
Query Complexity of Adversarial Attacks

A. Omitted proofs - Reduction and a lower bound
We now present the reduction that we will use for our QC lower bounds later on.
Theorem 1. [Reduction.] Let ✏ 2 R�0 and let T be a binary classification task on Rd

with separable classes. Let ALG
be a randomized learning algorithm for T that uses m samples. Then for every  2 [0, 1] the following holds:

QC(ALG, T,m, ✏, 1/2,)

� log

✓
1� 

supp: ✏-perturbation
PS⇠Dm,B⇠B [E(S,B, p)]

◆
,

where the event E(S,B, p) is defined as:

µ(p�1(E(ALG(S,B)))) �
AR(ALG(S,B), ✏)

2
.

Proof. We first prove the Theorem when ALG is deterministic. Let A be a q-bounded adversary that performs a successful
attack on ALG with respect to (T,m, ✏, 1/2,) (as per Definition 5). We will show that q is lower-bounded by the value
from the statement of the Theorem.

The behavior of A can be represented as a binary tree T where each non-leaf vertex v 2 T contains a query point xv 2 Rd

and each leaf l 2 T contains an ✏-perturbation pl : Rd
�! Rd. Then A works as follows: it starts in the root r of T and

queries the vertex xr. Depending on f(xr)
?
= 1 it proceeds left or right. It continues in this manner, querying the points

stored in the visited vertices until it reaches a leaf l. At the leaf it outputs the perturbation function pl.

Let us partition all possible data sets S 2 (Rd)m depending on which leaf is reached by A when interacting with ALG(S).
Let l1, . . . , ln be the leaves of T and C1, . . . , Cn ✓ (Rd)m be the respective families of data sets that end up in the
corresponding leaves. Let Z := {S 2 (Rd)m : A succeeds on S}. By assumption A is guaranteed to succeed with
probability 1� , so

PS⇠Dm [S 2 Z] � 1� . (2)

Now observe that for every i 2 [n] and S 2 Ci \ Z

µ(p�1
li

(E(ALG(S)))) �
AR(ALG(S), ✏)

2
.

In words, for every S 2 Ci \ Z the adversary A succeeds if at least AR(ALG(S),✏)
2 of the probability mass of D is moved by

pli into the error set of ALG(S). Thus we get that for every i 2 [n]:

PS⇠Dm [S 2 Ci \ Z]  sup
p: ✏-perturbation

PS⇠Dm


µ(p�1(E(ALG(S)))) �

AR(ALG(S), ✏)

2

�
. (3)

By standard properties of entropy we know that for a discrete random variable W any protocol asking yes-no questions that
finds the value of W must on average ask at least H(W ) many questions. Let W be a random variable that takes values in
{1, 2, . . . , n}, where for every i 2 [n] we have P[W = i] := PS⇠Dm [S 2 Ci \ Z]/PS⇠Dm [S 2 Z]. Note that A’s protocol
can be directly used to find a protocol that asks yes-no questions and finds the value of W with at most q queries. It is
enough to prove a lower-bound on H(W ) as the expected number of questions can only be lower than the maximum number.

Note that by (2) and (3) we get that for every i 2 [n]:

P[W = i] 
1

1� 
· sup
p: ✏-perturbation

PS⇠Dm


µ(p�1(E(ALG(S)))) �

AR(ALG(S), ✏)

2

�
.

By properties of entropy we know that H(W ) � log(1/maxi2[n] P[W = i]), so in the end we get that:

H(W ) � log

0

@ 1� 

supp: ✏-perturbation PS⇠Dm

h
µ(p�1(E(ALG(S)))) � AR(ALG(S),✏)

2

i

1

A .

The proof for the case when ALG is randomized in analogous. The only difference is that instead of partitioning the space
(Rd)m we partition the space (Rd)m ⇥ supp(B).
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Remark 2. For the sake of clarity and consistency with the standard setup we fixed the approximation constant to be equal

1/2 and the data generation process to be S ⇠ D
m

. We note however, that Theorem 1 (and its proof with minor changes) is

also true for all approximation constants and for general data generation processes. By different generation process we

mean anything different from S ⇠ D
m

, for instance a case where samples are dependent or where the number of samples m
is itself a random variable. This distinction will become important in the proof of Theorem 2.

The following theorem states that if an algorithm ALG applied to a learning task satisfies the following: ALG learns low-risk
classifier with constant probability, the adversarial risk is high with constant probability and every point from the support of
the distribution is misclassified with small probability then the QC of ALG is high. The core of the proof is the reduction
from Theorem 1.
Theorem 4. For every ✏ 2 R�0, C, �, ⌘ 2 R+ and T a binary classification task on Rd

with separable classes the following

conditions hold. If ALG is a learning algorithm for T and satisfies the following properties:

1. 8x 2 supp(D) +B✏,
PS⇠Dm [ALG(S)(x) 6= h(x)]  C · �,

2. PS⇠Dm [AR(ALG(S), ✏) � ⌘] � 0.99,

3. PS⇠Dm [R(ALG(S))  �] � 0.99,

then:

QC(ALG, T,m, ✏) � log
⇣ ⌘

3 · C · �

⌘
.

Proof. Let p : Rd
�! Rd be an ✏-perturbation. For simplicity we introduce the notation ⇢ := PS⇠Dm [AR(ALG(S), ✏) �

⌘ ^R(ALG(S), ✏)  �]. We define two new data distributions:

D1 := D
m
| (AR(ALG(S), ✏) � ⌘ ^R(ALG(S), ✏)  �) ,

D2 := D
m
| (AR(ALG(S), ✏) < ⌘ _R(ALG(S), ✏) > �) .

Observe that supp(D1) \ supp(D2) = ; and:

D
m = ⇢ · D1 + (1� ⇢) · D2. (4)

Let A be an adversary that succeeds on D
m with probability 0.99. By (4) and the union bound A has to succeed on D1 with

probability of success s that satisfies:
⇢ · s+ (1� ⇢) � 0.99,

or, equivalently,

s �
1

⇢
(0.99� (1� ⇢)) .

By Assumption 2 and 3, this implies
s � 0.97. (5)

Now observe:

ES⇠D1 [µ(p
�1(E(ALG(S))))]

=

Z

supp(D)
PS⇠D1 [p(x) 2 E(ALG(S))] dµ

=

Z

supp(D)
PS⇠Dm [p(x) 2 E(ALG(S))| (AR(ALG(S), ✏) � ⌘ ^R(ALG(S), ✏)  �)] dµ

=

Z

supp(D)

PS⇠Dm [p(x) 2 E(ALG(S)) \AR(ALG(S), ✏) � ⌘ \R(ALG(S), ✏)  �]

PS⇠Dm [AR(ALG(S), ✏) � ⌘ ^R(ALG(S), ✏)  �]
dµ



Z

supp(D)

PS⇠Dm [p(x) 2 E(ALG(S))]

PS⇠Dm [AR(ALG(S), ✏) � ⌘ ^R(ALG(S), ✏)  �]
dµ

 (C · �)/⇢


1

0.98
· C · �, (6)
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where the second equality follows from the definition of D1, third equality follows from the definition of conditioning, first
inequality follows from the fact that intersection decreases probability, second inequality is a result of Assumption 1 (which
can be applied as p(x) 2 supp(D)+B✏) and the last inequality is obtained by Assumptions 2, 3 and the union bound. Using
(6) we get:

PS⇠D1


µ(p�1(E(ALG(S)))) �

AR(ALG(S), ✏)

2

�


2 · ES⇠D1 [µ(p

�1(E(ALG(S))))]

AR(ALG(S), ✏)
by Markov inequality


2 · 1

0.98 · C · �

⌘
by (6) and definition of D1 (7)

Applying Theorem 1 to (5) and (7) we get that:

QC(ALG, T,m, ✏) � log

✓
0.97 · 0.98 · ⌘

2 · C · �

◆
� log

⇣ ⌘

3 · C · �

⌘
.
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B. Omitted Proofs - K-NN
Theorem 2. There exists a function � : R+

�! (0, 1) such that the 1-Nearest Neighbor (1-NN) algorithm applied to the

learning task Tintervals(z) satisfies:

QC(1-NN, Tintervals(z), 2m, z/10, 1� �(z), 0.1) � ⇥(m),

provided that z = ⌦(1).

Proof. For x 2 L� [ L+ and ⇢ 2 R we will use x+ ⇢ to denote x+ (⇢, 0). Finally, for x 2 L� [ L+ we will use g(x) to
denote the closest point to x in the other interval.

Data generation process. Instead of letting S ⇠ D
2m we will use a standard trick and employ a Poisson sampling

scheme. This will simplify our proof considerably. Specifically, we think of the samples as being generated by two Poisson
processes: Let N� be a homogeneous Poisson process on the line defined by the extension of L� and N+ be a independent
of N� homogeneous Poisson process on the line defined by the extension of L+, both of rate � = 1. Then we define
A� := ([0,m)⇥ {0}) \N�, A+ := ([0,m)⇥ {z}) \N+ and finally:

S := {(x,�1) : x 2 A�} [ {(x,+1) : x 2 A+} and

eS := {(x,�1) : x 2 N�} [ {(x,+1) : x 2 N+}.

