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Abstract

32% of all global deaths in the world are caused
by cardiovascular diseases. Early detection, es-
pecially for patients with ischemia or cardiac ar-
rhythmia, is crucial. To reduce the time between
symptoms onset and treatment, wearable ECG
sensors were developed to allow for the recording
of the full 12-lead ECG signal at home. How-
ever, if even a single lead is not correctly posi-
tioned on the body that lead becomes corrupted,
making automatic diagnosis on the basis of the
full signal impossible. In this work, we present
a methodology to reconstruct missing or noisy
leads using the theory of Koopman Operators.
Given a dataset consisting of full 12-lead ECGs,
we learn a dynamical system describing the evolu-
tion of the 12 individual signals together in time.
The Koopman theory indicates that there exists
a high-dimensional embedding space in which
the operator which propagates from one time in-
stant to the next is linear. We therefore learn both
the mapping to this embedding space, as well as
the corresponding linear operator. Armed with
this representation, we are able to impute missing
leads by solving a least squares system in the em-
bedding space, which can be achieved efficiently
due to the sparse structure of the system. We per-
form an empirical evaluation using 12-lead ECG
signals from thousands of patients, and show that
we are able to reconstruct the signals in such way
that enables accurate clinical diagnosis.
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1. Introduction
Cardiovascular diseases are responsible for about a third
of all deaths globally (Roth et al., 2018). The electrocar-
diogram (ECG) is a noninvasive tool for detecting diseases
of the heart, and as such is one of the most common tests
performed by cardiologists. The short-duration standard 12-
lead ECG is the most commonly used ECG exam in medical
facilities (Maron et al., 2014). In this test, ten electrodes are
placed on a patient and the overall electrical potential am-
plitude of the heart is then measured from twelve different
angles referred to as “leads”, and is recorded over a period
of time (10 seconds in the standard 12-lead ECG exam).
This evaluation provides a full diagnosis of heart activity,
including arrhythmia, acute coronary syndrome, ventricular
dysfunction and cardiac chamber hypertrophy.

However, it is still a challenge to conveniently and robustly
track 12-lead ECG in people’s daily lives. To reduce the
time between the onset of symptoms and their treatment,
wearable ECG sensors such as (Laguna et al., 1990) been
developed to allow the recording of a 12-lead ECG at home.
Accurate ECG monitoring from those devices is of high im-
portance. For example, Atrial Fibrillation, the most common
serious cardiac arrhythmia, affects an estimated 2.7-6.1 mil-
lion people and increases a person’s risk of a life-changing
stroke, heart failure and death. It can occur without symp-
toms, thus its timely detection could help physicians and
their patients get an earlier confirmed diagnosis.

In order to properly rely on these sensors for clinical inter-
pretation, each lead measurement must be well grounded.
If even a single lead is not correctly positioned on the body
that lead becomes corrupted, making diagnosis on the basis
of the full 12-lead ECG signal impossible. To overcome this
challenge, the problem of ECG reconstruction has gained
considerable attention and several solutions based on ma-
chine learning have been proposed (Scherer et al., 1989;
Nelwan, 2005; Atoui et al., 2004; Zhou et al., 2019). How-
ever, all of these methods assume a fixed set of pre-specified
leads to have clean signals. This is a challenge with wear-
able devices where arbitrary leads can be corrupted. In this
work, we introduce a framework which is able to reconstruct
12-lead ECG from any subset of available leads, without
training a new model for each subset.

Our framework begins by learning the dynamics of 12-lead
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ECGs using the theory of Koopman Operators (Koopman,
1931; Koopman & Neumann, 1932), a decades old theory
which has recently re-emerged as a leading candidate for
the systematic linear representation of nonlinear systems
(Mezić & Banaszuk, 2004) (Mezić, 2005). The key aspect
of Koopman theory which we leverage is its linear structure:
the signal of interest can be embedded in a high-dimensional
space in which the operator which propagates from one time
instant to the next is linear. Learning the dynamical system
is therefore equivalent to learning both the mapping to this
embedding space, as well as the corresponding linear opera-
tor. Due to the linear structure, missing lead reconstruction
can be posed as a least squares problem in the embedding
space. Minimization leads to an explicit solution in the form
of a sparse linear system, which can be solved efficiently.
We emphasize again that this method of reconstruction may
be applied no matter which subset of leads have been cor-
rupted, giving it a crucial advantage over existing techniques
(Zhou et al., 2019). Figure 1 presents an example of two
Koopman-reconstructed leads.

