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A. Appendix
A.1. Ablation Study

Role of Number of Observations (J) The number of ob-
servations J corresponds to the number of partial observa-
tions that we have of a functions fk. Ideally, we only need
two such observations to learn the representations via con-
trastive objective. However, it has been shown that having
more positive pairs result in learning better representations
(Chen et al., 2020; Tian et al., 2019).

It should be noted that in our setting, the number of observed
context sets N do not necessarily correspond to the number
of observations J . This is because for some datasets, we
aggregate the context points to get one partial observation
(see Figure 2). This is important for the simple 1D and
2D regression functions where a single context point does
not provide much information, hence the individual partial
observations need more than one context point. In our set-
ting, we treat J as a hyperparameter whose optimal value
varies depending on the function. For instance, the MPI3D
scene dataset has only 3 views per scene, therefore J can
not be greater than 3 and we keep it fixed. For 1D and 2D
regression functions, we observe that for a fixed number
of context points N , the optimal number of observations
J varies. For understanding the role of J better in these
experiments, we perform an ablation study on MNIST2D
dataset with FSCC (few-shot content classification) as the
downstream task Figure 10. For each hyper-parameter con-
figuration we train three models, initialized with different
random seeds. The maximum number of context points is
fixed to 200 while the J varies between 2 and 40.

It can be seen that the smaller values of J do not result in
better FSCC score, however, the accuracy seems to plateau
after J = 10. Therefore, we fix it to 10 for MNIST2D. For
RLScene dataset, we fixed the maximum number of context
points to be 20 and found the optimal number of partial
observations to be J = 4. Note that the FSCC accuracy
seems to be more influenced by the hyperparameters of
critic and temperature, shown concurrently in the Figure 10.
We discuss their roles in the next section.

Role of Critics and Temperature τ . We regard the dis-
criminative scoring functions, including the projection
heads, as critics. The simplest critic function does not con-
tain any projection layer, regarded as dot product critic,
where the contrastive objective is defined directly on the
representations returned by the base encoder hΦ. However,
recently the role of critics in learning better representations
has been explored in depth (Oord et al., 2018; Chen et al.,
2020). Building on these findings, we evaluate the role
played by different critics in learning the functions repre-
sentations. Figure 10 shows the ablation for three different
critics on MNIST2D validation dataset. It can be seen that

the performance of critics is also highly linked with the
temperature parameter τ . For an optimal temperature value
τ , the non-linear critic performs consistently better.

Such hyperparameter grid search (done for MNIST2D) is
very expensive for the ablation studies on the bigger datasets,
such as, the MPI3D and RLScenes datasets. Therefore, we
define the range for the t and perform a random sweep of
80 models with randomly selected hyper-parameter values
for critic and temperature on MPI3D dataset. We did not
find any pattern for the effect of temperature τ on the down-
stream tasks, however the pattern emerged for the class of
critics. Figure 12 shows the ablation for critics on MPI3D
dataset. It can be seen that the non-linear critic performs
better in extracting features which are useful for the down-
stream classification tasks. Because of this trend across two
different datasets, we therefore performed all our experi-
ments with non-linear critic. The project head in nonlinear
critics is defined as an MLP with one hidden layer and batch
normalization in between.

B. Robustness to Noise
Functions with additive noise have been well-studied, how-
ever, the contemporary literature in meta-learning mostly
considers them to be noise free. In this work, we explore
whether the learned representations of the functions are
prone to the additive Gaussian noise. We consider the form
of the function as given in Equation (1) and vary the stan-
dard deviation of the added noise. It can be seen that with
the increased level of noise the features in the image start to
diminish, shown in the Figure 11. GQN approach the learn-
ing problem by reconstructing these noisy images where the
signal to noise ratio is very low. On the other hand, FCRL
learns to contrast the scene representations with other scenes
without requiring any reconstruction in the pixel space. This
helps it in extracting invariant features in the views of a
scene, getting rid of any non-correlated noise in the input.
In addition to the analysis on MNIST 2D regression task in
Figure 4, we test the performance of these representations
learning algorithm on MPI3D factors identification task in
Figure 13. It can be seen that FCRL representations can
recover the information about the data factors, even in the
extreme case where the noise level is very high (standard
deviation of 0.2). Whereas, GQN performs very poorly such
that the downstream probes achieve the random accuracy.

