single i means that γ(s) = γ(s′). Similarly,

α(j, i, k > 1) = τ(i) · φ(i, i, j) · α(j − 1, i, k − 1)/k

=
τ(i)

k
φ(i, i, j)

∑
s′=(i1,...,ij−1)

s′∈S↗(j−1,i,k−1)

1

γ(s′)

∏
j′∈[j−1]

φ(ij′−1, ij′ , j
′)τ(ij′)

=
∑

s=(i1,...,ij)
s∈S↗(j,i,k)

1

γ(s)

∏
j′∈[j]

φ(ij′−1, ij′ , j
′)τ(ij′),

since every sequence in S↗(j, i, k > 1) consists of a sequence in S↗(j − 1, i, k − 1) with an i appended to the end and,
when i appears k − 1 times in sequence s′ and s is equal to s′ with an i appended to the end, γ(s) = kγ(s′). Thus Eq. 4
holds, and we have the “forward” step: α(j, i, k) is the (unnormalized) mass of nondecreasing length-j sequences ending in
k repetitions of i.

Now consider the backward sampling process in JointExp. In the first step, we sample a pair

(i, k) ∝ α(m, i, k)φ(i, n,m+ 1)

=

 ∑
s=(i1,...,im)
s∈S↗(m,i,k)

1

γ(s)

∏
j′∈[m]

φ(ij′−1, ij′ , j
′)τ(ij′)

φ(i, n,m+ 1)

=
∑

s=(i1,...,im)
s∈S↗(m,i,k)

1

γ(s)

∏
j′∈[m+1]

φ(ij′−1, ij′ , j
′)
∏

j′∈[m]

τ(ij′)

∝
∑

s∈S↗(m,i,k)

PMQ′ [s] ,

where the second equality uses the fact that we fix im+1 = n. Since {S↗(m, i, k)}i,k is a partition of S↗ (that is, every
sequence in S↗ appears in S↗(m, i, k) for exactly one value of the pair (i, k)), we conclude that (i, k) is sampled according
to the marginal probability that a sequence sampled from PMQ′ ends in exactly k copies of i.
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Continuing the backward recursion, if the values of ssuffix = (ij+1, . . . , im) have already been sampled, then at the next step
we sample a pair

(i < ij+1, k) ∝ α(j, i, k)φ(i, ij+1, j + 1)τ(ij+1)

=

 ∑
sprefix=(i1,...,ij)
sprefix∈S↗(j,i,k)

1

γ(sprefix)

∏
j′∈[j]

φ(ij′−1, ij′ , j
′)τ(ij′)

φ(i, ij+1, j + 1)τ(ij+1)

∝

 ∑
sprefix=(i1,...,ij)
sprefix∈S↗(j,i,k)

1

γ(sprefix)

∏
j′∈[j]

φ(ij′−1, ij′ , j
′)τ(ij′)

φ(i, ij+1, j + 1)τ(ij+1)

·

 1

γ(ssuffix)

m+1∏
j′=j+2

φ(ij′−1, ij′ , j
′)

m∏
j′=j+2

τ(ij′)


=

∑
sprefix=(i1,...,ij)
sprefix∈S↗(j,i,k)

1

γ(sprefix)γ(ssuffix)

∏
j′∈[m+1]

φ(ij′−1, ij′ , j
′)
∏

j′∈[m]

τ(ij′)

∝
∑

sprefix=(i1,...,ij)
sprefix∈S↗(j,i,k)

PMQ′ [sprefix + ssuffix] ,

where + denotes sequence concatenation, and we use the fact that, since sprefix and ssuffix are nondecreasing and ij < ij+1,
γ(sprefix + ssuffix) = γ(sprefix)γ(ssuffix). Again, the set of nondecreasing sequences of length j can be partitioned into disjoint
subsets {S↗(j, i, k)}i,k, thus the pair (i, k) is sampled according to the marginal probability that a sequence sampled from
PMQ′ , conditional on having the suffix ssuffix, has a j-length prefix ending in exactly k copies of i.

Inductively, then, JointExp samples a sequence s according to PMQ′ . It remains to show that Algorithm 1 satisfies the
claimed time and space guarantees.