We empirically evaluate our reconstruction technique in 3
separate ways: (1) We compute the reconstruction error of
our algorithm, and show that it is lower than competitor
techniques. (2) We learn classifiers for common classes of
abnormalities, and analyze the change in performance of
these classifiers as clean signals in the test are replaced with
signals in which some of the leads have been reconstructed.
We show that classification accuracy remains high when
using signals with reconstructed leads; and this remains the
case even when a large number of leads have been corrupted.
(3) We perform a small clinical experiment, in which clini-
cians are given examples of ECG signals with missing vs.
reconstructed corrupted leads. We demonstrate that our
reconstruction improves clinicians’ diagnosis capabilities.

Our contributions in this work are threefold. (1) We present
a methodology to learn 12-lead ECG dynamics using Koop-
man operators, which are represented by deep neural nets.
We learn a separable representation of the Koopman em-
bedding functions that can be applied on each ECG lead
separately. (2) We introduce a least squares system which
is able to impute missing leads efficiently from any partial
sub-leads ECG. We share the code for the reproducibility of
our results 1 (3) We empirically show that our method is able
to reconstruct any partial-lead ECG signal to a 12-lead ECG
without hurting clinical diagnosis. This is demonstrated by
empirical experiments showing increased performance of
both clinicians and state-of-the-art deep-learning models to
identify ECG abnormalities using the reconstructed data.

1Link anonymized

Figure 1. Examples of reconstructed leads. Blue: real signal. Red:
reconstructed signal by Koopman framework.

2. Related Work
12-Lead ECG Reconstruction The first attempt to recon-
struct 12-lead ECG from a subset of leads was introduced
by (Frank, 1956). Later, classical machine learning methods
were proposed using simple linear regression techniques
(Scherer et al., 1989; Nelwan, 2005). An early method
which used neural networks for the purposes of lead recon-
struction is presented in (Atoui et al., 2004). More recent
methods based on CNNs (Zhou et al., 2019) and LSTMs
(Zhang & Frick, 2019) have successfully reconstructed 9-
lead ECG from the 3-lead ECG. All prior works assume that
specific indices of leads are recorded cleanly, and attempt
to reconstruct the remaining leads. For example, it might
be assumed that leads V1 and V2 are clean, and the remain-
ing 10 leads require reconstruction. However, each 12-lead
ECG recording coming from a wearable device might have
a different set of leads that are cleanly recorded. Therefore,
a model which expects a specific subset of leads might fail
to reconstruct the full 12-lead ECG from such devices. By
contrast, our framework is able to reconstruct 12-lead ECG
from any subset of available leads, without training a new
model for each subset.

Learning ECG Dynamics of a Single Lead Formulating
the dynamics as a system of differential equations often
admits compact and efficient representations for many nat-
ural systems (Brunton et al., 2016). This holds true in the
case of single-lead ECG signals, one-dimensional signals
of voltage values representing the electrical activity of the
heart through time. The ECG signal is a periodic signal of
cardiac muscle depolarization followed by repolarization,
with each period corresponding to a single heartbeat. An
ECG heartbeat follows a prototypical pattern of a P wave,
followed by a QRS complex, and finally a T wave. To
capture this pattern, (McSharry et al., 2003) proposed a
physics-based model of ECG dynamics consisting of a sys-
tem of three coupled ordinary differential equations (ODE),
parameterized by specific heart rate statistics, such as the
frequency-domain characteristics of the heart rate variability
(Malik & Camm, 1990). While this model is able to gener-
ate synthetic ECG signals with somewhat realistic PQRST
morphology as well as prescribed heart rate dynamics, it has
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limited expressiveness. A more recent work (Golany et al.,
2020) introduced a GAN-based setup enriched with addi-
tional knowledge from this physics-based ECG model, and
showed that using the synthetically generated ECG heart-
beats from the GAN significantly improved ECG heartbeat
classification. Others (Golany et al., 2021) attempted to
learn a new set of ODEs from data rather than relying on
predefined set of ODEs to represent the dynamics of a single
ECG heartbeat. This prior work that learns data-driven ECG
Dynamics attempts to capture the dynamics of a single ECG
heartbeat within a single lead. By contrast, we focus on the
dynamics of an entire ECG signal, consisting of multiple
heartbeats, with all 12 leads. The data and the corresponding
modelling problem are concomitantly more complex.