C. Estimating Density Ratios corresponding
to the Functions

The contrastive objective in Equation (4), in essence, tries
to solve a classification problem i.e. to identify whether
the given observation Oi comes from the function f i or
not. The supervision signal is provided by taking another
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Figure 10. An ablation study for understanding the role of the number of partial observations (J), the critics and the temperature parameter
(τ ) for learning FCRL based representation. The graph shows the accuracy achieved by the linear classifier (Few-shot content classification
task) on MNIST digits validation dataset. Note that each image corresponds to a 2D functions, and the accuracy bands show the standard
deviation of three independent runs.

Figure 11. MPI3D dataset with the varying level of additive Gaus-
sian noise.

observation Ô from the same function f i as an anchor (a
target label), thus making it a self-supervised method. This
self-supervised, view-classification task, for a function f i,
leads to the estimation of density ratios between the joint
distribution of observations p(O1, O2|i) and their product
of marginals p(O1|i)p(O2|i). This joint distribution in turn
corresponds to the joint distribution of the input-output pairs
of the function p(x, y|i). This way of learning a function’s
distribution is different from the typical regression objec-
tives, which learn about a given function f i by trying to
approximate the predictive distribution p(y|x).

By assuming the universal function approximation capabil-
ity of g(φ,Φ), and the availability of infinitely many functions
fk ∼ p(f) with fixed number of context points N each, the

model posterior learned by the optimal classifier correspond-
ing to Equation (4) would be equal to the true posterior given
by Bayes rule.

fk ∼ P (f) ∀ k ∈ {1, ..,K} (9)

Ok ∼ P (O|fk) ∀k ∈ {1, ..,K} (10)
i ∼ U(K) (11)

f̂ = f i (12)

Ô ∼ P (O|f̂) (13)

p(i|O1:K , Ô) =
p(O1:K , Ô|i)p(i)∑
i p(O

1:K , Ô|i)p(i)
(14)

=
p(Oi, Ô|i)p(i)

∏
k 6=i p(O

k|i)p(Ô|i)∑
j p(O

j , Ô|j)p(j)
∏
k 6=j p(O

k|j)p(Ô|j)
(15)

=

p(Oi,Ô|i)
p(Oi)p(Ô)

p(i)∑
j
p(Oj ,Ô|j)
p(Oj)p(Ô)

p(j)
(16)

The posterior probability for a function f i is propor-
tional to the class-conditional probability density function
p(Oi, Ô|i), which shows the probability of observing the
pair (Oi, Ô) from function f i. The optimal classifier would
then be proportional to the density ratio given below

exp(sim(φ,Φ)(Ô, O
i)) ∝ p(Oi, Ô)

p(Oi)p(Ô)
(17)

Similar analysis has been shown by the (Oord et al., 2018)
for showing the mutual information perspective associated
with self-supervised contrastive objective (infoNCE). The
joint distribution over the pair of observations correspond to



Function Contrastive Learning of Transferable Meta-Representations

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
ac

kg
ro

un
d 

C
ol

or

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
bj

ec
t C

ol
or

0.3

0.4

0.5

0.6

0.7

O
bj

ec
t S

ha
pe

nonlinear nonlinear_deep1 nonlinear_deep2 dot
Critic

0.75

0.80

0.85

0.90

0.95

O
bj

ec
t S

iz
e

nonlinear nonlinear_deep1 nonlinear_deep2 dot
Critic

0.1

0.2

0.3

0.4

0.5

0.6

0.7
1s

t D
O

F

nonlinear nonlinear_deep1 nonlinear_deep2 dot
Critic

0.0

0.2

0.4

0.6

0.8

1.0

2n
d 

D
O

F

Figure 12. An ablation study to understand the role of different critics in learning meta-representations of MPI3D scenes via FCRL.
Shown here is the accuracy achieved by six different linear classifiers, trained on the representations, for identifying the six factors of
variation. Non-linear critic consistently performs better than the other critics.

the distribution of the underlying function f i. Thus, given
some observation of a function, an optimal classifier would
attempt at estimating the true density of the underlying
function.

D. Scenes’ Datasets
MPI3D Dataset. The MPI3D dataset (Gondal et al.,
2019) is introduced to study transfer in unsupervised repre-
sentations learning algorithms. The dataset comes in three
different formats, varying in the levels of realism i.e. real-
world, simulated-realistic and simulated-toy. Each dataset
contains 1, 036, 800 images of a robotic manipulator each,
encompassing seven different factors of variations i.e., ob-
ject colors (6 values), object shapes (6 values), object sizes
(2 values), camera heights (3 values), background colors (3
values), rotation along first degree of freedom ((40 values))
and second degree of freedom ((40 values)). Thus, each
image represents a unique combination of all the factors.
See Figure 14(a) to see a sample of the dataset.