By design we have E[|S|] = 2m as |S| is distributed according to Pois(2m). Moreover, using a standard tail bound for a
Poisson random variable, we get that for every t > 0:

P[||S|� 2m| � t]  2e�
t2

2(2m+t) . (8)

This means that the size of the dataset generated with the new process is concentrated around 2m (with likely deviations of
order

p
m). Let {x�

1 , x
�
2 , . . . } be the points from N� with non-negative first coordinate ordered in the increasing order

and similarly let {x+
1 , x

+
2 , . . . }. Then note that A� = {x�

1 , . . . , x
�
|A�|} and A+ = {x+

1 , . . . , x
+
|A+|}. To simplify notation

we let E(S) := E(1-Nearest Neighbor(S)), E(eS) := E(1-Nearest Neighbor(eS)), where we recall that E denotes the error
set. Moreover let:

x�
0 := max

x2N�,x<0
x, x+

0 := max
x2N+,x<0

x

We also define the corresponding random variables {X�
0 , X�

1 , . . . } and {X+
0 , X+

1 , . . . }, where for every i we have
x�
i ⇠ X�

i and x+
i ⇠ X+

i .

Upper-bounding µ(p�1(E(1-Nearest Neighbor(S)))). Let p be a z/10-perturbation. We analyze only one of the
intervals, namely L+, as the situation for L� is symmetric. For i 2 N+ [ {0} let eZi be a non-negative random variable
defined as:

eZi := ⌫
⇣
p�1

⇣
P x+

i
[ P x+

i+1

⌘⌘
,

where we define for every (x, y) 2 L+:

P (x,y) :=

⇢
(x0, y0) 2 R2 : y0 <

1

2z
(x0
� x)2 +

z

2

�

Note that by construction:
|A�|X

i=0

eZi � ⌫(p�1(E(S)) \ L+). (9)

We divide eZi’s into k groups, where k will be chosen later. For i 2 N+ [ {0} we define:

eZi mod k
i/k := eZi.
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Let g 2 {0, . . . , k � 1}. We will upper-bound the probability:

P

2

4
d(1+c(z))m/keX

i=0

eZg
i �

✓
1 +

✏(z)

2

◆
· e�

4
p

5z
5 ·m

3

5 ,

where the function c : R+
�! R+ will be defined later.

Let i 2 [d(1 + c(z))m/ke] and x+
0 , x

+
1 , . . . , x

+
(i�1)k+g+1 2 R be an increasing sequence such that x+

0 < 0 < x+
1 .

Assume that p maximizes E
h
eZg
i

���X+
0 = x+

0 , X
+
1 = x+

1 , . . . , X
+
(i�1)k+g+1 = x+

(i�1)k+g+1

i
. Note that by construction of

P ’s we have the following property. For every i 2 [|A+|] and every (x, y) 2 P x+
i
, y � 1/2 we have that for every

y0 2 [1/2, y] (x, y0) 2 P x+
i

. Using this fact we can assume without loss of generality that for every t 2 L+ we have
p(t) = (x, y), y  z and kp(t) � tk2 = z/10. The reason is that if p(t) is above L+ we can flip it with respect to L+

and preserve the distance to t and if kp(t) � tk2 < z/10 we can create a new p0 that moves t to p0(t) := (x, y0), where
(x, y) = p(t), y0 < y and kp0(t)� tk2 = z/10.

For every t 2 L+ let:

↵(t) := ^((�1, 0), p(t)� t).

Now observe that p(t) 2 P x+
i
[ P x+

i+1
iff x+

i  ⌧1 and ⌧2  x+
i+1, where the two threshold can be computed from p(t) or

equivalently from t and ↵(t). We get the following:

P
h
p(t) 2 P x+

i·k+g
[ P x+

i·k+g+1

���X(i�1)·k+g+1 = x+
(i�1)k+g+1

i

=

Z ⌧1

x+
(i�1)k+g+1

fX+
i·k+g�X+

(i�1)k+g+1
(x0
� x+

(i�1)k+g+1) · e
�(⌧2�x0)dx0

= e�
2
p

5z
5

p
5�cos(↵(t))

·

h
t� z

10 (� sin(↵(t)) + 2
p
5
p

5� cos(↵(t)))
ik

k!
· e

�
h
t� z

10 (� sin(↵(t))+2
p
5
p

5�cos(↵(t))
i

 e�
4
p

5z
5 ·

h
t� z

10 (� sin(↵(t)) + 2
p
5
p
5� cos(↵(t)))

ik

k!
· e

�
h
t� z

10 (� sin(↵(t))+2
p
5
p

5�cos(↵(t))
i

(10)

The first equality follows from the fact that inter-arrival times are independent on L+. To see the second observe that
fX+

i·k+g�X+
(i�1)k+g+1

is the density of Erlang distribution with parameters (k � 1, 1) and the formula t� z
10 (� sin(↵(t)) +

2
p
5
p
5� cos(↵(t)) gives the expression for ⌧1 and 2

p
5z
5

p
5� cos(↵(t)) + ⌧1 gives the expression for ⌧2.

Then we have:

E
h
eZg
i

���X+
0 = x+

0 , X
+
1 = x+

1 , . . . , X
+
(i�1)k+g+1 = x+

(i�1)k+g+1

i

=

Z 1

x+
(i�1)k+g+1

PS

h
p(t) 2 P x+

i·k+g
[ P x+

i·k+g+1

���X+
0 = x+

0 , . . . , X
+
(i�1)k+g+1 = x+

(i�1)k+g+1

i
dt

=

Z 1

x+
(i�1)k+g+1

PS

h
p(t) 2 P x+

i·k+g
[ P x+

i·k+g+1

���X+
(i�1)k+g+1 = x+

(i�1)k+g+1

i
dt

 e�
4
p

5z
5

Z 1

0

h
t� z

10 (� sin(↵(t)) + 2
p
5
p
5� cos(↵(t)))

ik

k!
· e

�
h
t� z

10 (� sin(↵(t))+2
p
5
p

5�cos(↵(t))
i

By (10) (11)

Now we bound the expression from (11). Note that the range of sin and cos is [�1, 1] so:

���
z

10
(� sin(↵(t)) + 2

p

5
p
5� cos(↵(t)))

��� 
11z

10
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Function e�x
·
xk

k! is increasing on [�1, k] and decreasing on [k,1] thus

Z 1

0

h
t� z

10 (� sin(↵(t)) + 2
p
5
p
5� cos(↵(t)))

ik

k!
· e

�
h
t� z

10 (� sin(↵(t))+2
p
5
p

5�cos(↵(t))
i



Z k� 11z
10

0
e�(t0+ 11z

10 )
·
(t0 + 11z

10 )k

k!
dt0 +

Z k+ 11z
10

k� 11z
10

e�k
·
kk

k!
dt0 +

Z

k+ 11z
10

e�(t0� 11z
10 )

·
(t0 � 11z

10 )k

k!
dt0



Z 1

0
e�t0

·
t0k

k!
dt0 +

22z

10
e�k

·
kk

k!

 1 +
22z

10
p
2⇡k

(12)

where the last inequality follows from the fact that the function e�t0
·
t0k

k! is the density function of the Erlang distribution
with parameters (k, 1) and Stirling factorial bounds.

Combining (11) and (12) we get that:

E
h
eZg
i

���X+
0 = x+

0 , X
+
1 = x+

1 , . . . , X
+
(i�1)k+g+1 = x+

(i�1)k+g+1

i


✓
1 +

z
p
k

◆
e�

4
p

5z
5 . (13)

Note that in order for eZg
i � 0 one needs x+

i·k+g+1 � x+
i·k+g � 2 · z

10 (� sin(↵(t)) + 2
p
5
p
5� cos(↵(t))), for ↵(t) = 0.