Koopman Theory The original Koopman theory was in-
troduced nearly one hundred years ago (Koopman, 1931;
Koopman & Neumann, 1932). Renewed interest in Koop-
man analysis has been driven by a combination of theo-
retical advances (Mezić & Banaszuk, 2004) (Mezić, 2005)
(Budišić et al., 2012) (Mezić, 2013), improved numerical
methods such as dynamic mode decomposition (Schmid,
2010) (Rowley et al., 2009), and an increasing abundance
of data. Recently, (Lusch et al., 2018) utilized the power of
deep learning for flexible and general representations of the
Koopman framework, while enforcing a network structure
that promotes parsimony and interpretability of the result-
ing models. Although it was applied on small scale toy
problems, such as pendulum motion prediction (Erichson
et al., 2019; Pan & Duraisamy, 2020), to the best of our
knowledge, it was yet to be applied in a large-scale machine
learning application.

3. Koopman-Based ECG Reconstruction
3.1. Koopman Theory of Dynamical Systems

Throughout this paper, we will consider discrete-time dy-
namical systems of the form

xt+1 = F (xt) (1)

where xt ∈ X ≡ RL is the state of the dynamical sys-
tem and F represents the nonlinear transformation (the
dynamics) which maps the state of the system to its fu-
ture state. Note that this formulation subsumes discretiza-
tions of ordinary differential equations (ODEs). That is,
suppose that the underlying continuous signal is given by
x(τ) for τ ∈ [0, τ̄ ]; and the dynamics is described by the
ODE dx/dτ = f(x). Then the signal may be discretized
as xt = x(t∆) for t = 0, . . . , T with ∆ = τ̄ /T , and the
dynamics approximated as xt+1 ≈ xt + f(xt)∆ ≡ F (xt).
The approximation becomes increasingly exact as ∆ gets
smaller.

(Koopman, 1931) offers a different and useful viewpoint
for examining dynamical systems. In particular, rather than
consider the state space x, Koopman considers the space
of possible measurements on x. A measurement on x is
defined as a scalar-valued function on the state space X ,
that is

y : X → R (2)

The space of all measurements is denoted as Y , which is
an infinite-dimensional space. For a dynamical system of
the form in Equation (1) given by dynamics F , we define
the corresponding Koopman operator which maps from
measurements to measurements, K : Y → Y by

Ky ≡ y ◦ F (3)

where ◦ indicates function composition. (Note that y ◦ F is
indeed a measurement, as it maps X to R.) In this case, the
dynamical system of Equation (1) can be rewritten as

y(xt+1) = y(F (xt)) = y ◦ F (xt)

= (Ky)(xt) (4)

Thus, if a measurement y evolves forward with the operator
K, then it satisfies the “pullback” property given in Equation
(4). However, what makes the formulation most interesting
is the fact that the Koopman operator K is linear. This fact
is easily shown:

K(α1y1 + α2y2) = (α1y1 + α2y2) ◦ F
= α1y1 ◦ F + α2y2 ◦ F
= α1Ky1 + α2Ky2

The linearity of the Koopman operator is crucial to the
development of our method, as we shall see in Section 3.3.

3.2. Learning a Koopman Representation for ECG
Dynamics

In this section, we adapt the Koopman framework to learn
the dynamics of 12-lead ECG signals. We begin by describ-
ing two necessary modifications to the Koopman theory,
after which we show how to learn the dynamical system.

We begin with some notation. The number of ECG leads is
denoted as L = 12. The standard 12-lead electrocardiogram
is a representation of the heart’s electrical activity recorded
from electrodes on the body surface, sampled at a fixed
frequency. The `th lead sampled at time t is denoted by
x`t; all L leads taken together at time t are denoted xt =
[x1t , . . . , x

L
t ] ∈ RL, taken to be a column vector.

Finite-Dimensional Approximation The first modifica-
tion we must make to the standard Koopman theory con-
cerns dimensionality. The space Y of measurements is
infinite-dimensional and the Koopman operator K is like-
wise an infinite-dimensional operator. For computational
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purposes, we approximate the entire Koopman framework
by mapping in into a finite-dimensional setting. In particular,
suppose that

Γ : RD → Y (5)

maps a finite-dimensional space to the space of measure-
ments. (For concreteness, the reader may imagine mapping
the coefficients of a basis expansion to the function y itself,
though we will not use this representation.) In this case, we
will approximate the Koopman operator K by

K = ΓKΓ−1 (6)

where K is a D ×D matrix.