Time analysis. The first for-loop in Algorithm 1 computes α(1, ·, 1) in total time O(n). Each iteration of the second
for-loop, over j = 2, . . . ,m, computes α̂(j − 1, ·) in time O(mn), computes α(j, ·, 1) in time O(n log(n)) using FFT
multiplication, and finally spends O(m) time setting α(j, i, ·). The second for-loop thus takes total time O(m2n +
mn log(n)). Having computed α, each sampling of (i, k) takes time O(mn), so the final sampling takes time O(m2n).
Summing up, the total time is O(mn log(n) +m2n).

Space analysis. α̂ takes O(mn) space, the FFT relying on the Toeplitz expression of φ(·, ·, j) takes space O(n), and α
takes O(m2n) space. All other variables in the algorithm occupy a constant amount of space, so the overall space usage is
O(m2n).

B. Logarithm Trick
In this section, we give details for a more numerically stable logarithmic version of JointExp. Recall that we defined
α(1, i, 1) = φ(0, i, 1)τ(1) and α(1, i, k) = 0 for k > 1. The former becomes ln(α(1, i, 1)) = ln(φ(0, i, 1)) + ln(τ(1)) and
the latter ln(α(1, i, k)) = −∞, e.g. using -numpy.inf in Python.

We now turn to ln(α(j, ·, ·)) for j = 2, . . . ,m. To set

ln(α̂(j − 1, i)) = ln

∑
k<j

α(j − 1, i, k)


ln(α) terms that have already been computed, we use the following method for summing a vector of quantities a given its
component-wise logarithmic form ln(a)
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1. Compute the maximum element in the vector: Ma = max(ln(a)).

2. Component-wise subtract off the maximum element and exponentiate: a = exp(ln(a)−Ma).

3. Sum outside of logspace, then return to logspace: c = ln(sum(a)).

4. Add back the maximum: return c+Ma.

An example implementation is scipy.special.logsumexp (scipy, 2020).

In the computation of different ln(α(j, i, 1)) using

α(j, ·, 1) = τ(·)×
(
φ(·, ·, j)T α̂(j − 1, ·)

)
we want to multiply a Toeplitz matrix A and vector B given their component-wise logarithmic forms ln(A) and ln(B) by a
similar process. Since A is Toeplitz, we only need to work with its first column ln(Ac) and first row ln(Ar). Then we:

1. Compute the maximum element in Ac and Ar and the maximum element in ln(B): MA =
max(max(ln(Ac)),max(ln(Ar))) and MB = max(ln(B)).

2. Component-wise subtract off the maximum element and exponentiate: Ac = exp(ln(Ac)−MA), Ar = exp(ln(Ar)−
MA) and B = exp(ln(B)−MB).

3. Do the FFT matrix-vector multiplication outside of logspace, then return to logspace: C = ln(A×B).

4. Add back the maxima: return C +MA +MB .

An example implementation for non-FFT matrix multiplication can be found on StackOverflow (StackOverflow, 2014).

C. Sampling by “Racing” Method
The “racing” method is originally due to Ilya Mironov. To the best of our knowledge, full exposition and proofs first
appeared in the work of Medina & Gillenwater (2020). We recap their exposition here. The main tool is the following result:

Lemma 11 (Proposition 5 (Medina & Gillenwater, 2020)). Let U1, . . . , UN ∼ U(0, 1) be uniform random samples from
[0, 1] and define random variable R = arg min[N ] [ln(ln(1/Uk))− ln(pk)]. Then PR [k] = pk∑N

j=1 pj
.

Lemma 11 enables us to sample from distributions that depend on small probabilities pk by instead using their logarithms.
In combination with the logarithm trick from Appendix B, we avoid dealing with exponentiated terms entirely.

D. Discussion of Other Quantile Algorithms
In this section, we discuss the private quantile estimation algorithms of Dwork & Lei (2009) and Tzamos et al. (2020) and
explain why we do not include them in our experiments. Both of these are single quantile algorithms and would require m
compositions in order to estimate m quantiles.

Dwork & Lei (2009) define a “propose-test-release” algorithm. Briefly, it discretizes the space into bins of equal width, then
computes how many points in the dataset must change to move the true quantile out of its current bin. If this number is too
small (specifically, if it is no larger than ln2(n) + 2, the “test”), then the algorithm does not produce an answer. Otherwise,
the answer is the true quantile plus Laplace noise whose scale is six times the bin width (“release”).