Simplifying this is equivalent to x+
i·k+g+1 � x+

i·k+g �
4
p
5z
5 . As the lengths of intervals are independent we get that for

every i 2 N+ [ {0}:

P
h
eZg
i = 0|X+

0 = x+
0 , X

+
1 = x+

1 , . . . , X
+
(i�1)k+g+1 = x+

(i�1)k+g+1

i
� 1� e�

4
p

5z
5 (14)

From definition of eZg
i we have that eZg

i  ⌫
⇣⇣

P x+
i·k+g

[ P x+
i·k+g+1

⌘
+Bz/10

⌘
. We will give an upper bound on

⌫
⇣⇣

P x+
i·k+g

[ P x+
i·k+g+1

⌘
+Bz/10

⌘
depending on x+

i·k+g+1 � x+
i·k+g. For simplicity let l := x+

i·k+g+1 � x+
i·k+g. Let ↵⇤

be the minimizer of z
10 (� sin(↵) + 2

p
5
p
5� cos(↵)) and x⇤ :=

p
5
p

5�cos(↵⇤)z

5 . Then for l 2
h
4
p
5z
5 , 2x⇤

i
we have that:

⌫
⇣⇣

P x+
i·k+g

[ P x+
i·k+g+1

⌘
+Bz/10

⌘
= 2

s
z2

100
�

✓
z

2
�

1

2z
(l/2)2

◆2

. (15)

For l 2 (2x⇤,1) we have:

⌫
⇣⇣

P x+
i·k+g

[ P x+
i·k+g+1

⌘
+Bz/10

⌘
= l � 2x⇤ +

2z

10
sin(↵⇤). (16)

Thus as the length of the intervals are distributed according to the exponential distribution we get that for l 2
h
4
p
5z
5 , 2x⇤

i
:

P

2

4 eZg
i � 2

s
z2

100
�

✓
z

2
�

1

2z
(l/2)2

◆2
������
X+

0 = x+
0 , X

+
1 = x+

1 , . . . , X
+
(i�1)k+g+1 = x+

(i�1)k+g+1

3

5  e�l, (17)

and similarly for l 2 (2x⇤,1):

P

eZg
i � l � 2x⇤ +

2z

10
sin(↵⇤)

����X
+
0 = x+

0 , X
+
1 = x+

1 , . . . , X
+
(i�1)k+g+1 = x+

(i�1)k+g+1

�
 e�l, (18)

Now we bound the probability that sum of variables from the g-th group deviates considerably from its expectation. The
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idea is to use a method similar to the proof of the Chernoff bound.

P

2

4
d(1+c(z))m/keX

i=0

eZg
i �

1

k

✓
1 +

✏(z)

2

◆
· e�

4
p

5z
5 ·m

3

5

 P

eZg
0 �

1

k
·
✏(z)

4
· e�

4
p

5z
5 ·m

�
+ P

2

4
d(1+c(z))m/keX

i=1

eZg
i �

1

k

✓
1 +

✏(z)

4

◆
· e�

4
p

5z
5 ·m

3

5 By the union bound

(19)

We bound the two terms from (19) separately. Using (17) we get that for m � 2z
10 sin(↵

⇤) · k ·
4

✏(z) · e
4
p

5z
5 :

P

eZg
0 �

1

k
·
✏(z)

4
· e�

4
p

5z
5 ·m

�
 exp

✓
�
1

k
·
✏(z)

4
· e�

4
p

5z
5 ·m+ 2x⇤

�
2z

10
sin(↵⇤)

◆
, (20)

which implies:

P

eZg
0 �

1

k
·
✏(z)

4
· e�

4
p

5z
5 ·m

�
 Oz(1)e

�⌦z(m) (21)

Now we bound the second term from (19). For every s > 0::

P

2

4
d(1+c(z))m/keX

i=1

eZg
i �

1

k

✓
1 +

✏(z)

4

◆
· e�

4
p

5z
5 ·m

3

5

 P

2

4exp

0

@s

d(1+c(z))m/keX

i=1

eZg
i

1

A � exp
✓
s ·

1

k

✓
1 +

✏(z)

4

◆
· e�

4
p

5z
5 ·m

◆3

5

 E

2

4exp

0

@s

d(1+c(z))m/keX

i=1

eZg
i

1

A

3

5 · exp
✓
�s ·

1

k

✓
1 +

✏(z)

4

◆
· e�

4
p

5z
5 ·m

◆
By Markov inequality

 E

2

4
d(1+c(z))m/keY

i=1


exp

✓
s ·

✓
eZg
i �

1

1 + c

✓
1 +

✏(z)

4

◆
· e�

4
p

5z
5

◆◆�3

5 (22)

Set c(z) := 1+ ✏(z)
4

1+ ✏(z)
8

� 1. Using the chain rule we obtain:

E

2

4
d(1+c(z))m/keY

i=1


exp

✓
s ·

✓
eZg
i �

✓
1 +

✏(z)

8

◆
· e�

4
p

5z
5

◆◆�3

5

E

2

4
d(1+c(z))m/ke�1Y

i=1


exp

✓
s ·

✓
eZg
i �

✓
1 +

✏(z)

8

◆
· e�

4
p

5z
5

◆◆�
· E


exp

✓
s ·

✓
eZg
i �

✓
1 +

✏(z)

8

◆
· e�

4
p

5z
5

◆◆����{ eZ
g
i }

d2m/ke�1
i=1

�3

5

(23)

Using the fact that variables X+
0 , . . . , X+

(i�1)k+g+1 determine values of eZg
0 . . . , eZ

g
i�1 and the bound from (13) holds for all

possible realizations of X+
0 , . . . , X+

(i�1)k+g+1 if we maximize the inner conditional expectation of (23) over variables eZg
i

satisfying property (13) we can get an upper bound on P
hPd(1+c)m/ke

i=0
eZg
i �

1
k

⇣
1 + ✏(z)

2

⌘
· e�

4
p

5z
5 ·m

i
via (19), (20)

and (22). More formally let’s consider a family of random variables Z satisfying:

1. Z � 0

2. E[Z]  (1 + zp
k
) · e�

4
p

5z
5 ,



Query Complexity of Adversarial Attacks

3. For l 2
h
4
p
5z
5 , 2x⇤

i
: P


Z � 2

q
z2

100 �
�
z
2 �

1
2z (l/2)

2
�2
�
 e�l,

4. For l 2 (2x⇤,1): P
⇥
Z � l � 2x⇤ + 2z

10 sin(↵
⇤)
⇤
 e�l.

Consider the following optimization problem.

sup
Z:Z satisfies 1, 2, 3 and 4

E


exp
✓
s ·

✓
Z �

✓
1 +

✏(z)

8

◆
· e�

4
p

5z
5

◆◆�
. (24)

The supremum of this problem is attained for some Z⇤ from the family. This is the case as Properties 3 and 4 guar-
antee that the objective function is bounded. Set k := 256z2

✏(z)2 . Observe then that because of Property 2 we have that

E
h
Z⇤
�

⇣
1 + ✏(z)

8

⌘
· e�

4
p

5z
5

i
< 0. Taylor expanding the function esX we get that:

E


exp
✓
s ·

✓
Z⇤
�

✓
1 +

✏(z)

8

◆
· e�

4
p

5z
5

◆◆�
= 1 + s · E


Z⇤
�

✓
1 +

✏(z)

8

◆
· e�

4
p

5z
5

�
+ o(s2).

Thus we get that there exists s⇤ > 0 such that:

sup
Z:Z satisfies 1, 2, 3 and 4

E


exp
✓
s⇤ ·

✓
Z �

✓
1 +

✏(z)

8

◆
· e�

4
p

5z
5

◆◆�
< e�⌦z(1). (25)

So combining (21), (23) and (25) we get that :

P

2

4
d(1+c)m/keX

i=0

eZg
i �

1

k

✓
1 +

✏(z)

2

◆
· e�

4
p

5z
5 ·m

3

5

 Oz(1)e
�⌦z(m) + e�⌦z((1+c(z))m/k)

 Oz(1)e
�⌦z(m) As k is a function of z (26)

Thus we get that:

P

⌫(p�1(E(S)) \ L�) �

✓
1 +

✏(z)

2

◆
· e�

4
p

5z
5 ·m

�

 P

2

4
|A�|X

i=0

eZi �

✓
1 +

✏(z)

2

◆
· e�

4
p

5z
5 ·m

3

5 By (9)

 P

2

4

0

@
d(1+c(z))meX

i=0

eZi �

✓
1 +

✏(z)

2

◆
· e�

4
p

5z
5 ·m

1

A _ (|A�| > (1 + c(z))m)

3

5

 P

2

4
d(1+c(z))meX

i=0

eZi �

✓
1 +

✏(z)

2

◆
· e�

4
p

5z
5 ·m

3

5+ 2e�
(1+c(z))2m2

2(m+(1+c(z))m) Union bound and (8)

 k ·Oz(1)e
�⌦z(m) + 2e�⌦z(m) By (26) and union bound over groups


256z2

✏(z)2
·Oz(1)e

�⌦z(m) + 2e�⌦z(m) By setting of k

 Oz(1)e
�⌦z(m)

The above fact together with the union bound over L� and L+ gives:

P[µ(p�1(E(1-Nearest Neighbor(S)))) �
✓
1 +

✏(z)

2

◆
· e�

4
p

5z
5 ]  Oz(1)e

�⌦z(m) (27)
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Lower-bounding AR(1-Nearest Neighbor(S), z/10). We will focus on L+ as the argument for L� is analogous. Let
a = (a1, z), b = (b1, z) 2 A+ be two consecutive points from A+. Note that a parabola defined by:

Pa :=

⇢✓
t+ a1,

1

2z
t2 +

z

2

◆
: t 2 R

�
,

is exactly the set of points that are equally distant to a and L�. An analogous parabola can be defined for the point b. Let
P�!a be the parabola Pa shifted to the right by ⇢ (to be fixed later). Formally:

P�!a :=

⇢✓
t+ a1,

1

2z
(t� ⇢)2 +

z

2

◆
: t 2 R

�
.