In this case, we can rewrite the dynamical system in Equa-
tion (4) as

y(xt+1) = ΓKΓ−1y(xt)

⇒ Γ−1y(xt+1) = KΓ−1y(xt) (7)

Now, letting Φ = Γ−1y so that Φ : RL → RD, we have
that

xt+1 = Φ−1(KΦ(xt)) (8)

This modification is standard, and follows the practice of
prior works, e.g. (Lusch et al., 2018). We refer to Φ as the
Koopman embedding.

Note that we use K rather than K to emphasize this move
to a finite-dimensional framework, but we abuse notation
slightly by continuing to use the symbol y to represent its
finite-dimensional version, i.e.

y = Φ(x) (9)

In this case Equation (8) may be rewritten as

yt = Φ(xt)

yt+1 = Kyt (10)

xt+1 = Φ−1(yt+1)

which illustrates the fact that in the embedding space, the
dynamics are linear.

Separable Koopman Embedding We make a second
modification to the standard Koopman theory, which is nec-
essary for our reconstruction algorithm. We assume that the
Koopman embedding is separable: that is, each lead has its
own separate embedding. More specifically, we map the `th

lead x`t to its corresponding embedding y`t as follows:

y`t = φ`(x
`
t) (11)

where φ` : R→ RD/L. The overall Koopman embedding
Φ is then derived by concatenating the per-lead embeddings:

yt = [y1t , . . . , y
L
t ] ∈ RD (12)

so that

Φ(xt) = [φ1(x1t ), . . . , φL(xLt )] (13)

The importance of separability to the reconstruction algo-
rithm will become clear in Section 3.3. We note that sep-
arability is not guaranteed by the Koopman theory; never-
theless, there is nothing which prevents us from imposing
it as a constraint during our learning procedure. In spite
of this lack of theoretical guarantees, we show empirically
in Section 5 that separability does not impair the learning
of an accurate dynamical system. In this context, we also
note that due to the separable structure, all of the coupling
between the leads is encapsulated by the matrix K.

Learning the Dynamical System Given the above Koop-
man framework, learning the dynamical system entails learn-
ing two things: the Koopman embedding Φ, and the Koop-
man operator K. A variety of methods have been proposed
for learning the Koopman framework based on neural net-
works (Wehmeyer & Noé, 2018; Mardt et al., 2018; Takeishi
et al., 2017; Yeung et al., 2019). We choose to follow the
technique of (Lusch et al., 2018) and outline this method
briefly.

A multilayer perceptron (MLP) specifies the Koopman em-
bedding Φ; in our case, we impose the separable structure
on the embedding, so that the network’s structure is tanta-
mount to L separate MLPs {φ`}L`=1. An additional MLP is
learned to represent the inverse transformation Φ−1, which
is again tantamount to learning L separate MLPs {φ−1` }L`=1.
The Koopman operator is simply a D × D matrix K. To
learn the networks Φ and Φ−1 and matrix K, three separate
losses are used:
(1) Reconstruction: ‖xt − Φ−1(Φ(xt))‖
(2) Linear Dynamics: ‖Φ(xt+m)−KmΦ(xt)‖, m ≥ 1
(3) State Prediction: ‖xt+m − Φ−1(KmΦ(xt))‖, m ≥ 1
Further details, including values of m to use, are described
in (Lusch et al., 2018).

We note that in practice, we have found that learning a
single per-lead embedding φ which is the same for all leads
is sufficient, i.e. φ` = φ for all `. However, this is not
necessary for the reconstruction algorithm described next,
so we leave the derivation there in the general setting.

3.3. Reconstruction of Missing Leads

We now turn to our main goal: the reconstruction of cor-
rupted 12-lead ECG signals. As we have already outlined,
the corruption may be due to either missing leads or noisy
values, a frequent scenario when measuring ECG from
wearable sensors such as Holter monitoring (DiMarco &
Philbrick, 1990) and ECG patches (Steinhubl et al., 2018).
The reconstruction will rely on the Koopman-based dynam-
ical system we have learned.
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Setup The set of missing leads is denoted M ⊂
{1, . . . , L}; our goal is therefore to reconstruct {x`t}Tt=0

for each missing lead ` ∈ M. The set of available
leads is just the complement of the set of missing leads
A = {1, . . . , L} −M, which has corresponding indicator
vector

a` =

{
1 ` ∈ A
0 ` /∈ A

(14)

Step 1: Mapping Available Leads to their Koopman Em-
beddings We begin by mapping the available leads to their
corresponding Koopman embeddings. The available leads
are given by {x̄`t}Tt=0 for each ` ∈ A; we therefore let

ȳ`t =

{
φ`(x̄

`
t) ` ∈ A

0 ` /∈ A
(15)

Missing values have been filled in with zeros for conve-
nience, so that the overall Koopman embeddings have the
correct size, i.e. ȳt ∈ RD; however, the missing entries can
take on any values, as they will not be used.

