
Active Slices for Sliced Stein Discrepancy

A. Terms and Notations
For the clarity of the paper, we give a summary of the
commonly used notations in the main text and proof.
Symbols:
sp(x) ∇x log p(x)
srp(x) Projected score function∇x log p(x)Tr
X A subset of RD
K A subset of R.
krgr kernel function k : K ×K → R
Hrgr Induced RKHS by the kernel krgr .
|| · ||Hrgr RKHS norm ofHrgr
gr Input projection direction (e.g. xTgr) for

corresponding r.
r Score projection direction (e.g. srp(x) =

sp(x)Tr)
Smaxgr maxSSD-g (Eq.4).
Sgr SSD-g, i.e. Smaxgr (Eq.4) without supgr .

But with summation of Or.
Srgr SSD-rg, i.e. Smaxgr (Eq.4) without supgr

and summation of Or. Instead, we use
specific r.

SKmaxgr maxSKSD-g. The kernelized verison of
Smaxgr

SKgr SKSD-g. The kernelized verison of Sgr
SKrgr SKSD-rg. The kernelized verison of Srgr
PSD Projected Stein discrepancy (Eq.9)
PSDr Projected Stein discrepancy (Eq.9) with-

out summation Or and use specific r in-
stead.

f∗r Optimal test function for PSD. f∗r (x) ∝
srp(x)− srq(x)

h∗rgr Optimal test function for Sgr with specific
r and gr, defined in Eq.8.

∗ This indicates the optimal test function
(e.g. f∗r )

Csup Supremum of Poincaré constant defined
in assumption 6.

A.1. “Sub-optimal” variants of SSD

For the ease of the analysis, we want to define the notations
without the sup opeartor over the slice directions r, gr.
Here, we define SSD-g (Sgr ) as the maxSSD-g (Smaxgr in
Eq.4) without the supgr .

Sgr =
∑
r∈Or

sup
hrgr∈Fq

Eq[srp(x)hrgr (x
Tgr)+

rTgr∇xT grhrgr (x
Tgr)]

(16)

Similarly, we define SSD-rg (Srgr ) as maxSSD-rg (Smaxrgr
in Eq.37) without supr,gr :

Srgr = sup
hrgr∈Fq

Eq[srp(x)hrgr (x
Tgr)+

rTgr∇xT grhrgr (x
Tgr)]

(17)

As for each of the above ”optimal” discrepancies, it has
the corresponding kernelized version. Therefore, we need
to define their ”un-optimal” version as well. We define
SKSD-g (SKgr ) as maxSKSD-g (SKmaxgr in Eq.6) as

SKgr =
∑
r∈Or

||Eq[ξp,r,gr (x)]||2Hrgr , (18)

Similarly, we define SKSD-rg (SKrgr ) as maxSKSD-rg
(SKmaxrgr in Eq.41) as

SKrgr = ||Eq[ξp,r,gr (x)]||2Hrgr (19)

B. Assumptions and Definitions
Definition B.1 (Inner product in Hilbert space). We denote
the algebraic space RD refers to a parameter space of
dimension D. The Borel sets of RD is denoted as B(RD),
and we let µ(x) be a probability measure on x. We define

Hµ = L2(RD,B(RD), µ) (20)

as the Hilbert space which contains all the measurable
functions f : RD → R, such that ||f ||Hµ ≤ ∞, where we
define inner product 〈·, ·〉Hµ to be

〈f, g〉Hµ =

∫
f(x)g(x)dµ(x) (21)

for all f, g ∈ Hµ
Definition B.2. (Stein Class (Liu et al., 2016)) Assume dis-
tribution q has continuous and differentiable density q(x).
A function f defined on the domain X ⊆ RD, f : X → R
is in the Stein class of q if f is smooth and satisfies∫

X
∇x(f(x)q(x))dx = 0 (22)

We call a function f(x) ∈ Fq if f belongs to the Stein class
of q. We say vector-valued function f(x) : X ⊆ RD →
Rm ∈ Fq if each component of f belongs to the Stein class
of q.