In this work, we consider the real-world version of the

dataset. The multi-view setting is formulated by consider-
ing the images of a scene captured by three different cam-
eras, placed at different heights. This effectively gives us
345, 600 scenes with three views each. We split the dataset
into training and validation chunks, where the training
dataset contains 310, 000 scenes and the validation dataset
contains the rest 35, 600 scenes, approximately 10% of the
dataset.

RLScenes. The RLScenes dataset is generated in simula-
tion using (Joshi et al., 2020) for a single 3-DOF robotic
manipulator in a 3D environment. The dataset consists of
40, 288 scenes, each scene parametrized by: object colors
(one of 4), robot tip colours (one of 3), robot positions (uni-
formly sampled from the range of feasible joint values),
and object positions (uniformly sampled within an arena
bounded by a high boundary as seen in Figure 14). Each
scene consists of 36 views, corresponding to the uniformly
distributed camera viewpoints along a ring of fixed radius
and fixed height, defined above the environment. As can be
seen in Figure 14, the robot finger might not be visible com-
pletely in all the views, or the object might be occluded in
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Figure 13. Quantitative comparison of FCRL and GQN for noise robustness on MPI3D downstream tasks. X-axis in each plot corresponds
to the varying level of Gaussian noise (as depicted in Figure 11). The representations are extracted from one view only, and the accuracy
bands show the standard deviation of five independent runs. It can be seen that the linear classifiers trained on FCRL representations are
able to classify the digits even in extremely noisy case, significantly outperforming the classifiers trained on GQN representation.

(a) (b)

Figure 14. Datasets for Scenes Representation Learning (a) MPI3D (Gondal et al., 2019) has three camera viewpoints, with images of a
robotics arm manipulating an object. (b) RLScenes has 36 possible camera viewpoints for capturing an arena consisting of a robot finger
and an object.

some view. The 36 views help by capturing a 360 deg holis-
tic perspective of the environment. First a configuration of
the above scene parameters is selected and displayed in the
scene, then the camera is revolved along the ring to capture
its multiple views. For learning the scene representations
via both FCRL and GQN, we split the dataset into 35000
training and 5288 validation points.

E. Details of Experiments on Scene
Representation Learning

For learning the scene representations for both MPI3D
dataset and RL Scenes, we used similar base encoder ar-
chitecture. More specifically, we adapted the “pool” archi-
tecture provided in GQN (Eslami et al., 2018), as it has
been regarded to exhibit better view-invariance, factoriza-
tion and compositional characteristics as per the compre-
hensive study done in (Eslami et al., 2018). We further
augmented this architecture with batch-normalization. The
architecture we use is shown in Figure 15:

E.1. Learning Scenes for MPI3D Dataset.

Since we have three view per each scene in MPI3D
dataset, therefore we are restricted in defining the number
of context points and the number of views. In all our
experiments the number of context points N is fixed to
three while the number of views J is set to two. In contrast
to the experiments for regression datasets where more
datapoints per each view resulted in better representations,
the restriction to a single image view in MPI3D dataset did
not hurt the representation quality, measured in terms of
downstream performance. In the downstream experiments
on MPI3D, we use only one image to train and validate the
probes. Due to the limitation of available views, we could
not measure the effect of varying the number of views on
the downstream performance.

Even though no explicit structural constraint was imposed
for learning the representation. The FCRL algorithm im-
plicitly figures out the commonality between the factors in
different scenes. We visualize these latent clusterings in the
Figure 5. We plot the 2D TSNE embeddings of the 128D
representations inferred by the model. Thereafter, to visual-
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Figure 15. The ”pool” architecture used for learning representations for the scenes’ datasets via FCRL. The architecture is the same as
was used for training GQN (Eslami et al., 2018).

ize the structure corresponding to each factor, we only vary
one factor and fix the rest of them except for first degree
of freedom and second degree of freedom factors. A clear
structure can be seen in the learned representations.

Implementation Details. We use the GQNs ‘pool’ archi-
tecture with batch normalization as encoder. As mentioned
in the ablation study, we did a random sweep over the range
of hyperparameters and selected the best performing model.
Further details on the hyperparameters is provided in Ta-
ble 3.

