
Spectral Normalization for Deep Reinforcement Learning: an Optimisation Perspective

A. Methods
A.1. Computing the spectral norm

Power Iteration. Computing the dominant singular value
at each step would be expensive, therefore spectral nor-
malisation is usually performed through power iteration.
For each set of weights Wi ∈ RNi×Ni−1 : i ∈ S the
corresponding left and right singular vectors are stored,
and two extra matrix-vector multiplications for each nor-
malised layer are performed at each forward pass (see For-
mulas 17, 18). At inference time there is no extra computa-
tional cost.

v←Wiu
(t−1); α← ‖v‖; v(t) ← α−1v (17)

u←Wᵀ
i v

(t); ρ← ‖u‖; u(t) ← ρ−1u (18)

For convolutional layers we adapt the procedure in (Gouk
et al., 2020) and the two matrix-vector multiplications are
replaced by convolutional and transposed convolutional op-
erations.

Backpropagating through the norm. Since the parame-
ters that are tuned during optimisation are the unnormalised
weights Wi, we investigated if there are any advantages in
backpropagating through the power iteration step, i.e. con-
sidering the partial derivative ∂Ŵi

∂ρi

∂ρi
∂Wi

when computing the
gradient. Precisely, we verified if dropping the second term
in the right-hand side of Formula 19 biases the gradient.

∂L
∂Wi

= ρ−1i
∂L
∂Ŵi

− ρ−2i uvᵀ

(
vec

(
∂L
∂Ŵi

)
vec (Wi)

)
(19)

In a batch of experiments performed on a subset of games
of Atari we noticed no loss in performance when dropping
the Jacobian from the power iteration.

A.2. Computing the norm of the Jacobians

Experiments in Sec. 5.2 used the maximum norm of the jaco-
bians w.r.t. the inputs as an indirect metric for network func-
tion’s smoothness. For each network we collected thousands
of states (on-policy), computing the maximum euclidean
norm of the jacobian w.r.t. the inputs: maxi,x ||∂qi(x;θ)∂x ||2.
Note that we used the euclidean norm (and not the operator
norm) to measure smoothness.

Spectral Normalization for Deep Reinforcement Learning: an Optimisation Perspective

B. MinAtar experiments
Game selection. MinAtar (Young & Tian, 2019) bench-
mark is a collection of five games that reproduce the dy-
namics of Arcade Learning Environment (ALE) counter-
parts, albeit in a smaller observational space. Out of As-
terix, Breakout, Seaquest, Space Invaders and Freeway we
excluded the latter from all our experiments since all the
agents performed essentially the same on this game.

Network architecture. All experiments on MinAtar are
using a convolutional network with LC convolutional layers
with the same number of channels, a hidden linear layer,
and the output layer. The number of input channels is game-
dependent in MinAtar. All convolutional layers have a
kernel size of 3 and a stride of 1. All hidden layers have
rectified linear units. Whenever we vary depth we change
the number of convolutional layers LC , keeping the two
linear layers. When the width is varied we change the width
of both convolutional layers (e.g. 16/24/32 channels) and
the penultimate linear layer. All convolutional layers are
always identically scaled.

We list all the architectures used in various experiments
described in this section in Table 6.

General hyper-parameter settings. In all our MinAtar
experiments we used the same set of hyper-parameters re-
turned by a small grid search around the initial values pub-
lished by (Young & Tian, 2019). We list the values we
settled on in Table 2. For the rest of this section we only
mention how we deviate from this set of hyper-parameters
and settings for each of the experiments that follow.

HYPER-PARAMETER VALUE

discount γ 0.99
update frequency 4
target update frequency 4,000

starting ε 1.0
final ε 0.01
ε steps 250,000
ε schedule linear
warmup steps 5,000

replay size 100,000
history length 1

cost function MSE LOSS
optimiser ADAM
learning rate η 0.00025
damping term ε 0.0003125
β1, β2 (0.9, 0.999)

validation steps 125000
validation ε 0.001

Table 2: MinAtar general hyper-parameter settings.

MinAtar Normalised Score. In our work we present
many MinAtar experiments as averages over the four games
we tested on. Since in MinAtar the range of the expected
returns is game dependent we normalise the score. In-
spired by the Human Normalised Score in (Mnih et al.,
2015) we take the largest score ever recorded by a baseline
agent in our experiments and use it to compute MNS =
100 × (scoreagent − scorerandom)/(scoremax − scorerandom).
We can then use the resulting MinAtar Normalised Score
whenever we need to report performance aggregates over
the games.

GAME MAX RANDOM

Asterix 78.90 0.49
Breakout 122.88 0.52
Seaquest 93.91 0.09
Space Invaders 360.92 2.86

Table 3: MinAtar maximum and random scores used for computing
the MinAtar Normalised Score.