Definition B.3 (Stein Identity). Assume q is a smooth den-
sity satisfied assumption 1 , then we have

Eq
[
sq(x)f(x)T +∇f(x)

]
= 0 (23)

for any functions f : X ⊆ RD → RD in Stein class of q.

We can easily see that the above holds true for X = RD if

lim
||x||→∞

q(x)f(x) = 0 (24)
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Assumption 1 (Properties of densities) Assume the two
probability distributions p, q has continuous differentiable
density p(x), q(x) supported on X ⊆ RD, such that the
induced set K = {y ∈ R|y = xTg, ||g||2 = 1,x ∈
X} is locally compact Hausdorff (LCH) for all possi-
ble g ∈ SD−1. If X = RD, then the density q satis-
fies: lim||x||→∞ q(x) = 0. If X ⊂ RD is compact, then
q(x) = 0 at boundary ∂X .

Assumption 2 (Regularity of score functions) Denote the
score function of p(x) as sp(x) = ∇x log p(x) ∈ RD
and score function of q(x) accordingly. Assume the score
functions are bounded continuous differentiable functions
and satisfying∫

X
q(x)|(sp(x)− sq(x))Tr|dx <∞∫

X
q(x)||(sp(x)− sq(x))Tr||2dx <∞

(25)

for all r where r ∈ SD−1.

Assumption 3 (Test functions) Assume the test function
hrgr : K ⊆ R→ R is smooth and belongs to the Stein class
of q. Specifically, if with assumption 1, we only requires
hrgr to be a bounded continuous function. Similarly, we
assume this also holds for PSD (eq.9) test function fr(x).

Assumption 4 (Bounded Conditional Expectation) Define

h∗rgr (yd) = EqGr (y−d|yd)[(s
r
p(G

−1
r y)−srq(G−1r y))] (26)

as in proposition 1. We assume h∗rgr is uniformly bounded
for all possible gr ∈ SD−1.

Assumption 5 (universal kernel): We assume the kernel
krg : K ×K → R is bounded and c0−universal.

Assumption 6 (Real analytic translation invariant kernel):
We assume the kernel is translation invariant k(x, y) =
φ(x− y) : K → R and φ is a real analytic function. Addi-
tionally, we assume if k(cx, cy) = k′(x, y) for a constant
c > 0 where k′ is also a c0−universal kernel. For example,
radial basis kernel function (RBF) and inverse multiquadric
(IMQ) kernel satisfy these assumptions.

Assumption 7 (Log-concave probabilities) Assume a
probability distribution q with density function such that
q(x) = exp(−V (x)), where V (x) is a convex function.

Assumption 8 (Existence of supremum of Poincaré con-
stant). For the Poincaré constant defined in lemma 5, the
essential supremum exists Cess,G = ess supydCyd < ∞
and also the Csup = supG Cess,G < ∞ exists over all
possible orthogonal matrixG.

C. Detailed Background
C.1. Stein Discrepancy

Assume we have two differentiable probability density func-
tions q(x) and p(x) where x ∈ X ⊂ RD. We further define
a test function f : X → RD and a suitable test function
family Fq called Stein’s class of q. Recall the Stein operator
(Eq.1) is defined as

Apf(x) = sp(x)Tf(x) +∇Tx ]f(x) (27)

The function family Fq is defined as

Fq =
{
f : X → RD | Eq[Aqf ] = 0

}
(28)

This function space can be quite general. For example, if
X = RD, we only require f to be differentiable and vanish-
ing at infinity. With all the notations, Stein discrepancy is
defined as follows:

DSD(q, p) = sup
f∈Fq

Eq[Apf(x)] (29)

which can be proved to be a valid discrepancy (Gorham &
Mackey, 2017). Stein discrepancy has been shown to be
closely related to Fisher discrepancy defined as

DF (q, p) = Eq||sp(x)− sq(x)||22 (30)

Indeed, Hu et al. (2018) shows that the optimal test function
for Stein discrepancy has the form f∗(x) ∝ sp(x)−sq(x).
By substitution, we can show Stein discrepancy is equivalent
to Fisher divergence up to a multiplicative constant.