Similarly let:

P �b :=

⇢✓
t+ b1,

1

2z
(t+ ⇢)2 +

z

2

◆
: t 2 R

�
.

We will show if a point (x, y) 2 R2 is below P�!a , P �b and y  2z, x 2 (a1, b1) then (x, y) 2 E(S) with high probability.
More precisely let (x, y) 2 R2 be such that: x 2 (a1, b1), y 

1
2z (x�a1�⇢)2+ z

2 , y 
1
2z (x� b1+⇢)2+ z

2 , y 2
⇥
9z
10 , 2z

⇤
.

By construction d((x, y), A+) is obtained at a or b. We have that:

d(a, (x, y))2 � (x� a1)
2 +

✓
z

2
�

(x� a1 � ⇢)2

2z

◆2

= (x� a1)
2 +

(x� a1 � ⇢)4

4z2
�

(x� a1 � ⇢)2

2
+

z2

4
(28)

d(L�, (x, y))
2


✓
(x� a1 � ⇢)2

2z
+

z

2

◆2

=
(x� a1 � ⇢)4

4z2
+

(x� a1 � ⇢)2

2
+

z2

4
(29)

Now if d(a, (x, y)) > 3z then d(a, (x, y))� d(L�, (x, y)) � z by assumption that y  2z. Otherwise we have:

d(a, (x, y))� d(L�, (x, y)) =
d(a, (x, y))2 � d(L�, (x, y))2

d(a, (x, y)) + d(L�, (x, y))

�
⇢(2x� 2a1 � ⇢)

3z + 2z
By (28), (29)

�

⇢
⇣

4zp
5
� ⇢

⌘

5z
As y � 0.9z

� 0.3⇢ As z > 10⇢ (30)

By symmetry an analogous bound holds for d(b, (x, y))� d(L�, (x, y)).

Observe that if there exist a point c 2 A� such that c 2 [(x�
p
0.1⇢z, 0), (x+

p
0.1⇢z, 0)] then d(a, (x, y)) > d(L�, (x, y)).

That’s true because:

d(c, (x, y)) 
p
y2 + 0.1⇢z

 y

r
1 +

0.1⇢z

y2

 y

r
1 +

0.13⇢

z
As y � 0.9z

 y

✓
1 +

0.07⇢

z

◆

 y + 0.14⇢ As y  2z, (31)
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Noticing that y = d(L�, (x, y)) we get:

d(a, (x, y))� d(c, (x, y)) � d(a, (x, y))� d(L�, (x, y))� 0.14⇢ By (31)
� 0.3⇢� 0.14⇢

> 0 (32)

By symmetry we also get that d(b, (x, y)) > d(L�, (x, y)), which also implies that (x, y) 2 E(S). Note that:

|N� \ [(x�
p

0.1⇢z, 0), (x+
p
0.1⇢z, 0)]| ⇠ Pois(2

p
0.1⇢z),

so P[N� \ [(x�
p
0.1⇢z, 0), (x+

p
0.1⇢z, 0)] 6= ;] = 1� e�2

p
0.1⇢z

� 1� e�0.6
p
⇢z , which gives:

P[(x, y) 2 E(S)] � 1� e�0.6
p
⇢z (33)

For i 2 N+ let eYi be the random variable defined as:

eYi := ⌫((E(eS) +Bz/10) \ [x+
i , x

+
i+1)),

where ⌫ is one dimensional Lebesgue measure on L+. In words, eYi is the random variable that is equal to how much the
interval [x+

i , x
+
i+1) contributes to AR(1-Nearest Neighbor(eS), z/10). Observe that eYi is primarily determined by the length

of [x+
i , x

+
i+1) as well as where the points of N� are located with respect to [x+

i , x
+
i+1).

eYi’s satisfy the following properties:

1. eYi is non-negative,

2. For all l 2
h
4
p
5z
5 , 2x⇤

i
: P


eYi � 2

q
z2

100 �
�
z
2 �

1
2z (l/2)

2
�2
�
� e�l�2⇢

· (1� 2e�0.6
p
⇢z),

3. For all l 2 (2x⇤,1): P
h
eYi � l � 2x⇤ + 2z

10 sin(↵
⇤)
i
� e�l�2⇢

· (1� 2e�0.6
p
⇢z),

4. eYi’s are i.i.d. .

The first property (non-negativity) is true by definition. To see the second and the third (observe similarity to (17) and (18))
consider P�!

x+
i

, P �
x+
i+1

and define P
�!

x+
i

to be all the points below P�!
x+
i

and P
 �

x+
i+1

analogously. Note that:

⌫
⇣⇣⇣

P
�!

x+
i
[ P
 �

x+
i+1

⌘
\ E(S)

⌘
+Bz/10

⌘
 eYi

Moreover:
⌫
⇣⇣⇣

P
�!

x+
i
[ P
 �

x+
i+1

⌘
\ E(S)

⌘
+Bz/10

⌘
= ⌫

⇣⇣
P
�!

x+
i
[ P
 �

x+
i+1

⌘
+Bz/10

⌘
,

as for the equality to hold it is enough for E(S) to contain an interval [(x, y), (x0, y)] ✓ P
�!

x+
i
[ P
 �

x+
i+1

that certifies

⌫
⇣⇣

P
�!

x+
i
[ P
 �

x+
i+1

⌘
+Bz/10

⌘
. This happens if (x, y), (x0, y) 2 E(S) as then [(x, y), (x0, y)] by construction. Finally

(x, y), (x0, y) 2 E(S) with probability at least 1� 2e�0.6
p
⇢z by (33) and the union bound. Properties two and three follow

by observing that ⌫
⇣⇣

P
�!

x+
i
[ P
 �

x+
i+1

⌘
+Bz/10

⌘
was already computed in (15) and (16). The last property is in turn a

consequence of the fact that the inter-arrival times of a Poisson process are i.i.d. and that the points on the “other” line are
Poisson as well and independent of the first line.

Using these properties we have that for every i 2 N+:

E[eYi] =

Z 1

0
P[eYi > t]dt

� (1� 2e�0.6
p
⇢z) ·

 Z 2z
10 sin(↵⇤)

0
e�

2

p
5z2�

p
z4�25z2t2

p
5

�2⇢dt+

Z 1

2z
10 sin(↵⇤)

e�t�2x⇤+ 2z
10 sin(↵⇤)�2⇢dt

!

= (1� 2e�0.6
p
⇢z) · e�2⇢

·

 Z 2z
10 sin(↵⇤)

0
e�

2

p
5z2�

p
z4�25z2t2

p
5 dt+

Z 1

2z
10 sin(↵⇤)

e�t�2x⇤+ 2z
10 sin(↵⇤)dt

!
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Our goal now is to show that
P(1�c0(z))m

i=1
eYi �

⇣
1 + 2✏(z)

3

⌘
· e�

4
p

5z
5 · m with high probability, where the function

c0 : R+
�! R+ will be defined later. Similarly to the standard proof of the Chernoff bound, for every s > 0:

P

2

4
(1�c0(z))mX

i=1

eYi 

✓
1 +

2✏(z)

3

◆
· e�

4
p

5z
5 ·m

3

5

= P

2

4exp

0

@�s
(1�c0(z))mX

i=1

eYi

1

A � exp
✓
�s ·

✓
1 +

2✏(z)

3

◆
· e�

4
p

5z
5 ·m

◆3

5

 E

2

4exp

0

@�s
(1�c0(z))mX

i=1

eYi

1

A

3

5 · exp
✓
s ·

✓
1 +

2✏(z)

3

◆
· e�

4
p

5z
5 ·m

◆
by Markov inequality

=

✓
E
h
exp

⇣
�seY1

⌘i
· exp

✓
s ·

1

1� c0(z)

✓
1 +

2✏(z)

3

◆
· e�

4
p

5z
5 ·m

◆◆(1�c0(z))m

as eYi’s are i.i.d. (34)

Set c0(z) := 1�
1+ 2✏(z)

3

1+ 3✏(z)
4

. Then the above becomes:

✓
E


exp
✓
s

✓
�eY1 +

✓
1 +

3✏(z)

4

◆
· e�

4
p

5z
5

◆◆�◆(1�c0(z))m

Taylor expanding the function esX we get that:

E


exp
✓
s

✓
�eY1 +

✓
1 +

3✏(z)

4

◆
· e�

4
p

5z
5

◆◆�
= 1 + s · E


�eY1 +

✓
1 +

3✏(z)

4

◆
· e�

4
p

5z
5

�
+ o(s2). (35)

We will show now that there exists a function ✏ : R+
�! R+ such that for z bigger than a constant:

E[eYi] � (1 + ✏(z)) · e�
4
p

5z
5 .

Note that it is equivalent to showing that for z bigger than a constant

max
z/10>⇢>0

(1� 2e�0.6
p
⇢z) · e�2⇢

·

 Z 2z
10 sin(↵⇤)

0
e�

2

p
5z2�

p
z4�25z2t2

p
5 dt+

Z 1

2z
10 sin(↵⇤)

e�t�2x⇤+ 2z
10 sin(↵⇤)dt

!
> e�

4
p

5z
5 .