E.2. Learning Scenes for RLScenes Dataset.

To train the FCRL encoder, we randomly sample the number
of views from each scene to lie within the range [2, 20]:
upper-bounded by 20 to restrict the maximum number of
images per scene to be the same as that used in (Eslami et al.,
2018), and lower bounded by 2 in case just the one view is
not from a suitable angle. So, here, the maximum number
of context points N is 20. The number of subsets J is set to
8. In the downstream reinforcement learning task, we use
only one image to train the policy network, as is the usual
practice, and the same as (Eslami et al., 2018). We kept
the joint ranges from which joint positions are uniformly
sampled to randomly reset the robot at the beginning of
every episode while training the policy network to be the
same as the ranges used for sampling the robot position
while generating the dataset to train the FCRL encoder.
These joint ranges are selected so as to ensure that there are
more scenes in which the robot finger is visible. However,
in order to not constrain the agent’s exploration, we let
the action space for training the reaching agent to be less
constrained, and be able to explore the entire range from
−pi to pi. So, effectively, the space seen by the robot during
the training of the representations is a subspace of that seen

while inferring the representations from the environment
used for this downstream reaching task. Interestingly, the
inferred representations can also work effectively on unseen
robot configurations as demonstrated by the success of the
reacher.

Implementation Details. Similar to the encoder training
for MPI3D scenes, we learned the encoder for RLScenes.
However, since the downstream tasks is a reinforcement
learning task, it was hard to judge the quality of represen-
tations. Therefore, we took some insights from the MPI3D
experiments and selected the model, trained with hyperpa-
rameters, which performed the best on the RL downstream
tasks. Further details on the hyperparameters is provided in
Table 3.

F. Details of Experiments on 1D Functions
Implementation Details. We used the same encoder ar-
chitecture for our method and the baselines (Garnelo et al.,
2018a;b) in all experiments. For 1D and 2D functions, the
data is fed in the form of input-output pairs (x, y), where x
and y are 1D values. We use MLPs with two hidden layer
to encode the representations of these inputs. The number
of hidden units in each layer is d = 50. All MLPs have
relu non-linearities except the final layer, which has no non-
linearity.
Encoder: Input(2)→2 × (FC(50), ReLU)→ FC(50).
While learning the representations of sinusoid functions
with FCRL, we also scale the output scores with temper-
ature to be 0.07. We used the following hyper-parameter
settings to train an encoder with FCRL.

Downstream Tasks. To learn the subsequent task-specific
decoders on the representations, we adapted the same data
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Table 3. Hyperparameters Settings for Scene Representation Learning Experiments.

Parameter Values

Batch size 64
Representation dimension 128
Temperature: τ 0.88
Number of subsets: J 2
Max number of context points: 3
Epochs 100
Critic Nonlinear
Objective NCE
Optimizer Adam
Adam: beta1 0.9
Adam: beta2 0.999
Adam: epsilon 1e-8
Adam: learning rate 0.0005
Learning Rate Scheduler Cosine
Number of workers 10
Batch normalization Yes

(a) Hyperparameters to train FCRL based encoder on the MPI3D
Dataset.

Parameter Values

Batch size 32
Representation dimension 256
Temperature: τ 0.46
Number of subsets: J 4
Max number of context points: 20
Epochs 100
Critic Nonlinear
Objective NCE
Optimizer Adam
Adam: beta1 0.9
Adam: beta2 0.999
Adam: epsilon 1e-8
Adam: learning rate 0.0005
Learning Rate Scheduler Cosine
Number of workers 10
Batch normalization Yes

(b) Hyperparameters to train FCRL based encoder on
the RLScenes Dataset.

Table 4. Hyperparameters Settings for Sinusoid Experiments.

Parameter Values

Batch size 256
Latent space dimension 50
Temperature: τ 0.07
Number of subsets: J 2
Max number of context points: N 20
Epochs 30
Critic Nonlinear
Optimizer Adam
Adam: beta1 0.9
Adam: beta2 0.999
Adam: epsilon 1e-8
Adam: learning rate 0.0003
Learning Rate Scheduler Cosine

(a) Hyperparameters to train FCRL based encoder for 1D sinusoid
functions.