Unfortunately, the score difference sp(x)− sq(x) may be
intractable in practice, making SD intractable as a conse-
quence. Thus, Liu et al. (2016); Chwialkowski et al. (2016)
propose an variant of SD by restricting Fq to be a unit
ball inside an RKHSHk induced by a c0−universal kernel
k : X × X → R. By using the reproducing properties, they
propose kernelized Stein discrepancy as

D2(q, p) = ||Eq[sp(x)k(x, ·) +∇xk(x, ·)]||2Hk
= Ex,x′∼q[up(x,x

′)]
(31)

where up(x,x′) is

up(x,x
′) = sp(x)T k(x,x′)sp(x

′) + sp(x)T∇x′k(x,x′)

+sp(x
′)T∇xk(x,x′) +∇2

x,x′k(x,x′)

(32)

and x, x′ are i.i.d. samples from q.

Due to its tractability, it has been extensively used in statis-
tical test e.g. GOF test Liu et al. (2016); Chwialkowski et al.
(2016); Huggins & Mackey (2018); Jitkrittum et al. (2017).
However, recent work demonstrate KSD suffers from the
curse-of-dimensionality problem Gong et al. (2021); Hug-
gins & Mackey (2018); Chwialkowski et al. (2016). One
potential fix is to use another variant called sliced kernelized
Stein discrepancy.
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C.2. Sliced Kernelized Stein Discrepancy

In this section, we give a more detailed introduction to sliced
kernelized Stein discrepancy (SKSD). Recall the definition
of Stein discrepancy:

DSD(q, p) = sup
f∈Fq

Eq[sTp (x)f(x) +∇Txf(x)] (33)

In the original paper of (Gong et al., 2021), they argue that
the curse of dimensionality comes from two sources: (i) the
high dimensionality of the score function sp : X ⊆ RD →
RD and (ii) the test function input x ∈ X ⊆ RD. Therefore,
authors proposed two slice directions r, g to project sp and
x respectively. However, this projection is equivalent to
throwing away most of the information possessed by sp
and x. To tackle this problem, authors proposed the first
member of the SSD family by considering over all possible
directions of r and g (a distribution over r ∼ pr, g ∼ pg),
called integrated sliced Stein discrepancy:

S(q, p) = Epr,pg

[
sup

hrg∈Fq
Eq[srp(x)hrg(x

Tg)+

rTg∇xT ghrg(x
Tg)]

]
.

(34)

where hrgr is the test function. Although it is theoretically
valid (Theorem 1 in(Gong et al., 2021)), its practical useage
is limited by the intractability of the integral over pr, pg and
the optimal test function hrg. Surprisingly, authors show
that the integral over r, g is not necessary for discrepancy
validity. They achieved this in two steps.

The first step is to replace the expectation w.r.t. r by a finite
summation over orthogonal basis. The author showed that
this is a valid discrepancy, called orthogonal sliced Stein
discrepancy defined as

SO(q, p) =
∑
r∈Or

Epg

[
sup

hrg∈Fq
Eq[srp(x)hrg(x

Tg)+

rTg∇xT ghrg(x
Tg)]

]
.

(35)

where Or is an orthogonal basis (e.g. one-hot vectors).
The next step is to get rid of the expectation w.r.t. g by
a supremum operator. This is called maxSSD-g, which is
defined as Eq.4 in the main text. For a quick recall, we
include maxSSD-g in here:

Smaxgr (q, p) =
∑
r∈Or

sup
hrgr∈Fq
gr∈SD−1

Eq[srp(x)hrgr (x
Tgr)+

rTgr∇xT grhrgr (x
Tgr)]

(36)

Further, one can also use single optimal direction r to re-
place the summation over the orthogonal basis Or, resulting
in maxSSD-rg(Smaxrgr ):

Smaxrgr (q, p) = sup
hrg∈Fq,gr,r∈SD−1

Eq
[
srp(x)hrgr (x

Tgr)+

rTgr∇xT grhrgr (x
Tgr)

]
(37)

Similar to KSD, authors addressed tractability issue of the
optimal hrgr by restricting the Fq to be a one-dimensional
RKHS induced by a c0−universal kernel krg : K×K → R
where K ⊆ R. Thus, for each member of the above SSD
family, we have a corresponding kernelized version. They
are called integrated sliced kernelized Stein discrepancy,
orthogonal SKSD, and max sliced kernelized Stein discrep-
ancy (including maxSKSD-g and maxSKSD-rg). In practice,
maxSKSD-g or maxSKSD-rg is often preferred over the oth-
ers due to its computational tractability, where their optimal
slices for r and gr are obtained by gradient-based optimiza-
tion.