First observe that (1� 2e�0.6
p
⇢z) · e�2⇢ can be made arbitrarily close to 1 by setting ⇢ := z�1/2. Next we lower bound the

first integral:
Z 2z

10 sin(↵⇤)

0
e�

2

p
5z2�

p
z4�25z2t2

p
5 dt

�

Z p z
5
p

5

0
e�

2

p
5z2�

p
z4�25z2t2

p
5 dt For z big enough, as sin(↵⇤) is a constant

� e�
4
p

5z
5 ·

Z p z
5
p

5

0
e�

10
p

5
4z t2dt As

2
p

5z2 �
p
z4 � 25z2t2
p
5


4
p
5z

5
+

10
p
5

4z
t2 for t  z/5

� e�
4
p

5z
5 ·

r
z

5
p
5
·

p
⇡

2
erf(1/

p

2),

thus for z big enough we get that E[eYi] � (1 + ✏(z)) · e�
4
p

5z
5 . Using (35) this implies that there exists s⇤ > 0 such that

E
h
exp

⇣
s⇤ ·

⇣
�eY1 +

⇣
1 + 3✏(z)

4

⌘
· e�

4
p

5z
5

⌘⌘i
< 1. Using (34) we get then that:

P

2

4
(1�c0(z))mX

i=1

eYi 

✓
1 +

2✏(z)

3

◆
· e�

4
p

5z
5 ·m

3

5  e�⌦z(m). (36)
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Now for i 2 [|A+|� 1] let Yi be the random variable defined as:

Yi := ⌫(((E(S) \ [x+
i , x

+
i+1)) +Bz/10) \ L�).

Notice that for all i 2 [|A+|� 1] we have Yi = eYi. Note that by Poisson tail bound we have:

P [|A+|  (1� c0(z))m]  2e
� (1+c0(z))2m2

2(m+(1+c0(z))m)  2e�⌦z(m). (37)

Combining (37) and (36) and the union bound we get that:

P

2

4
X

i2[|A+|�1]

Yi 

✓
1 +

2✏(z)

3

◆
· e�

4
p

5z
5 ·m

3

5  P

2

4(|A+|  (1� c0(z))m) _

0

@
(1�c0(z))mX

i=1

eYi 

✓
1 +

2✏(z)

3

◆
· e�

4
p

5z
5 ·m

1

A

3

5

 P[|A�|  m/2] + P

2

4
(1�c0(z))mX

i=1

eYi 

✓
1 +

2✏(z)

3

◆
· e�

4
p

5z
5 ·m

3

5

 2e�⌦z(m) + e�⌦z(m)

 Oz(1)e
�⌦z(m).

Note that we omitted the first and the last interval
⇣⇥

0, x�
1

�
and

h
x�
|A�|,m

⌘⌘
. Omitting these intervals is valid as we are

deriving a lower bound for AR(1-Nearest Neighbor(S), z/10). We conclude using the union bound over two intervals L�
and L+ to obtain:

P

AR(1-Nearest Neighbor(S), z) 

✓
1 +

2✏(z)

3

◆
· e�

4
p

5z
5

�
 Oz(1)e

�⌦z(m). (38)

Lower-bounding QC. To prove a lower-bound on the QC of 1-NN applied to this task we will use Theorem 1. This
means that we need to upper-bound:

sup
p: z/10-perturbation

PS

⇥
µ(p�1(E(1-Nearest Neighbor(S)))) � (1� �) ·AR(1-Nearest Neighbor(S), z/10)

⇤
,

where S is generated from the two independent Poisson processes as described at the beginning of the proof. By Remark 2
we can use Theorem 1 in this case.

Combining (27) and (38) we get that there exists � : R+
�! R+, which can be set to �(z) =

1+ ✏(z)
2

1+ 2✏(z)
3

, so that:

sup
p: z/10-perturbation

PS

⇥
µ(p�1(E(S))) � (1� �(z)) ·AR(1-Nearest Neighbor(S), z/10)

⇤

 Oz(1)e
�⌦z(m) +Oz(1) · e

�⌦z(m)

 Oz(1)e
�⌦z(m).

This, by Theorem 1, means that:

QC(1-Nearest Neighbor, Tintervals, 2m, z) � ⇥

✓
log

✓
0.1

Oz(1)e�⌦z(m)

◆◆

� ⇥z(m).
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C. Omitted Proofs - Quadratic Neural Network
We now present proofs of claims from Section 5. Recall that this section deals with quadratic neural nets applied to the
concentric spheres dataset.

C.1. QC lower bounds for exponentially small risk

We first use the results from Section 7 to argue that increased accuracy leads to an improved guarantee for robustness.
We analyze the QC of QNN for ✏ = 0.1, that is ✏ which is comparable with the separation between the classes. It was
experimentally shown in Gilmer et al. (2018) that increasing the sample size for QNN leads to a higher accuracy on the CS
dataset. Thus we assume that for some m 2 N the following holds:

PS⇠Dm [R(QNN(S)) 2 [�/2, 2�]] � 1� �. (39)

Let S 2 (Rd)m be such that R(QNN(S)) � �/2. We have that AR(QNN(S), ✏) = µ(E(QNN(S)) + B✏) �
µ((E(QNN(S)) \ (Sd�1

1 [ Sd�1
1.3 )) +B✏). Isoperimetric inequality for spheres states that µ((E(QNN(S)) \ (Sd�1

1 [

Sd�1
1.3 )) + B✏) is maximized when (E(QNN(S)) \ (Sd�1

1 [ Sd�1
1.3 ) is a spherical cap of Sd�1

1.3 . Using the standard
bounds on volumes of spherical caps we get that there exists a universal constant c > 0 such that if � � 2�c·d then
µ((E(QNN(S)) \ (Sd�1

1 [ Sd�1
1.3 )) +B✏) � 1/5. By (39) it implies that:

PS⇠Dm [AR(QNN(S), ✏) � 1/5] � 0.99. (40)

Moreover note that D is symmetric and thus it is natural to assume that PS⇠Dm [ALG(S)(x) 6= h(x)] only depends on kxk2.
Using (39) we bound:

Z

supp(D)
PS⇠Dm [ALG(S)(x) 6= h(x)] dµ = ES⇠Dm [R(QNN)]

 2� · PS⇠Dm [R(QNN(S))  2�] + 1 · (1� PS⇠Dm [R(QNN(S))  2�])  3�,

which, assuming that points from Sd�1
1 are misclassified equally likely as points from Sd�1

1.3 gives that 8x 2
supp(D), PS⇠Dm [ALG(S)(x) 6= h(x)]  3�. Finally we assume that there exists a universal constant C 2 R such
that 8x 2 supp(D) +B✏, PS⇠Dm [ALG(S)(x) 6= h(x)]  3 · C · �. This assumption is consistent with the experimental
results from Gilmer et al. (2018) and intuitively it states that points that are ✏ close to the supp(D) are at most C times more
likely to be misclassified as points from the supp(D).

Combining the properties and applying Theorem 4 we get: QC(QNN,CS,m, 0.1) � log
⇣

1/5
9·C·�

⌘
, provided that � � 2�c·d.

In words, if QNN has a risk of 2�⌦(k) then it is secure against ⇥(k)-bounded adversaries for ✏ = 0.1.

C.2. QC lower bounds for constant risk

We give QC lower bounds for the case where the risk achieved by the network is as large as a constant. To get started,
let us formally define the distributions and error sets that we will be concerned with. Recall that for y 2 Sd�1

1 we
define cap(y, r, ⌧) := Br \ {x 2 Rd : hx, yi � ⌧}. Let ⌧ : [0, 1] �! [0, 1] be such that for every � 2 [0, 1] we have
⌫(cap(·, 1, ⌧(�)))/⌫(Sd�1

1 ) = �, where ⌫ is a d� 1 dimensional measure on the sphere Sd�1
1 . Recall that for k 2 N+:

E�(k) = cap(e1, 1.15, ⌧(�/k)) \B1.15/1.3

E+(k) = cap(e1, 1.495, 1.3⌧(�/k)) \B1.15,

Definition 6. (Distributions on Spherical Caps)

• Cap. Let � 2 (0, 1). We define Cap(�) as a distribution on subsets of B1.15 defined by the following process: generate

y ⇠ U [Sd�1
1 ], b ⇠ U{�1, 1}. Return: cap(yi, 1.15, ⌧(�/k))\B1.15/1.3 if b = �1 and cap(y, 1.495, 1.3⌧(�/k))\B1.15

otherwise.
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• Capsi.i.d.

k . Let k 2 N+, � 2 (0, 1). We define Caps
i.i.d.
k (�) as a distribution on subsets of Rd

defined by the following

process: generate a sequence of random bits b1, . . . , bk ⇠ U{�1, 1}, generate a sequence of random vectors

y1, . . . , yk ⇠ U [Sd�1
1 ]. Return:

[

i:bi=�1

[cap(yi, 1.15, ⌧(�/k)) \B1.15/1.3] [
[

i:bi=+1

[cap(yi, 1.495, 1.3⌧(�/k)) \B1.15]

In words Caps
i.i.d.
k (�) generates k i.i.d. randomly rotated sets, each either E�(k) or E+(k).