B.1. Large optimiser hyper-parameter sweep

For the large optimiser hyper-parameter sweep we train
a DQN agent with six different architectures as listed in
Table 6. For each architecture we then trained on all com-
binations of optimisation hyper-parameters (from the lists
below), both normalised and baseline agents, two seeds each.
We generated values for the learning rate using a geometric
progression in the following ranges:

Optimiser Hyper-parameters

ADAM
η: {0.00001, ..., 0.00215}
ε: {0.00001, ..., 0.01}

RMSPROP

η: {0.00001, ..., 0.001}
ε: {0.00001, ..., 0.0316}
α ∈ {0.95}
centered: yes

ADAM η: {0.00001, ..., 0.001}

Table 4: Hyper-parameters ranges for the large optimiser sweep.

Figure 8 illustrates our findings. In the case of Adam op-
timiser we can see that normalising one layer does not de-
grade the performance of the baseline and allows for larger
learning rates. A similar observation can be made for RM-
Sprop and exploring learning rates larges than 0.001 should
clarify to what degree the trend already visibile continues.

Figure 9 is a different visualisation of the same results.
Here we sort the x-axis by the mean normalised score of
an optimiser configuration for the DQN agents equipped
with SN and plot both the performance of the baseline and

Spectral Normalization for Deep Reinforcement Learning: an Optimisation Perspective

Figure 8: Spectral Normalisation increases the range of effective optimisation settings. Each configuration is used to train 6 models
of different depth and width on four MinAtar games, two seeds each. Dots represent the average maximum normalised score over the four
games.

Figure 9: Spectral Normalisation improves on the baseline on a wide range of optimisation settings. Each optimisation setting
is used to train 6 models of different depths and widths on four MinAtar games, two seeds each. Dots represent the average MinAtar
Normalised Score achieved over four games. We sort by the mean performance of the SN experiment and show the baseline stays mostly
under this curve in the region of high performance optimiser configurations.

the normalised experiments. We show that the performance
of the normalised agent generally outperforms the baseline,
especially in the right half of the plot corresponding with
higher performance agents.

B.2. Effect on model capacity

For understanding the effect of SN on model capacity we
train DQN agents with 12 different model sizes of three
different depths and four different widths. We apply SN on
various layer subsets and report in Figure 12 the MinAtar
Normalised Score averaged over the four games. All the
other parameters remain the same as described at the be-
ginning of this section. Each resulting game-architecture
combination was trained on 10 seeds.

B.3. Smoothness and performance are weakly
correlated

In Figure 14 we plot the peak performance and the norm
of the Jacobian for each of the seeds in the experiment we
discuss in Section B.3 instead of averages.

Computing a correlation measure for all the normalisation
schemes in the experiment is complicated by the fact that
any selection we make affects the correlation we want to
measure. Limiting ourselves to just the baseline and DQN[-
2], the normalisation scheme we have shown repeatedly that
it does not hurt performance, we computed the Spearman
rank-order correlation we report in Table 5.

Spectral Normalization for Deep Reinforcement Learning: an Optimisation Perspective

Figure 14: Applying SN on a layer subset does not consistently
produce smoother networks. Often normalising a subset of the
network’s layers makes the network less smooth than the base-
line while performance improves still. Each point in the graph
represents the maximum performance achieved by a single seed.
Detailed view of Fig. 5

.

GAME SPEARMAN RANK

Asterix -0.129
Breakout -0.199
Seaquest -0.151
Space Invaders -0.453

Table 5: Correlation between the norm of the Jacobian and peak
performance for each game.

B.4. Other regularisation methods

As briefly touched upon in Section 5.2, we investigated
whether other regularisation methods imposing smoothness
constraints can have similar effects on the agent’s perfor-
mance. To this end we ran experiments with both Gradient
Penalty (GP) and Batch Normalisation (BN) on several ar-
chitectures (Table 6).

Batch Normalisation. For each of the architectures we
employed Batch Normalisation (BN) after the ReLU ac-
tivation of every convolutional or linear layer except the
output.

Gradient Penalty. We did extensive experimentation and
penalty coefficient tuning for Gradient Penalty regularisa-
tion. Specifically we tried penalising the norm of the sum
of the gradients of all actions (the way GP is usually imple-

Figure 16: Regularization does not recover Spectral Normal-
ization performance. Performance on MinAtar games of SN, GP
and BN. Each line is an average over normalized scores of each
game. Ten seeds for each configuration.

mented in other domains), regularising the expected norm of
each Q-value with respect to the state and also regularising
the norm of the gradient of the Q-value associated with the
optimal action. In all cases we swept through a wide range
of penalty coefficients λ with various degree of success. In
Figure 16 we report the results of the best setting we could
identify.