By reproducing properties of RKHS, one can define
ξp,r,gr (x, ·) as in Eq.5, and further define µp,r,gr =
〈ξp,r,gr (x, ·), ξp,r,gr (y, ·)〉Hrgr

µp,r,gr (x,y) = srp(x)krgr (x
Tgr,y

Tgr)s
r
p(y)

+ rTgrs
r
p(y)∇xT grkrgr (x

Tgr,y
Tgr)

+ rTgrs
r
p(x)∇yT grkrg(x

Tgr,y
Tgr)

+ (rTgr)
2∇2

xT gr,yT gr
krg(x

Tgr,y
Tgr).

(38)
Then, by simple algebra, one can show that given r, gr, the
optimality w.r.t. test functions can be computed analytically:

D2
rgr (q, p)

=( sup
hrgr∈Hrgr
||hrgr ||Hrgr≤1

Eq[srp(x)hrgr (x
Tgr)

+ rTgr∇xT grhrgr (x
Tgr)])

2

=||Eq[ξp,r,gr (x)]||2Hrgr = Eq(x)q(x′)[µp,r,gr (x,x′)].
(39)

whereHrgr is the RKHS induced by the kernel krgr . There-
fore, the maxSSD-g and maxSSD-rg can be computed as

SKmaxgr (q, p) =
∑
r∈Or

sup
gr∈SD−1

D2
rgr (q, p) (40)

and
SKmaxrgr (q, p) = sup

gr∈SD−1

r∈SD−1

D2
rgr (q, p) (41)
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D. Goodness-of-fit test
In this section, we give an introduction to the GOF test.
To be general, we focus on the SKSD-rg (SKrgr =
||Eq[ξp,r,gr (x)]||2Hrgr ) as other related discrepancy can be
easily derived from it. Assuming we have active slices r
and gr from algorithm 1. Thus, we can estimate SKrgr

using the minimum variance U-staistics (Hoeffding, 1992;
Serfling, 2009):

ŜKrgr (q, p) =
1

N(N − 1)

∑
1≤i6=j≤N

µp,r,gr (xi,xj).

(42)
where µx,y is defined in Eq.38 which satisfies
Eq(x)q(x′)[µp,r,gr (x,x′)] = ||Eq[ξp,r,gr (x)]||2Hrgr ,
and x, x′ are i.i.d. samples from q. With the help of the
U-statistics, we characterize its asymptotic distribution.

Theorem 6. Assume the conditions in theorem 1 are satis-
fied, we have the following:

1. If q 6= p, then ŜKrgr is asymptotically normal. Partic-
ularly,

√
N(ŜKrgr − SKrgr )

d→ N (0, σ2
h) (43)

where σ2
h = varx∼q(Ex′∼q[µp,r,gr (x,x

′)]) and σh 6=
0

2. If q = p, we have a degenerated U-statistics with
σh = 0 and

NŜKrgr
d→
∞∑
j=1

cj(Z
2
j − 1) (44)

where {Zj} are i.i.d standard Gaussian variables, and
{cj} are the eigenvalues of the kernel µp,r,gr (x,x

′)
under q(x). In other words, they are the solutions of
cjφj(x) =

∫
x′
µp,r,gr (x,x

′)φj(x
′)q(x′)dx′.

Proof. As the ŜKrgr is the second order U-statistic of
SKrgr , thus, we can directly use the results from section
5.5.1 and 5.5.2 in (Serfling, 2009).