Step 2: Reconstructing the Missing Leads in Embed-
ding Space Given the available leads’ Koopman embed-
dings, we can now solve for the missing leads by leveraging
the fact that the Koopman operator is linear. For conve-
nience, we let

A = diag(a⊗ 1D/L) (16)

where ⊗ is the Kronecker product. In this case, we can
formulate our leads reconstruction problem as one of solving
the following optimization problem:

min
y0,...,yT

L(y0, . . . , yT ) =

1

2

T−1∑
t=0

‖yt+1 −Kyt‖2 +
λ

2

T∑
t=0

(yt − ȳt)T A (yt − ȳt)

(17)
The first term ensures that the dynamical system holds at
each time instant; crucially, due to the linearity of the Koop-
man formulation of the dynamics, this can be formulated
nicely as a convex quadratic term. The second term is a data
fidelity term for the available leads only: the matrix A picks
out only the available leads. λ > 0 is the weighting factor
between the two terms, where a larger λ ensures greater
consistency to the given leads. In the limit as λ→∞, we
have a hard constraint.

Due to the fact thatL is convex, we can solve for the globally
optimal values of y. Furthermore, L is quadratic, giving us
an explicit solution. Specifically, let

C = KTK + I + λA; (18)

then the solution is given by

−KT yt+1 + (C − I)yt = λAȳt t = 1

−KT yt+1 + Cyt −Kyt−1 = λAȳt t ∈ [2, T − 1]

(C −KTK)yt −Kyt−1 = λAȳt t = T (19)

The above is a system of linear equations, and furthermore
is quite sparse. As a result, the solution can be achieved
efficiently using standard methods. In this work we lever-
age least squares method (Levenberg, 1944) to solve these
equations.

Step 3: Mapping the Missing Leads Back to Signal
Space Finally, given the optimal values y`t from the so-
lution to Equation (19), we can map back to signal space.
This is achieved by applying the inverse of the separable
Koopman embedding function:

x`t = φ−1` (y`t ) for ` ∈M (20)

This yields the final reconstruction of the missing ECG
leads. We note in passing that it is also possible to compute a
reconstruction of the ECG signals for the available leads ` ∈
A; if the data fidelity weight λ→∞, it is straightforward to
show that these will precisely replicate the data, i.e. x`t = x̄`t
for all t and ` ∈ A.

Comparison with Seq2Seq We draw the reader’s atten-
tion to a key distinction between our method and the com-
monly used seq2seq-style techniques for signal reconstruc-
tion applied for ECG reconstruction (Zhou et al., 2019).
The seq2seq techniques require learning a separate model
from each different subset of available leads; by contrast,
the methodology presented learns a single model, which can
be easily applied with equal ease to any subset. More specif-
ically, in the seq2seq setting, learning to map from lead 1 to
lead 2 is different from lead 1 to lead 3, or leads 1 and 7 to
the rest. In our formulation, they may all be reconstructed
directly from the ECG signal’s master dynamical system.

4. Experimental Framework
4.1. ECG Dataset

The Georgia 12-lead ECG dataset, referred to as G12EC,
was introduced in the 12-lead ECG Physionet Challenge
2020 (Alday et al., 2020) and is considered one of the largest
public 12-lead ECG datasets. It represents a large population
from the southeastern United States and contains 10,344
12-lead ECGs (male: 5,551, female: 4,793). Each ECG
signal is 10 seconds in length with a sampling frequency of
500 Hz, yielding a total of 5,000 time samples per signal.

Each 12-lead ECG exam is annotated with 27 diagnoses.
These 27 classes represent relatively common diagnoses
which are of clinical interest, with the potential to be rec-
ognizable from ECG recordings. Note that the classes are
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not mutually exclusive: each 12-lead ECG exam may hold
multiple diagnoses. In our experiments we focus on the
following six common types of diagnosis: AF - Atrial fibril-
lation; TAb - T wave abnormal; QAb - Q wave abnormal;
VPB - Ventricular premature beats; LAD - Left axis devia-
tion, and SA - Sinus arrhythmia. Our dataset is divided as
follows: the train set contains 8,233 ECG signals, while the
test set contains the remaining 2,059 signals.