Relaxations to 1-Lipschitz normalisation. We run a
small experiment with a three layer network to inves-
tigate the relaxation introduced by (Gouk et al., 2020):
Ŵi = Wi/max(λi, ‖Wi‖2). Figure 10 shows that for
increased λi values (which we keep equal for every layer)
we are able to get good performance even when normalising
all the layers of the network, further confirming our initial
observation that controlling the amount of regularisation is
important to achieving optimal performance and that achiev-
ing 1-Lipschitz functions is not critical in this setup. The
increased computation required when approximating ρ for
all the layers and the addition of one hyper-parameter per
layer determined us to not pursue this setup further.

Figure 10: Relaxing the 1-Lipschitz condition recovers the
performance for fully normalised networks. Average MinAtar
Normalised Score of SN with different target Lipschitz constants.
Each line is an average over normalised scores of 4 games × 10
seeds.

Spectral Normalization for Deep Reinforcement Learning: an Optimisation Perspective

B.5. Adaptability to changing dynamics

We noticed that in most experiments on MinAtar the DQN
agent reaches its peak performance within the standard 5M
steps and then it plateaus. Most of these training curves end
in flat performance regimes. In contrast, when SN is used
on a single hidden layer, not only that agents surpass the
baseline performance, but they also show continuous im-
provement with no signs of plateauing. We therefore asked
what happens if we extend the training period and trained
agents for 15M steps. As anticipated, our long training ex-
periments show that SN agents show steep learning curves
even after large numbers of steps (Fig. 11), supporting our
claim that SN yields a better adapting optimiser.

B.6. Spectral Schedulers

For the experiments with the schedulers proposed in Sec. 5.4
we used the four estimator architectures in Table 6. We
detail the MinAtar Normalised Score for various subsets
of layers considered in the comparison in Figure 18. In a
single subplot the lines represent the performance of the
baseline, SN, and spectral schedulers, all using the same
spectral radii. Observe that DIVOUT has a close behaviour
to that of SN not only on average, but also on a case base. In
contrast, the MULEPS and DIVGRAD optimisers converge
even when all hidden layers are normalised.

Experiment No of
conv layers

Conv
width

FC
width

Large optimisation
sweep (B.1)

1
2
3
4
2
3

24
24
24
24
32
32

128
128
128
128
256
256

Regularisation (B.4)

1
3
1
3
1
3

16
16
24
24
32
32

64
64

128
128
256
256

Spectral schedulers (B.6)
and long training run (B.5)

1
2
1
2

24
24
32
32

128
128
256
256

Table 6: Architecture sets used in the experiments described in this
section.

Spectral Normalization for Deep Reinforcement Learning: an Optimisation Perspective

Figure 12: Spectral Normalization shows gains for all model sizes. Looking at the baseline (DQN), we observe two performance
regimes on MinAtar: for shallow, depth 3 models, performance increases with the width of the model; for deeper models performance
generally stagnates with increasing depth and width. In both regimes applying SN on individual (,) or multiple () layers improves
upon the baseline suggesting a regularisation effect we could not reproduce with other regularisation methods. Notice that the strong
regularisation resulted from applying SN to input layers () or too many layers () can however degrade performance. Each line is an
average over normalized scores of 4 games × 10 seeds. Detailed view of Fig. 4.

Figure 11: Performance curves of DQN agents using four different architectures trained for 15M steps. This plot shows that baseline
plateaus, while spectrally normalised variants generally don’t. See Fig. 13 for plots of the spectral radii for the same experiments.

Spectral Normalization for Deep Reinforcement Learning: an Optimisation Perspective

Figure 13: All spectral radii for the 15M experiment on MinAtar using a 4-layer architecture (conv=24-24,fc=128). Colors code the
subsets of layers that are normalised (consistent with the rest of the document), while line styles code the four layers. Note how the
penultimate layer has the largest spectral norm across all normalisation variants. 10 seeds.

Spectral Normalization for Deep Reinforcement Learning: an Optimisation Perspective

Figure 18: MinAtar Normalised Scored for the four architectures in Table 6 and various subsets of layers whose spectral radii are used for
SN or spectral schedulers. Notice that DIVOUT behaves similarly to SN (even when they fail to train), while MULEPS and DIVGRAD
converge even when all hidden layers are normalised.

Spectral Normalization for Deep Reinforcement Learning: an Optimisation Perspective

C. Atari experiments
C.1. Evaluation protocols on Atari

In our work we mostly compare our Arcade Learning Envi-
ronment (ALE) results with the RAINBOW agent, therefore
we adopt the evaluation protocol from (Hessel et al., 2018).
Every 250K training steps in the environment we suspend
the learning and evaluate the agent on 125K steps (or 500K
frames). All the agents we train on ALE follow this val-
idation protocol, the only difference being the validation
epsilon value: ε = 0.001 for C51 and DQN-Adam which
we directly compare to RAINBOW and uses the same value
and ε = 0.05 for DQN-RMSProp which follows the exact
same hyper-parameters from (Mnih et al., 2015).