• CapsGk . Let k 2 N+, � 2 (0, 1), G be a distribution on (Sd�1
1 )k. We define Caps

G
k (�) as a distribution on subsets of Rd

defined by the following process: generate a sequence of random bits b1, . . . , bk ⇠ U{�1, 1}, generate y1, . . . , yk ⇠ G,

generate an orthonormal matrix M ⇠ O(d). Return:

[

i:bi=�1

M(cap(yi, 1.15, ⌧(�/k)) \B1.15/1.3) [
[

i:bi=+1

M(cap(yi, 1.495, 1.3⌧(�/k)) \B1.15)

In words Caps
G
k (�) generates k randomly rotated sets, each either E�(k) or E+(k), where relative positions of normal

vectors of the sets are defined by G.

Note that definitions of Cap,Capsi.i.d.k and CapsGk are compatible in the following sense:
Observation 1. For every k 2 N+, � 2 (0, 1):

• Caps
i.i.d.
1 (�) = Cap(�) ,

• Caps
i.i.d.
k (�) = Caps

U [(Sd�1
1 )k]

k (�) .

In the following lemma we show a reduction from Capi.i.d
k to Cap. This means that we show that if there is an adversary that

uses q queries and succeeds on Capi.i.d
k then there exists an adversary that succeeds on Cap and also asks at most q queries.

The takeaway from this lemma is that the QC of Capi.i.d
k is no smaller than the QC of Cap. Formally:

Lemma 2 (Reduction from Capsi.i.d.
k to Cap). Let k 2 N+. If there exists a q-bounded adversary A that succeeds on

Caps
i.i.d.

k (0.01) with approximation constant 1/2, error probability 0.01 and ✏ = ⌧(0.01/k) then there exists a q-bounded

adversary A
0

that succeeds on Cap(0.01/k) with approximation constant
1
2k , error probability of 1� 1

3k and the same ✏.

Proof. Algorithm 1 invoked with � = 0.01 defines the protocol for A0. We will show that this protocol satisfies the statement
of the Lemma.

Algorithm 1 EMULATEIID(f,A, �, k) . f is the attacked classifier
. A is an adversary for distribution Capi.i.d.

k (�)

1: y1, . . . , yk�1 ⇠ U [Sd�1
1 ]

2: b, b1, . . . , bk�1 ⇠ U{�1, 1}
3: for i = 1, . . . , k-1 do

4: Ci :=

(
cap(yi, 1.15, ⌧(�/k)) \B1.15/1.3 if bi = �1
cap(yi, 1.4, 1.3⌧(�/k)) \B1.15 if bi = +1

5: end for

6: p := Simulate A, to query x answer

8
><

>:

f(x) if (x 2 C1) _ · · · _ (x 2 Ck�1) = False
+1 if (x 2 C1) _ · · · _ (x 2 Ck�1) = True and kxk2  1.15

�1 if (x 2 C1) _ · · · _ (x 2 Ck�1) = True and kxk2 > 1.15
7: Return p

At the first sight it might seem that the protocol for A0 uses kq queries. But due to the fact that k � 1 caps were added
artificially the answer to (k � 1)q of those queries is known to A

0 beforehand. This gives us that A0 is q-bounded as every
query of A0 corresponds to a query of A.
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For simplicity we will refer to Ci’s and C as caps even though they formally are caps with a ball carved out of them. Let
C ✓ Rd be the hidden cap that was generated from Cap. Observe that:

C [
k�1[

i=1

Ci

is distributed according to Capi.i.d.
k , as C1, . . . , Ck�1 are i.i.d. uniformly random spherical caps, C is a random spherical cap.

Thus by the guarantee for A we know that with probability at least 0.99:

µ

 
p�1

 
C [

k�1[

i=1

Ci

!!
�

1

2
· µ

  
C [

k�1[

i=1

Ci

!
+B✏

!

As C,C1, . . . , Ck are indistinguishable from the point of view of A we get that with probability at least 0.99/k:

µ
�
p�1(C)

�
�

1

2k
· µ

  
C [

k�1[

i=1

Ci

!
+B✏

!
,

where µ
⇣⇣

C [
Sk�1

i=1 Ci

⌘
+B✏

⌘
� 1/4 with probability 1 � 2�k as with this probability there is a cap among

C,C1, . . . , Ck�1 that is of the form textcap(yi, 1.15, ⌧(�/k)). Then textcap(yi, 1.15, ⌧(�/k)) + Be covers 1/4 of the
mass of µ. Thus by the union bound we get that with probability at least 0.99/k � 2�k

� 1/3k:

µ
�
p�1(C)

�
�

1

8k
,

which is equivalent to A
0 succeeding on Cap(0.01/k) with approximation constant of 1

2k , error probability of at most 1� 1
3k

for the same ✏.

In the next lemma we generalize Lemma 2 to more complex distributions. More formally we show that if there is an
adversary that uses q queries and succeeds on CapG

k then there exists an adversary that succeeds on Cap and asks at most kq
queries. Formally:

Lemma 3 (Reduction from CapsGk to Cap). Let k 2 N+ and let G be any distribution on (Sd�1
1 )k. If there exists

a q-bounded adversary A that succeeds on Caps
G
k (0.01) with approximation constant 1/2, error probability 0.01 and

✏ = ⌧(0.01/k) then there exists a kq-bounded adversary A
0

that succeeds on Cap(0.01/k) with approximation constant
1
2k ,

error probability 0.76 and the same ✏.

Proof. Algorithm 2 defines the protocol for A0. We will show that this protocol satisfies the statement of the lemma.



Query Complexity of Adversarial Attacks

Algorithm 2 EMULATEGENERAL(f,A,G, k) . f is the attacked classifier
. A is an adversary for distribution CapGk (0.01)

1: T (x) :=

(
1.3 · x if kxk2  1.15

x/1.3 if kxk2 > 1.15

2: (y1, . . . , yk) ⇠ G

3: for i = 1, . . . , k do
4: Ri := rotation such that Ri(e1) = yi . Any rotation satisfying the condition is valid
5: end for
6: M ⇠ O(d)
7: b1, . . . , bk ⇠ U{�1, 1}
8: for i = 1, . . . , k do

9: Ti :=

(
T if bi = �1
Id if bi = +1

10: end for
11: for i = 1, . . . , k do
12: erri := (f(M(Ri(Ti(x))) = �1 ^ kTi(x)k2 > 1.15) _ (f(M(Ri(Ti(x))) = +1 ^ kTi(x)k2  1.15)
13: end for
14: err :=

W
i2[k] erri

15: p := Simulate A, to x answer

8
>>><

>>>:

+1 if kxk2  1.15 ^ (err = True)
�1 if kxk2  1.15 ^ (err = False)
�1 if kxk2 > 1.15 ^ (err = True)
+1 if kxk2 > 1.15 ^ (err = False)

16: for i = 1, . . . , k do
17: pi := T�1

i �R�1
i �M

�1
� p �M �Ri � Ti

18: end for
19: Return p0 := 1

k

Pk
i=1 pi

���
Sd�1
1

+ Id
���
Sd�1
1.3

. understood as a linear combination of transport maps

First observe that A0 asks at most kq queries as every query of A is multiplied k times (see line 2 of Algorithm 2). Observe
that p0 is a well defined ✏-perturbation as all pi’s are ✏-perturbations when restricted to Sd�1

1 . It follows from the fact that all
pi’s are of the form F�1

� p � F where F is a composition of an isometry and either T or the identity. This implies that for
all x 2 Sd�1

1 we have kx� F�1
� p � F (x)k2  ✏. Let C be the hidden spherical cap. Observe that:

k[

i=1

M(Ri(Ti(C)))

is distributed according to CapGk , as the relative positions of normal vectors of M(R1(C)),M(R2(C)), . . . ,M(Rk(C)) are
distributed according to the process: generate (y01, . . . , y

0
k) ⇠ G, M 0

⇠ O(d), return M 0((y01, . . . , y
0
k)). Thus by the fact

that A succeeds with ↵ = 1/2 we know that with probability at least 0.99:

µ

 
p�1

 
k[

i=1

M(Ri(Ti(C)))

!!
�

1

2
· µ

  
k[

i=1

M(Ri(Ti(C)))

!
+B✏

!
.

If C ✓ B1.5 then:

µ

0

@
 
1

k

kX

i=1

pi

!�1

(C)

1

A =
1

k

kX

i=1

µ
�
p�1(M(Ri(Ti(C))))

�
�

1

k
· µ

 
p�1

 
k[

i=1

M(Ri(Ti(C)))

!!