4.2. Baselines

We compared our reconstruction model with the state-of-the-
art (SOTA) model for 12-lead reconstruction. (Zhou et al.,
2019) proposed a seq2seq approach using a CNN-based
model for reconstruction of short 12-lead ECG segments
from a 3-lead ECGs. We extend this approach and build a
model for each n available leads. That is, given n leads the
model reconstructs the 12-lead ECG. Note that the model
receives any n leads and reconstructs the missing k leads.

4.3. Experimental Setup

We train the baselines and our model (Section 3) on the
training set of G12EC. To mimic a partial 12-lead ECG
reading (as often occurs in a home setting when using a
wearable), we remove k ∈ {1, 4, 8, 11} random leads from
each 12-lead ECG recording in the test-set. Each test in-
stance represents a random subsample of 12− k leads. For
example, for k = 4 we might remove leads 1, 2, 3, and
4 from one recording, leads 4, 7, 9 and 11 from another.
The resulting test-set contains ECG signals of shape RT×n,
where n = 12− k is the number of leads left in each signal.
On the resulting test-set we apply the baselines and solve
the system of linear equations described in Section 3 to
reconstruct the missing leads.

We perform experiments showing the performance of recon-
struction via two types of experiments:

1. Reconstruction Error: Measuring the distance be-
tween the reconstructed lead and the corresponding ground
truth lead (Section 5.1).

2. Classification Accuracy: Measuring clinical diagno-
sis based on the reconstructed leads.

• We perform a small clinical experiment with clinicians
(Section 5.3). They received 52 12-lead ECG reading
from the test (where k leads are reconstructed) and are
asked to make a diagnosis. This diagnosis is compared
to the ground truth diagnosis.

• To perform a larger experiment, we leverage the state-
of-the-art machine-learning model for 12-lead ECG
classification (Attia et al., 2019; Ribeiro et al., 2020)
and measure its performance on reconstructed leads
(Section 5.2). The model is trained on G12EC training

set, and we report its performance over the test set,
where each test set contains reconstructed leads. We
compare the classifier diagnosis with the ground-truth
diagnosis. We next describe the architecture of the
machine-learning model (Section 4.4).

4.4. Classification Network Details

Recently (Ribeiro et al., 2020) and (Attia et al., 2019)
showed superior results for classification of ECG abnor-
malities from 12-lead ECG signals. They trained a Residual
Neural Network (He et al., 2016) based architecture. We
follow this practice and use in our experiments a Residual
Neural Network model. The input to the model is a 10
seconds 12-lead ECG signal sampled at 500Hz. That is,
input of shape R5000×12, where the first dimension repre-
sents the temporal dimension and the second dimension
represents the spatial dimension. The network consists of
a convolution layer, followed by a max pooling layer, fol-
lowed by six residual blocks. Each residual block consists
of 3 convolution layers, and between each convolution layer,
Batch-normalization and Relu activation are performed. A
skip connection is applied between the input of the block to
the output of the third convolution layer. The output of the
last residual block is fed into a global average pooling layer,
followed by a dense layer. Since multiple abnormalities
may occur in the same 12-lead ECG signal (classes are not
mutually exclusive), the last activation function we use is a
Sigmoid function which gives a separate probability score
for each predicted abnormal class. The first convolution
layer has 16 filters of size 7x7. The residual blocks start
with 16 filters and are increased to 32 filters in the last block.
The size of the kernel in the residual blocks starts in 5x5,
and decreases to 3x3. In all the residual blocks, except the
first one, the first convolution layer down-samples the input
temporal dimension by a stride of 2. The neural network
weights were initialized as in (He et al., 2016), and the bias
was initialized with zeros. The network was trained by feed-
ing 12-lead ECG batches of size 128 from the training data.
The binary cross-entropy loss was minimized using Adam
Optimizer with initial learning rate 0.0001. The training ran
for 100 epochs, with the final model being the one with the
best accuracy on the validation set.

5. Experimental Results
5.1. Leads Reconstruction Performance

We first present the results of Koopman-based ECG recon-
struction. We measure the distance of the reconstructed
12-lead ECG signal x̂`t to the ground truth signal x`t . We
report our results by the Mean Absolute Deviation (MAD)
error function:

MAD =
1

|M|T
∑
`∈M

∑
t

|x̂`t − x`t| (21)
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Table 1. Evaluation of the SOTA ECG Classifier (Section 4) on reconstructed 12-lead ECG testset. Results are shown for different number
of reconstructed leads both for Koopman-reconstruction and baseline-reconstruction.