We can ballpark the accuracy of this method on the uniform data distribution used in our experiments, i.e. n = 1000 samples
from U(−5, 5). Then ln2(n) + 2 ≈ 50. If we choose a bin width such that the bin with the true median contains 100 points,
then it takes at most 50 swaps to move the median out of that bin. We must therefore choose, at a minimum, a bin size such
that the bin containing the median contains at least 100 points. Even if we successfully make this choice, then the resulting
output will still be far less accurate than that of all the other methods tested in the experiments. This is because a successful
choice requires a bin width ≥ 1, so the algorithm releases the true median value of ≈ 0 plus Laplace noise with scale 6.
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With that scaling, the estimated median is at one of the limits of the [−5, 5] range with probability ≈ 0.434. This means that
the estimated median misclassifies roughly 500 out of the 1000 points over 40% of the time, making its expected error in
excess of 200 points. For comparison, the algorithms that we test only require lower and upper bounds on the data (not
knowledge of the distribution sufficient to choose a good bin width), always output an estimate, and produce average error
≤ 25 for median estimation on uniform data.

We now turn to the private quantile estimation algorithm given by Tzamos et al. (2020). This algorithm is also based on
adding (a variant of) Laplace noise to the true median. The first drawback of this method is that its time complexity is O(n4)
(see the footnote accompanying their definition of “TypicalHamming”). This makes it impractical for datasets with more
than a few hundred datapoints. The second drawback is the need to select several hyperparameters (R, r, L,C) to determine
the specific Laplace noise distribution. While this hyperparameter selection does not affect the privacy guarantee, it does
affect the utility. Their utility guarantees assume that the algorithm operator knows these distributional parameters a priori,
but this assumption may be hard to satisfy in practice. In contrast, JointExp and AppIndExp only require the user to provide
endpoints.

E. Details For Comparison Algorithms
AppIndExp: Privacy parameters for the m invocations of the exponential mechanism come from the composition
guarantee given by Dong et al. (2020). For simplicity, we give a less general (but not weaker) version of their result.

Lemma 12 (Theorem 3 (Dong et al., 2020)). Let mechanism A consist of m nonadaptive ε-DP applications of the
exponential mechanism. Define

t∗` =

[
εg + (`+ 1)ε

m+ 1

]ε
0

and pt∗` =
e−t

∗
` − e−ε

1− e−ε

where [x]
ε
0 denotes the value of x clipped to interval [0, ε]. Then A is (εg, δ)-DP for

δ = max
0≤l≤m

m∑
i=0

[(
m

i

)
pm−it∗`

· (1− pt∗` )i ·max
(
emt

∗
`−iε − eεg , 0

)]
.

To apply Lemma 12 with a fixed δ, we use it to compute the largest ε, at a granularity of 0.01, that achieves (εg, δ)-DP with
some δ ≤ 10−6, and we use this value for our experiments. As this is independent of the actual mechanism in question, the
time required for this computation is not included in the runtime values reported for AppIndExp.

CSmooth : We start with the precise statement of the t-smooth sensitivity of computing a quantile:

Lemma 13 (Proposition 3.4 (Nissim et al., 2007)). Let a and b be client-provided left and right data endpoints. Let X be a
database of values x1 ≤ . . . ≤ xn in [a, b], and for notational convenience define xi = a for i < 1 and xi = b for i > n.
Let xj∗ be the true value for quantile q on X . Then the t-smooth sensitivity of computing q on X is

Stq(X) = max
m=0,...,n

(
e−tm · max

k=0,...,m+1
(xj∗+k − xj∗+k−m−1)

)
.

Looking at the two max operations, we can compute Stq(X) in time O(n2). Nissim et al. (2007) also provide a slightly
more involved method for computing Stq(X) in time O(n log(n)). We omit its details here but note that our implementation
uses this O(n log(n)) speedup for the fairest time comparison. Next, we specify the exact noise distribution used to generate
additive noise in CSmooth :

Lemma 14 (Proposition 3 (Bun & Steinke, 2019)). Define the Laplace Log-Normal distribution with shape parameter
σ > 0, LLN (σ), as the distribution for the random variable Z = X · eσY where X ∼ Lap (1) and Y ∼ N(0, 1). Let f be
a real-valued function and let s, t > 0. Then releasing

f(X) +
Stf (X) · Z

s

satisfies ε2

2 -CDP for ε = t
σ + e1.5σ2

s.
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Once we fix the desired CDP privacy parameter ε2