Combining the two bounds we get that if C ✓ B1.5 then with probability at least 0.99:

µ
�
p0�1(C)

�
�

1

2k
· µ

  
k[

i=1

M(Ri(Ti(C)))

!
+B✏

!
(41)



Query Complexity of Adversarial Attacks

We note that with probability at least (1�2�k)·1/2 we have that C ✓ B1.5 and there exists i0 2 [k] such that Ti0(C) ✓ B1.5

as the two events are independent. This means that with probability at least 1/4:

µ

  
k[

i=1

M(Ri(Ti(C)))

!
+B✏

!
� 1/4, (42)

as µ(M(Ri0(Ti0(C))) + B✏) = µ(Sd�1
1 )/2. Combining (41) and (42) and using the union bound we get that with

probability of at least 0.24:

µ(p0�1(C)) �
1

8k
,

which is equivalent to A
0 succeeding on Cap(0.01/k) with approximation constant of at least 1

2k , error probability of at
most 0.76 for the same ✏.

The following tail bound will be useful.
Lemma 4. Let X be a zero-mean Gaussian with variance �2

. Then for every t � 0:

1
p
2⇡

·

✓
1

t
�

1

t3

◆
· e�t2/2

 PX⇠N (0,�2)[X � � · t] 
1
p
2⇡

·
1

t
· e�t2/2

In Lemma 2 and Lemma 3 we showed that the QC of Capi.i.d.
k and CapG

k can be lower-bounded in terms of the QC of Cap.
We now show an upper bound ⇥(d) for the the QC of Cap. Further, we give the proof for a lower bound of ⇥(d) for
Cap(0.01). The summary of these results is presented in Table 1.

The upper-bound for Cap, that we are going to show, holds even if we restrict the adversary to be non-adaptive. I.e., the
bound holds even if we require the adversary to declare the set of queries up front.
Definition 7 (Non-adaptive query-bounded adversary). For ✏ 2 R�0 and f : Rd

�! {�1, 1} a q-bounded adversary

with parameter ✏ is a deterministic algorithm A that asks at most q 2 N non-adaptive queries of the form f(x)
?
= 1 and

outputs an ✏-perturbation A(f) : Rd
�! Rd

.

Lemma 5 (Upper bound for Cap). For every d bigger than an absolute constant there exists a non-adaptive ⇥(d)-bounded

adversary A that succeeds on Cap(0.01) with approximation constant 1/2, error probability 0.01 for ✏ = ⌧(0.01). Moreover

A can be implemented in O(d2) time.

Proof. We will first show that there exists a randomized A that satisfies the statement of the Lemma. This adversary uses
Algorithm 3 invoked with s = ⇥(d) as its protocol. Later we will show how to derandomize the protocol. The adversary we
design is more produces adversarial examples only on the support of D. This makes the goal of the adversary harder to
achieve.

Algorithm 3 CAPADVERSARYRANDOMIZED(f, s, ✏) . f is the classifier, s is the number of sampled points per sphere
. ✏ is the bound on allowed perturbations

1: Q� :=
�
x�
1 , . . . , x

�
s

 
, where x�

i ’s are i.i.d. ⇠ U [Sd�1
1 ]

2: Q+ :=
�
x+
1 , . . . , x

+
s

 
, where x+

i ’s are i.i.d. ⇠ U [Sd�1
1.3 ]

3: R := {x 2 Q� : f(x) = +1} [ {x 2 Q+ : f(x) = �1}
4: v := 1/|R| ·

P
x2R x

5: p(x) :=

(
argsupx02Sd�1

1 ,kx�x0k2✏ hx
0
� x, vi if x 2 Sd�1

1

argsupx02Sd
1.3,kx�x0k2✏ hx

0
� x, vi if x 2 Sd�1

1.3

6: Return p

Randomized algorithm. First notice that A is non-adaptive. The queries asked by A are from Q�
[ Q+ which were

generated (see lines 3 and 3) before any queries were asked and, hence, answered were received. Note further that A is ⇥(d)
bounded as she asks 2 · s = ⇥(d) queries.
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Run time. We first remark that A can be implemented in O(d2) time as the run time is dominated by asking ⇥(d) queries
and each vector is in Rd. Formally, p is not returned explicitly but one can imagine that A, after preprocessing that takes
O(d2) time, provides oracle access to p where each evaluation takes time O(d).

Now we prove that A succeeds with probability 0.99 with approximation constant 1/2. Let E be the hidden spherical
cap that contains all errors of 1-NN and let u 2 Sd�1

1 be its normal vector. First assume that E ✓ Sd�1
1 . We start by

lower-bounding |R|. For every i 2 [s] let Y �
i be a random variable which is equal to 1 if x�

i 2 E and 0 otherwise. Then, by
the Chernoff bound, we have that for every � < 1:

P
"�����

sX

i=1

Y �
i � E

"
sX

i=1

Y �
i

#����� > � · E
"

sX

i=1

Y �
i

##
 2e�

�2

3 E[
Ps

i=1 Y �
i ], (43)

Noticing that E
⇥Ps

i=1 Y
�
i

⇤
= s · 0.01 if we set � = 1/2 we get that:

P
"�����

sX

i=1

Y �
i � s/100

����� > s/200

#
 2e�

�2

3 ·s/100 = 2e�s/1200.

So with probability at least 1� 2e�s/1200 we have that:

|R| � s/200. (44)

Now assume R = {z1, . . . , zk} and observe that for every z 2 R we have hz, ui � ⌧(0.01) and note that zi’s are i.i.d.
uniformly distributed on cap(u, 1, ⌧(0.01)). We will model U [Sd�1

1 ] as N (0, 1/d)d. Then we have that:

hu, vi =
1

k

*
u,

kX

i=1

zi

+

=
1

k

kX

i=1

hu, zii

� ⌧(0.01) as zi 2 R

� 2.2/
p

d by Lemma 4 (45)

Moreover if ⇧ is the orthogonal projection onto u? then ⇧(k · v) ⇠ N (0, k/d)d�1 and ⇧(v) ⇠ N (0, 1/(dk))d�1 thus:

k⇧(v)k22 ⇠
1

dk
· �2(d� 1)

So, using standard tail bounds for �2 distribution, we get that for all t 2 (0, 1):

P
����

dk

d� 1
· k⇧(v)k22 � 1

���� � t

�
 2e�(d�1)t2/8 (46)

Moreover observe:
⌧
u,

v

kvk2

�
=

hu, vip
hu, vi2 + k⇧(v)k22

=
1p

1 + k⇧(v)k22/hu, vi
2

�
1q

1 + d
2.22 · k⇧(v)k22

by (45) (47)

Observe that if ^(u, v/kvk2) = 0 then µ(p�1(cap(u, 1, ⌧(0.01)))) � 1/5, as the preimage is exactly (cap(u, 1, ⌧(0.01)) +
Be) \ Sd�1

1 . Moreover µ(p�1(cap(u, 1, ⌧(0.01)))) is a continuous function of ^(u, v/kvk2). Observe that in a coordinate
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system where the first basis vector is v/kvk2 we have p(µ|Sd�1
1

) ⇡ (N (⌧(0.01), 1/d),N (0, 1/d), . . . ,N (0, 1/d)). Assume
^(u, v/kvk2) = ↵. We bound:

µ(p�1(cap(u, 1, ⌧(0.01))))

=

Z +1

�1

Z +1

⌧(0.01)�x1 cos(↵)
sin(↵)

d/2⇡ · e�
d
2 ((x1�⌧(0.01))2+x2

2) dx2 dx1

�

Z +1

�1

Z +1

2.4/
p

d�x1 cos(↵)
sin(↵)

d/2⇡ · e�
d
2 ((x1�2.2/

p
d)2+x2

2) dx2 dx1 by Lemma 4

=

Z +1

�1

Z +1

2.4�x0
1 cos(↵)

sin(↵)

1/2⇡ · e�
1
2 ((x

0
1�2.2)2+x02

2 ) dx0
2 dx

0
1 x0

1 = x1 ·
p

d, x0
2 = x2 ·

p

d

This means that there exists ↵ 2 (0,⇡/2] (independent of d) such that for all v such that ^(u, v/kvk2)  ↵ we have
µ(p�1(cap(u, 1, ⌧(0.01)))) � 1/6. Thus by (47) we get that there exists ⇠ > 0 such that if k⇧(v)k22  ⇠/d then
^(u, v/kvk2)  ↵ and in turn µ(p�1(cap(u, 1, ⌧(0.01)))) � 1/6.

Setting k := 2d
⇠ , t := 1/2 in (46) we get that with probability at least 1� e�(d�1)/32 we have:

k⇧(v)k22  ⇠/d,

which in turn means that with probability at least 1� e�(d�1)/32:

µ(p�1(cap(u, 1, ⌧(0.01)))) � 1/6. (48)

Now combining (44), (48) and the union bound we get that if we set s := 400d
⇠ then with probability at least 1� 2e�s/200

�

e�(d�1)/32 = 1� 2e�2d/⇠
� e�(d�1)/32 we have:

µ(p�1(cap(u, 1, ⌧(0.01)))) � 1/6. (49)

This probability is bigger than 0.99 if d is bigger than an absolute constant that depends on ⇠. Observing that µ(E +B✏) �
1/5 we conclude that if E ✓ Sd�1

1 then if s = ⇥(d) then with probability 0.99 A succeeds on Cap with approximation
constant at least 1/2. To finish the proof one notices that the case E ✓ Sd�1

1.3 is analogous. The final constant hidden under
⇥(d) for the number of samples is a maximum of constants for Sd�1

1 and Sd�1
1.3 .