Parameter Values

Batch size 256
Epochs 30
Critic Nonlinear
Optimizer Adam
Adam: beta1 0.9
Adam: beta2 0.999
Adam: epsilon 1e-8
Adam: learning rate 0.001
Learning Rate Scheduler Cosine

(b) Hyperparameters to train FSR Decoder on FCRL
learned representations.
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Figure 16. Additional results on 5-shot sinusoid regression. Each column corresponds to a different sinusoid function where only 5 context
points are given. The predictions of the decoder trained on FCRL based encoder are closer to the groundtruth.

processing pipeline as above. For 1D functions, we train
decoders for two different tasks: few-shot regression and
few-shot parameter identification. The decoders for each
task are trained with the same training dataset as was used
to train the encoders. The training procedure for both down-
stream tasks on sinusoid functions is as follows

• For Few-Shot Regression (FSR), we use an MLP
architecture with two hidden layers. The same
architecture are used in CNP (Garnelo et al., 2018a),
however in CNP the decoder and encoder are trained
jointly. All the baselines and our model are trained
for the same number of iterations. We used slightly
higher learning rate to train the decoder as the training
converges quite easily.
FSR Decoder: Input(50)→ 2 × (FC(50), ReLU)→
FC(1) .

• For Few-Shot Parameter Identification (FSPI), we
train a linear decoder without any activation layers on
the representations learned via FCRL and the baseline
methods. The decoder is trained for only one epoch.
FSPI Decoder: Input(50)→ FC(1) .

Additional Results. In Figure 16 and Figure 17, we pro-
vide additional results on 5-shot regression on test sets and
compare the results with CNP and NP. The curves gener-
ated by the decoder using FCRL learned representations
are closer to the groundtruth. The difference is evident in
5-shot experiments which supports the quantitative results
in Table 1.

G. Details of Experiments on 2D Functions
Implementation Details. In this experiment, we treat
MNIST images as 2D functions. We adapt the architectures
of encoders and decoders from the previous 1D experiments.
However, due to the increased complexity of the function
distributions we increase the number of hidden units of MLP
to d = 128. Moreover, the input x is 2D as it corresponds to
the cartesian coordinates of an image. The hyperparameter
settings to train FCRL based encoder on such 2D function
is given in Table 5.

G.1. Downstream Tasks.

We consider two downstream tasks to evaluate the quality of
the representations learned on 2D functions: few-shot image
completion and few-shot content classification. A separate
decoder is trained for both of these tasks.

• For Few-Shot Image Completion (FSIC), we use an
MLP based decoder with two hidden layers. The de-
coder is trained on the same training data for the same
number of iterations. Details are given in Table 5(b).

• For Few-Shot Content Classification (FSCC), we train
a linear regression on top of the representations ob-
tained by both FCRL and the baselines. The decoder
is trained for only one epoch.

Additional Results. In Figure 18 and Figure 19, we pro-
vide additional results for 50-shot and 200-shot image com-
pletion. We can see that the the results from FCRL based
decoder consistently perform better than CNP in low-shot
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Figure 17. Additional results on 20-shot sinusoid regression. Each column corresponds to a different sinusoid function where only 20
context points are given. The predictions of the decoder trained on FCRL based encoder are comparable to CNP and better than NP.

Table 5. Hyperparameters Settings for MNIST as 2D Functions Experiment.

Parameter Values

Batch size 16
Latent space dimension 128
Temperature: τ 0.007
Number of subsets: J 40
Max number of context points: N 200
Epochs 100
Critic Nonlinear
Optimizer Adam
Adam: beta1 0.9
Adam: beta2 0.999
Adam: epsilon 1e-8
Adam: learning rate 0.0006
Learning Rate Scheduler Cosine

(a) Hyperparameters to train FCRL based encoder for 2D functions.

Parameter Values

Batch size 16
Epochs 100
Critic Nonlinear
Optimizer Adam
Adam: beta1 0.9
Adam: beta2 0.999
Adam: epsilon 1e-8
Adam: learning rate 0.001
Learning Rate Scheduler Cosine

(b) Hyperparameters to train Few-Shot Image Comple-
tion (FSIC) Decoder trained on FCRL learned represen-
tations.

scenario of 50 context points. In 200-shot scenario, the
results look comparable to CNP.
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Figure 18. Additional results on 50-shot mnist image completion. The context is shown in the second row where target pixels are colored
blue. Predictions made by a decoder trained on FCRL based encoder are slightly better than the CNP in terms of guessing the correct
form of digits.

Figure 19. Additional results on 200-shot mnist image completion. The context is shown in the second row where target pixels are colored
blue. Predictions made by a decoder trained on FCRL based encoder are comparable to CNP.