A major difference between the RAINBOW protocol and the
null op starts protocol used in earlier works is that in previ-
ous works the agent is evaluated for 30 or 100 (Van Hasselt
et al., 2016) episodes and is allowed to play up to 18, 000
frames (5 minutes of emulator time) or by the end of the
episode, whatever came first, whereas we always evaluate
for up to 500, 000 frames.

Episodes are limited at 108K steps, the agent receives a
game over signal when losing a life as in previous works
and we use the null op starts to induce stochasticity in ALE
games both at training and evaluation time (Van Hasselt
et al., 2016).

C.2. DQN-Adam

Next, we wanted to showcase SN on an algorithm with a
simpler objective such as DQN. However our initial experi-
ments on MinAtar suggested that SN has a greater impact on
Adam than on the RMSProp optimiser used in DQN (Mnih
et al., 2015). Since we also wanted to be able to compare
our results with those of RAINBOW we use similar hyper-
parameters to those in (Hessel et al., 2018). We list the full
details in Table 7 especially since these hyper-parameters
differ considerably from the the original DQN agent.

C.3. DQN - RMSprop

We also applied SN to a DQN agent optimised with RM-
Sprop as in the original (Mnih et al., 2015). In conjunction
with RMSprop the impact of SN seems minimal, far from
the impressive improvement observed for the DQN-Adam
agent. We leave for future work explaining the interaction
between normalisation and RMSProp. See Table 8 for com-
paring the Human Normalised Score of DQN-RMSprop to
other agents, and Fig. 22 for individual plots per game.

C.4. Effective rank

Authors of (Kumar et al., 2020) is making the case that for
TD-learning with function approximation trained with SGD

HYPER-PARAMETER VALUE

discount γ 0.99
update frequency 4
target update frequency 8000

starting ε 1.0
final ε 0.01
ε steps 250000
ε schedule linear
warmup steps 20000

replay size 1M
batch size 32
history length 4

cost function SMOOTHL1LOSS
optimiser ADAM
learning rate η 0.00025
damping term ε 0.0003125
β1, β2 (0.9, 0.999)

validation steps 125000
validation ε 0.001

Table 7: DQN-Adam hyper-parameters.

AGENT MEAN MEDIAN

DQN∗ 357.36 102.94
DQN SN[-2] 375.37 105.19
DQN (Wang et al., 2016) 216.84 78.37
DQN-ADAM∗ 358.45 119.45
DQN-ADAM SN[-2] 719.95 178.18

Table 8: Mean and median Human Normalised Score on 54 Atari
games with random starts evaluation. References indicate the
sources for the scores for each algorithm. We mark our own
implementations of the baseline with ∗. Our agents are evaluated
with the protocol in (Hessel et al., 2018). Note that the scores we
report for our own implementation of DQN baseline are different
from those reported in (Mnih et al., 2015) because the evaluation
protocol has changed.

the neural network is being implicitly under-parametrised
early in training. Empirically they show this by looking
at the effective rank of the feature matrix Φ which they
approximate with the number of first k singular values
of Φ that capture 99% variance of all the singular values:∑k
i σi(Φ) /

∑d
j σj(Φ) ≥ 0.99. In this case the feature

matrix Φ is the input to the last linear layer in our neural
network.

We perform their experiment, this time with a C51 agent
with and without normalised layers looking to better under-
stand the regularisation effects of normalisation. Figure 21
shows an evolution of the effective rank for the baseline
agent that is consistent with the report of (Kumar et al.,
2020). Interestingly, the baseline agent is consistently the
one making use of fewer and fewer dimensions in the feature

Spectral Normalization for Deep Reinforcement Learning: an Optimisation Perspective

Figure 21: Spectral Normalisation preserves the Effective Rank of the features. Evolution of the effective rank of the features before
the last linear layer of an C51 agent trained on 10 Atari games.

space as training progresses while the normalised agents
preserve the rank. We further corroborate this finding with
that of (Miyato et al., 2018) which is arguing that one of
the possible disadvantages of Weight Normalisation (WN)
as opposed to SN is that it prematurely producing sparse
representations. Our experiments shows further shows that
SN helps with preserving the rank of the features early on
in training even when compared to an un-normalised agent.

Spectral Normalization for Deep Reinforcement Learning: an Optimisation Perspective

Figure 19: Performance curves of a DQN baseline optimised with Adam with SN applied on three different layers.

Spectral Normalization for Deep Reinforcement Learning: an Optimisation Perspective

Figure 20: Performance curves of a C51 baseline with SN applied on three different layers.

Spectral Normalization for Deep Reinforcement Learning: an Optimisation Perspective

Figure 22: Performance curves of a DQN baseline optimised with RMSprop as in (Mnih et al., 2015) with SN applied on the penultimate
layer.