2 , to apply Lemma 14 we must still select t, s, σ > 0. We follow the
selection method given in Sections 3.1.1 and 7.1 of Bun & Steinke (2019), omitting most of the details. First, for each
of a sequence of values for t, we set s = e−1.5σ2

(ε − t/σ) and numerically solve for σ as a root of the polynomial
5ε
t σ

3− 5σ2− 1 = 0. Repeating this process for each t provides a collection of (t, s, σ) triples without touching the database

X . Given these triples (t, s, σ), we finally select one to minimize variance
2Stf (X)2

e−5σ2 (ε−t/σ)2
.

Figure 5. Tuned t used for CSmooth across different
quantile ranges. For example, we used t ≈ 0.13 for
m = 3, and q = 0.5 (the magenta dot in the middle of
the plot).

We pause to note that this last minimization of variance repeatedly
touches X to compute Stf (X) for different t. As this is not differ-
entially private, we executed this non-private selection process once
using data drawn from the standard GaussianN(0, 1) and used the re-
sulting values for CSmooth experiments on our datasets. In practice,
after starting from a wide range for t of 150 logarithmically spaced
values between 10−10 and 10, we found that the values selected
for t clustered in a narrow subinterval across both data drawn from
N(0, 1) and data drawn from our other experiment distributions. We
therefore view the distribution-specific selection of t as contributing
relatively little to the final error of CSmooth.

In more detail, the actual t selection process in our experiments
is to use the variance-minimizing selection process described in
Section 5.1 for each quantile in sets of quantiles ranging from m = 1
to m = 29 for ε = 1. The range for t is 50 logarithmically spaced
values between 0.01 and 1. Each trial used 1000 samples drawn
from N(0, 1) with data lower bound −100 and data upper bound
100. Below, we record the t selected for each quantile and quantile
range, averaged across 5 trials. Each color represents a different set
of quantiles, and each point for each color represents the t selected
for a single quantile.

AggTree: AggTree’s hyperparameters are the tree height h and branching factor b. We tuned these parameters over the
range {2, 3, . . . , 15} and {1, 2, . . . , 15} respectively. As with CSmooth, we used N(0, 1) data. The following two tables
summarizes the values tuned over 50 trials of 1000 data points each.

# quantiles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
height 4 3 3 3 2 3 3 3 3 3 3 3 3 3 3

branching parameter 4 6 6 9 14 10 7 7 10 10 8 7 7 12 10

# quantiles 16 17 18 19 20 21 22 23 24 25 26 27 28 29
height 3 3 3 3 3 3 3 3 3 3 3 3 3 3

branching parameter 10 10 10 7 10 10 7 10 12 12 12 10 10 12

Table 1. Tuned height and branching parameters across number of quantiles.

F. Distance Error Experiments
We conclude with experiments using a distance error metric, which computes the average `1 distance between the vectors of
estimated and true quantiles: given quantile estimates ô1, . . . , ôm and true values o1, . . . , om, the error is ‖ô− o‖1/m. In
this setting, we re-tune AggTree’s hyperparameters using the distance metric, although the results are essentially the same:

# quantiles 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
height 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

branching parameter 8 6 6 10 9 9 10 10 12 12 10 10 7 10 8



Differentially Private Quantiles

# quantiles 16 17 18 19 20 21 22 23 24 25 26 27 28 29
height 3 3 3 3 3 3 3 3 3 3 3 3 3 3

branching parameter 8 10 7 10 10 12 8 10 12 10 7 5 7 5

Table 2. Tuned height and branching parameters across number of quantiles (distance error).

The final error plots appear below. Note that the algorithms that rely on the exponential mechanism (AppIndExp and
JointExp) at some point exhibit a sharp increase in error as m grows. This is because these algorithms eventually end up
sampling from a distribution that favors the extreme intervals containing the domain endpoints, and – unlike misclassification
error – distance error strongly penalizes these outputs. Nonetheless, JointExp still achieves the strongest performance for a
wide range of m.

Figure 6. Distance error vs # quantiles m for ε = 1, averaged across 50 trials of 1,000 samples.