Deterministic algorithm. We know show how to derandomize Algorithm 3 to design an adversary Adet. We observe
that in Algorithm 3 randomness was used only to generate query points Q�, Q+. Instead of generating the query points
randomly we use fixed sets. We define the deterministic adversary, Adet, as:

Adet := CAPADVERSARYDETERMINISTIC(·, Q�, Q+),

for fixed (for a given d) sets Q�, Q+ that we define next.

Algorithm 4 CAPADVERSARYDETERMINISTIC(f,Q�, Q+, ✏)
. f is the classifier, Q�, Q+ are query points on Sd�1

1 , Sd�1
1.3 respectively

. ✏ is the bound on allowed perturbations
1: R := {x 2 Q� : f(x) = +1} [ {x 2 Q+ : f(x) = �1}
2: v := 1/|R| ·

P
x2R x

3: p(x) :=

(
argsupx02Sd�1

1 ,kx�x0k2✏ hx
0
� x, vi if x 2 Sd�1

1

argsupx02Sd
1.3,kx�x0k2✏ hx

0
� x, vi if x 2 Sd�1

1.3

4: Return p

For u 2 Sd�1
1 let:

fu(x) :=

(
�1 if x 2 Sd�1

1 \ cap(u, 1, ⌧(0.01)
+1 otherwise

.
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We say that an adversary succeeds on fu if she, run for fu, returns p such that µ(p�1(cap(u, 1, ⌧(0.01)))) � 1/8. From
(49) we know that for every d 2 N+, for every u 2 Sd�1

1 :

Px�
1 ,...,x�

400d/⇠
⇠U[Sd�1

1 ] [A(fu, 400d/⇠, ✏) succeeds] � 1� 2e�2d/⇠
� e�(d�1)/32

Thus we get that for every d 2 N+ that:

Pu,x�
1 ,...,x�

400d/⇠
⇠U[Sd�1

1 ] [A(fu, 400d/⇠, ✏) succeeds] � 1� 2e�2d/⇠
� e�(d�1)/32

And finally, this means that for every d 2 N+ there exists Q�
d ✓ Sd�1

1 , |Q�
d | = 400d/⇠ such that:

Pu⇠U[Sd�1
1 ]

⇥
Adet(fu, Q

�
d , ;, ✏) succeeds

⇤
� 1� 2e�2d/⇠

� e�(d�1)/32

Thus, for d bigger than an absolute constant we get that conditioned on E ✓ Sd�1
1 Adet run with Q� = Q�

d succeeds with
probability at least 0.99 and asks |Q�

d | = ⇥(d) queries. Analogous argument shows that for every d 2 N+ there exists
Q+

d ✓ Sd�1
1.3 , |Q+

d | = ⇥(d) such that the following holds. For every d bigger than an absolute constant conditioned on
E ✓ Sd�1

1.3 Adet run with Q+ = Q+
d succeeds with probability at least 0.99. Combining these two results we get that Adet

satisfies statement of the lemma.

Remark 3. As we have seen in the proof of Lemma 5 it was more natural to design an adversary that was randomized. We

believe that allowing the adversary to use randomness would not change the results in a fundamental way.

Lemma 1 (Lower bound for Cap). There exists � > 0 such that if a q-bounded adversary A succeeds on Cap(0.01) with

approximation constant � 1� �, error probability 2/3 for ✏ = ⌧(0.01). Then

q � ⇥(d).

Proof. To simplify computations we will sometimes approximate the uniform distribution on Sd�1
1 as a d-dimensional

normal distribution: N
�
0, 1

d

�
. This change is valid as the norm of N

�
0, 1

d

�d is closely concentrated around 1.

Lower-bounding QC. A succeeds on Cap(0.01) with probability at least 1/3 this means that if succeeds with probability
at least 1/3 on either Cap(0.01) conditioned on the error set intersecting Sd�1

1 or Cap(0.01) conditioned on the error set
intersecting Sd�1

1.3 . We first prove the result in the first case.

To use Theorem 1 we think that there is an algorithm ALG for which the distribution of errors coincides with
Cap(0.01) conditioned on the error set intersecting Sd�1

1 . Let’s call this distribution Cap0(0.01). Note that by defini-
tion AR(ALG(S), ✏) = 1/2. Thus we analyze:

sup
p: ✏-perturbation

PS⇠Dm

⇥
µ(p�1(E(ALG(S)))) � (1� �) ·AR(ALG(S), ✏)

⇤

= sup
p: ✏-perturbation

PE⇠Cap0(0.01)


µ(p�1(E)) �

1� �

2

�
, (50)

for a constant � that will be fixed later. Let p be an ✏-perturbation and y 2 Sd�1
1 be such that µ(p�1(cap(y, 1.15, ⌧(0.01)) \

B1.15/1.3)) �
1��
2 . We will show that for every x 2 Sd�1

1 if ^(y, x) 2
⇥
49⇡
100 ,

51⇡
100

⇤
then µ(p�1(cap(x, 1.15, ⌧(0.01)) \

B1.15/1.3)) <
1��
2 . This will conclude the proof as then:

PE⇠Cap0(0.01)


µ(p�1(E)) �

1� �

2

�
 2 · µ

✓
cap

✓
·, 1, arccos

✓
49⇡

100

◆◆◆

 2�⌦(d) By Lemma 4

combined with (50) and Theorem 1 gives the result.

Now let x 2 Sd�1
1 be such that ^(y, x) 2

⇥
49⇡
100 ,

51⇡
100

⇤
. To simplify notation let Cx := cap(x, 1.15, ⌧(0.01)) \

B1.15/1.3, Cy := cap(y, 1.15, ⌧(0.01)) \B1.15/1.3. Now define:

I :=
�
z 2 Sd�1

1

�� d(z, Cy)  ✏ ^ d(z, Cx)  ✏ ^ d(z, Cx \ Cy) > ✏
 

,
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where d denotes the `2 distance between sets. By Lemma 4 we have:

2.2/
p

d  ⌧(0.01)  2.4/
p

d (51)

Now observe that:

I ◆

⇢
z 2 Sd�1

1

���� hz, yi � 0 ^ hz, xi � 0 ^

⌧
z,

x+ y

kx+ yk2

�
<

2.2
p
d · cos(^(y, x)/2)

�
2.4
p
d

�

◆

⇢
z 2 Sd�1

1

���� hz, yi � 0 ^ hz, xi � 0 ^

⌧
z,

x+ y

kx+ yk2

�
<

1

20
p
d

�
=: bI (52)

where in the first transition we used (51) and in the second transition we used that ^(y, x) 2
⇥
49⇡
100 ,

51⇡
100

⇤
. Note that µ

⇣
bI
⌘

is

minimized for ^(y, x) = 51⇡
100 . Thus:

µ
⇣
bI
⌘

�

Z 1

0

Z 1

tan(⇡/100)·x1

d/2⇡ · e�
d
2 (x

2
1+x2

2) · 1


x1 cos

✓
51⇡

200

◆
+ x2 sin

✓
51⇡

200

◆
<

1

20
p
d

�
dx2 dx1

=

Z 1

0

Z 1

tan(⇡/100)·x1

1/2⇡ · e�
1
2 (x

2
1+x2

2) · 1


x1 cos

✓
51⇡

200

◆
+ x2 sin

✓
51⇡

200

◆
<

1

20

�
dx2 dx1, (53)

where the first equality comes from integration by substitution. The integral from (53) is positive, which means that
there exists � > 0 such that µ(bI) > �. Combining that with (52) we get that µ(I) > �. Observe that by definition
of I for every z 2 I we have that at most one of p(z) 2 Cx, p(z) 2 Cy can be true. Thus, using the fact that
µ(Cx +B✏) = µ(Cy +B✏) = 1/2, we get that:

min(µ(p�1(Cx)), µ(p
�1(Cy))) < 1/2� �/2. (54)

This ends the proof as by assumption we know that µ(p�1(Cy)) � 1/2 � �/2, so by (54) we get that µ(p�1(Cx)) <
1/2� �/2. The proof for the other case is analogous.

Note that Lemma 1 is equivalent to the statement of Conjecture 1 for k = 1.

Conjecture 1 (Cap conjecture). For every k 2 [d] if a q-bounded adversary A succeeds on Cap(0.01/k) with approxima-

tion constant �
1
2k , error probability  1� 1

3k for ✏ such that cap(·, 1, ⌧(0.01/k)) +B✏ = cap(·, 1, 0). Then

q � ⇥(d).
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D. Figures
In Figure 2, similar to Figure 1, we present visualizations of decision boundaries for 1-NN. Each subfigure represents a
random decision boundary for a different sample S ⇠ D

m. The aim of these visualizations is to give an intuition for why
Theorem 2 is true.

Figure 2. Random decision boundaries of 1-NN for Tintervals.