KOOPMAN BASED RECONSTRUCTION BASELINE (ZHOU ET AL., 2019)
RECALL (SENSITIVITY) SPECIFICITY RECALL (SENSITIVITY) SPECIFICITY

ABNORMAL CLASS 12-LEAD 11-LEAD 8-LEAD 4-LEAD 12-LEAD 11-LEAD 8-LEAD 4-LEAD 11-LEAD 8-LEAD 4-LEAD 11-LEAD 8-LEAD 4-LEAD
AF 0.91 0.91 0.90 0.90 0.85 0.85 0.72 0.80 0.75 0.76 0.79 0.65 0.65 0.62

TAB 0.85 0.85 0.83 0.81 0.77 0.77 0.70 0.70 0.60 0.61 0.56 0.60 0.55 0.52
QAB 0.85 0.87 0.82 0.78 0.70 0.70 0.66 0.62 0.83 0.73 0.57 0.40 0.52 0.47
VPB 0.77 0.76 0.79 0.77 0.56 0.59 0.58 0.67 0.89 0.85 0.81 0.20 0.30 0.37
SA 0.66 0.68 0.68 0.62 0.56 0.50 0.55 0.56 0.50 0.64 0.46 0.47 0.57 0.40

LAD 0.94 0.95 0.88 0.81 0.87 0.90 0.80 0.70 0.62 0.61 0.55 0.50 0.55 0.47

whereM is the set of missing leads.

Table 2 shows the reconstruction results as a function of the
number of missing leads. We note, that as expected as the
number of missing leads in the corrupted signal increases,
the reconstruction error increases for both the baseline the
Koopman-based reconstruction. While our Koopman-based
method is better in all cases than the baseline, it is consider-
ably better when there are 10 missing leads, i.e. when most
of the information is absent.

MISSING LEADS MAD KOOPMAN MAD BASELINE
1 0.130 0.134
4 0.135 0.137
8 0.138 0.139

10 0.142 0.196

Table 2. Mean Absolute Deviation (MAD) error between the recon-
structed ECG leads and the ground truth. In Bold are statistically
significant results. Lower numbers indicate better reconstruction.

5.2. ECG Classification using Reconstructed Leads

In this section, we compare the performance of the SOTA
ECG classifier when applied on 12-lead ECGs where some
of the leads are reconstructed. We experiment on several
number of reconstructed leads (k).

Comparison to SOTA ECG Reconstruction Figures 2(a)-
(f) show the ROC curves of each of the six classified di-
agnoses (Sec. 4.1). For each diagnosis we compared the
results of the 12-lead ECG classifier evaluated on a different
reconstructed test-set. The purple curve, the blue curve and
the red curve, corresponds to a corrupted test reconstructed
via our methods using Koopman operators (Sec. 3.3), with
valid 11-leads, 8-leads, and 4-leads respectively. The green,
pink, and brown curves in each subfigure corresponds to
a corrupted test reconstructed by the CNN-based methods
of (Zhou et al., 2019), with a valid 11-leads, 8-leads, and
4-leads respectively. Sensitivity and Specificity metrics are
also reported in Table 1. Our reconstruction method outper-
forms the state-of-the-art method with respect to the ROC
evaluation metric for each number of corrupted leads and
precision-recall points in a statistically significant manner
(t-test with p-value < 0.05). We observe that for all type of
diagnosis, our method is better than the CNN-based recon-

struction. This emphasizes the ability of our method to learn
to reconstruct any subset of ECG leads to 12-lead ECG.

Comparison to Complete 12-Lead ECG We notice that
when comparing to the gold standard – classification using
12-Lead ECG with no missing leads – we see a very small
loss in performance. This indicates that ECG classifiers
can be considered for automated classification of ECGs
from devices with smaller amount of leads than 12 leads,
reconstructed using our method and yet reaching similar
performance of full 12-lead devices.