The above theorem indicates a well-defined asymptotic dis-
tribution for SKrgr , which allows us to use the follow-
ing bootstrap method to estimate the rejection threshold
(Huskova & Janssen, 1993; Arcones & Gine, 1992; Liu
et al., 2016). The bootstrap samples can be computed as

ŜK
∗
m =

∑
1≤i6=j≤N

(wmi −
1

N
)(wmj −

1

N
)µp,r,gr (xi,xj)

(45)

where (wm1 , . . . , w
m
N )Mm=1 are random weights drawn from

multinomial distributions Multi(N, 1
N , . . . ,

1
N ). Now, we

give the detailed algorithm for GOF test.

Algorithm 2 GOF test with active slices
Input: Samples x ∼ q, density p, kernel krgr , active
slices r, gr, significance level α, and bootstrap sample
size M .
Hypothesis: H0: p = q v.s. H1 : p 6= q

Computing U-statistics ŜKrgr using Eq.42
Generate M bootstrap samples {ŜK∗m}Mm=1 using Eq.45
Reject null hypothesis H0 if the proportion of ŜK

∗
m >

ŜKrgr is less than α

E. Relaxing constraints for kernelized SSD
family

E.1. Validity w.r.t r, gr

The key to this proof is to prove the real analyticity of SKgr

(or Srgr ) to slices r and gr. Therefore, let’s first give a
definition of multivariate real analytic function.

Definition E.1 (Real analytic function). A function f :
U → R is real analytic if for each c ∈ U , there is a power
series as in the form

f(x) =
∑
κ∈Nn0

ακ(x− c)κ

for some choice of (ακ)κ∈Nn0 ⊂ R and all x in a neigh-
bourhood of c, and this power series converges absolutely.
Namely, ∑

κ∈Nn0

|ακ||(x− c)κ| <∞

where N0 = {0, 1, . . .} denotes non-negative integers, κ =
(κ1, . . . , κn) are called multiindex, and we define xκ =
xκ1
1 . . . xκnn .

Now, we introduce a useful lemma showing that composi-
tion of real analytic function is also real analytic.

Lemma 1 (Composition of real analytic function). Let U ⊂
Rn and V ⊂ Rm be open, and let f : U → V and g : V →
Rp be real analytic. Then g ◦ f : U → Rp is real analytic.

Especially, the real analyticity is not only preserved by func-
tion composition, it is also closed under most of the simple
operations: addition, multiplication, division (assuming de-
nominator is non-zero), etc. Now we can prove the main
proposition to show that the SKSD-rg (SKrgr ) is real ana-
lytic w.r.t both gr and r. In the following, we assume the
r, gr ∈ RD.
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Proposition 3 (SKSD-g is real analytic). Assume assump-
tion 1-4 (density regularity), 5-6 (kernel richness and real
analyticity) are satisfied, further we let gr ∈ RD, then
SKSD-g (SKgr ) is real analytic w.r.t gr and SKrgr is real
analytic to both r ∈ RD and gr.

Proof. First, let’s focus on the real analyticity w.r.t. gr. We
re-write the SKSD-g as the following:

SKgr =
∑
r∈Or

||ξp,r,gr (x)||2Hrgr

=
∑
r∈Or

〈Eq[(srp(x)− srq(x))︸ ︷︷ ︸
f∗r (x)

krgr (x
Tgr, ·)],

Eq[(srp(x)− srq(x))krgr (x
Tgr, ·)]〉Hrgr

=
∑
r∈Or

Ex,x′ [f
∗
r (x)krgr (x

Tgr,x
′Tgr)f

∗
r (x′)]

The second equality is from the definition of RKHS norm
|| · ||Hrgr and Stein identity. We can observe that gr appears
inside the kernel krgr in the form of xTgr. So in order to
use the function composition lemma (lemma 1), we need to
first show that for any given x, xTgr is real analytic. By
definition of real analytic function, we need a center point
c ∈ RD, and gr in the neighborhood of c (i.e. |gr − c| <
Rc). Then, we define the power series as

hx(gr) =

∞∑
κ1=0

. . .

∞∑
κD=0

(gr1 − c1)κ1 . . . (grD − cD)κD

κ1! . . . κD!
α{κi}Di

with the following coefficient
α{κi}Di = 0 if

∑
i κi > 1

α{κi}Di = xi if κi = 1,
∑
i κi = 1

α{κi}Di = cccTxxx if
∑
i κi = 0

Then, by substitution, we have

hx(ggg) =

D∑
d=1

(gd − cd)xd + cccTxxx (46)

= xxxTggg (47)

which converges with radius of convergenceRc =∞. From
assumption 6, we know the kernel krgr (x

Tgr,x
′Tgr) =

φ((x − x′)Tgr) is translation invariant and real analytic.
Thus, from lemma 1, we know krgr (x

Tgr,x
′Tgr) is real

analytic to gr with radius of convergence Rk (Rk is de-
termined by the form of the kernel function). This means
we can use a power series to represents this kernel w.r.t.
gr inside some neighborhood define around center point.
Specifically, for a central point c ∈ RD and any gr satisfy-
ing |gr − c| < Rk, we have

krgr (x
Tgr,x

′Tgr) =
∑
κ∈ND0

ακ(x,x′)(gr − c)κ

where this series converges absolutely. We substitute it into
SKgr

SKgr =
∑
r∈Or

Ex,x′ [f
∗
r (x)krgr (x

Tgr,x
′Tgr)f

∗
r (x′)]

=
∑
r∈Or

Ex,x′ [f
∗
r (x)

∑
κ∈ND0

ακ(x,x′)(gr − c)κf∗r (x′)]

=
∑
r∈Or

∑
κ∈ND0

Ex,x′ [ακ(x,x′)f∗r (x)f∗r (x′)](gr − c)κ

which also converges absolutely with radius of convergence
Rk. The third equality is from the Fubini’s theorem. The
conditions of Fubini’s theorem can be verified by fact that
f∗r is square integrable (assumption 2), and the power series
of krgr converges absolutely. Thus, by definition of real
analytic function, SKSD-g is real analytic w.r.t each gr.
This also implies SKSD-rg (SKrgr ) is real analytic w.r.t. gr
(because SKrgr is just SKgr without summation over Or).

For the real analyticity w.r.t r, the proof is almost the same.
The inner product srp(x) − srq(x) is real analytic w.r.t r
obviously for given x. We also use the fact that real analyt-
icity is preserved under multiplication of two real analytic
functions. In addition, note that krgr (x

Tgr,x
Tgr) act as

a constant w.r.t. r, we can directly apply the Fubini’s the-
orem again to form a power series w.r.t. r with absolute
convergence. Thus, SKrgr is real analytic w.r.t. r for any
gr. Thus, SKrgr is real analytic to both r and gr.

Next, we introduce an important property of real analytic
function:

Lemma 2 (Zero Set Theorem (Mityagin, 2015)). Let f(x)
be a real analytic function on (a connected open domain U
of)Rd. If f is not identically 0, then its zero set

S(f) := {x ∈ U|f(x) = 0}

has a measure 0, i.e. mesdS(f) = 0

With the help from the zero-set theorem, we can prove the
validity of SKgr (or SKrgr ) with finite random slices gr
(and r).

Proof of theorem 1

Proof. We first deal with the validity of gr with fixed or-
thogonal basis Or. It is trivial that when p = q, SKgr = 0
identically. Now, assume p 6= q, then, from the theorem 3 in
(Gong et al., 2021), the orthogonal SKSD (Eq.48) is a valid
discrepancy. Namely, we have∑

r∈Or

∫
qgr (gr)||Eq[ξp,r,gr (x)]||2Hrgr > 0 (48)

We should note that the distribution qgr is originally defined
on SD−1. But, we can easily generalize it to larger spaces.
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As for gr ∈ RD, we can always write gr = cg′r, where
g′r ∈ SD−1, and c ≥ 0. As the domain for gr is RD, the gr
can represents all possible directions. Thus, we can follow
the same proof logic as theorem 3 in (Gong et al., 2021) to
show the corresponding discrepancy is greater than 0 when
p 6= q.

Therefore, Eq.48 represents there exists a r ∈ Or such that
||Eq[ξp,r,gr (x)]||2Hrgr > 0 for a set of gr with non-zero
measure. Namely, ||Eq[ξp,r,gr (x)]||2Hrgr is not 0 identically.
Thus, from the propositon 3 and lemma 2, the set of gr that
make ||Eq[ξp,r,gr (x)]||2Hrgr = 0 has a 0 measure. Then,
if gr is sampled from some distribution ηg with density
supported on RD (e.g. Gaussian distribution), we have

SKgr =
∑
r∈Or

||Eq[ξp,r,gr (x)]||2Hrgr > 0

almost surely.