5.3. Clinician’s Diagnosis Performance using
Reconstructed Leads

We perform a small clinical experiment. We choose to focus
on the T wave abnormality (TAb), as abnormalities of this
form are associated with several life-threatening diseases.
The electrocardiographic T wave represents ventricular re-
polarization and are usually hard to identify without the
V1 and L leads. We randomly selected 52 ECGs from the
test set where 38% had an abnormal T wave. We mimic a
situation where the V1 and L leads are corrupted. For each
example, we showed the cardiologist the 10 non-corrupted
leads and asked to make a diagnosis of whether the patient
exhibits TAb. We then showed the additional 2 leads (the V1
and L leads) which were reconstructed using our Koopman
framework and asked the cardiologist to make the diagnosis
again. Table 3 summarizes the results. Our methodology
enabled the cardiologist to identify all of the patients with
TAb abnormalities. Notice that without the reconstructed
leads, only by observing the non-corrupted leads, the car-
diologist identified only 60% of the patients with TAb. We
observe a loss in precision (though marginal compared to
the recall improvement) and points to the fact that additional

Recall Precision F1

Cardiologist using 10 leads 0.6 0.75 0.67
Cardiologist using 10 leads + 1.0 0.63 0.77
Koopman-reconstructed 2 leads

Table 3. Clinical experiment results for the TAb abnormality. Each
line presents the the diagnosis accuracy of the clinician. The first
represents the performance results given no reconstructed leads
whereas the second with reconstructed leads.
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(a) Atrial fibrillation (AF) (b) T wave abnormal (TAb) (c) Q wave abnormal (QAb)

(d) Left axis deviation (LAD) (e) Sinus arrhythmia (SA) (f) Ventricular premature beats (VPB)

Figure 2. ROC curves of the 6 diagnosis classes evaluated on the test-set. The orange curve at each subfigure corresponds to the results on
the complete 12-lead test-set. The other curves correspond to a corrupted 12-lead test which was reconstructed either by our approach via
Koopman operators (Section 3.3) or by the baseline (Zhou et al., 2019).)

training on using computer-generated ECGs is needed and
should be further explored. Overall, the F1 score with the
reconstruction is considerably higher than without.

6. Conclusions
To reduce the time between cardiac symptoms onset and
treatment, wearable ECG sensors were developed to allow
for the recording of the full 12-lead ECG signal at home.
To rely on such sensors for clinical interpretation, each lead
measurement must be well grounded. However, it is enough
for one lead not to be well-positioned on the body for the
entire lead signal to be corrupt. This has prevented the wider
usage of those sensors from home. In this work, we pre-
sented a methodology to reconstruct missing or noisy leads
using the theory of Koopman Operators. To the best of our
knowledge, this is one of the first applications of this the-
ory for a large-scale machine-learning real-life application.
We learn the dynamical system describing the evolution of
the 12 individual signals together in time. Koopman theory

allows us a linear structure: the signal of interest can be em-
bedded in a high-dimensional space in which the operator
which propagates from one time instant to the next is lin-
ear. Learning the dynamical system is therefore equivalent
to learning both the mapping to this embedding space, as
well as the corresponding linear operator and then solving
a least squares system in the embedding space. An addi-
tional key benefit of this system is its ability to reconstruct
any number of corrupted leads without the need to retrain a
machine learning model. We empirically show that our re-
construction error is rather small and that classifiers trained
on 12-leads ECGs perform well in the presence of recon-
structed leads. A small-scale clinical experiment shows the
value of presenting the reconstructed leads to a clinician
during diagnosis. The results are staggering – the recall of a
severe abnormality rises from 60% to 100% with a tolerable
number of false positives. For future work, we plan to ex-
pand the clinical trial and to better understand how to best
present the reconstructed leads to humans for better benefit
of diagnosis.
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Wehmeyer, C. and Noé, F. Time-lagged autoencoders: Deep
learning of slow collective variables for molecular kinet-
ics. The Journal of chemical physics, 148(24):241703,
2018.

Yeung, E., Kundu, S., and Hodas, N. Learning deep neural
network representations for koopman operators of non-
linear dynamical systems. In 2019 American Control
Conference (ACC), pp. 4832–4839. IEEE, 2019.

Zhang, Q. and Frick, K. All-ecg: A least-number of leads
ecg monitor for standard 12-lead ecg tracking during
motion. In 2019 IEEE Healthcare Innovations and Point
of Care Technologies,(HI-POCT), pp. 103–106. IEEE,
2019.

Zhou, W., Xing, Y., Liu, N., Movahedipour, M., Zhou,
X.-g., et al. A novel method based on convolutional
neural networks for deriving standard 12-lead ecg from
serial 3-lead ecg. Frontiers of Information Technology &
Electronic Engineering, 20(3):405–413, 2019.