Now, we show that SKrgr is also a valid discrepancy with
r ∼ ηr. First, due to the validity of integrated SKSD, we
have∫

qr(r)

∫
qgr (gr)||Eq[ξp,r,gr (x)]||2Hrgr dgrdr > 0

(49)
Due to the real analyticity of SKrgr (||Eq[ξp,r,gr (x)]||2Hrgr )
w.r.t r, we can easily show that∫

qgr (gr)||Eq[ξp,r,gr (x)]||2Hrgr dgr

is real analytic to r and it is not 0 identically. Thus, by
lemma 2, for r ∼ ηr, we have∫

qgr (gr)||Eq[ξp,r,gr (x)]||2Hrgr dgr > 0

Namely, ||Eq[ξp,r,gr (x)]||2Hrgr > 0 for a set of gr with non-
zero measure. In the beginning of the proof, we show that
this set of gr is almost everywhere in RD due to its real
analyticity. Namely, ||Eq[ξp,r,gr (x)]||2Hrgr > 0 for r ∼ ηr
and gr ∼ ηg if p 6= q. Thus, we can conclude that for
SKrgr = 0 if and only if p = q almost surely for r ∼ ηr
and gr ∼ ηg .

Corollary 6.1 (Normalizing gr). Assume the conditions in
theorem 1 are satisfied, then the following operations do
not violate the validity of SKSD-rg SKrgr . (1) For g′r, r

′ ∈
SD−1, we define gr = g′r + γg and r = r′ + γr, where
γr, γg are the noise from Gaussian distribution. (2) Define
g̃r = cg × gr and r̃ = cr × r, where g̃r, r̃ are unit vectors
and cr, cg > 0. The resulting active slices r̃ and g̃r do not
violate the validity of SKrgr .

Proof. From the theorem 1 with gr, r, when p 6= q, we

have

SKrgr = ||Eq[ξp,r,gr (x)]||2Hrgr
=Ex,x′ [f

∗
r (x)krgr (x

Tgr,x
′Tgr)f

∗
r (x′)]

=Ex,x′ [c
2
rf
∗
r̃ (x)krgr (cx

T g̃r, cx
′T g̃r)f

∗
r̃ (x′)] > 0

From the assumption 6 that krgr (cx
T g̃r, cx

′T g̃r) =
k′rgr (x

T g̃r,x
′T g̃r). So this is equivalent to the SKSD-rg

defined with a new c0−universal kernel k′rgr and g̃r, r̃ ∈
SD−1. Thus, the corresponding maxSKSD-rg with g̃r, r̃ ∈
SD−1 is a valid discrepancy almost surely.

E.2. Relationship beetween SSD and SKSD

Proof of proposition 1

Proof. We consider the SSD-rg (Srgr ) without the optimal
test function:

Eq[srp(x)hrgr (x
Tgr) + rTgr∇xT grhrgr (x

Tgr)] (50)

From the Stein identity (Eq.23), we can let f(x) =[
r1hrgr

(
xTgr

)
, r2hrgr

(
xTgr

)
, . . . , rDhrgr

(
xTgr

)]T
and then take the trace. Thus, we have

Eq[srq(x)hrgr (x
Tgr)] = Eq[rTgr∇xT grhrgr (x

Tgr)]

Substitute it into Eq.50 and change the variable to y = Grx,
we have

Eq[(srp(x)− srq(x))hrgr (x
Tgr)]

=

∫
qGr (yd,y−d) (srp(G

−1
r y)− srq(G−1r y))︸ ︷︷ ︸
f∗r (G

−1
r y)

hrgr (yd)dy

=

∫
qGr (yd)

∫
qGr (y−d|yd)f∗r (G−1r y)dy−d︸ ︷︷ ︸

h∗rgr (yd)

hrgr (yd)dyd

≤
√
EqGr (yd)[h

∗
rgr (yd)

2]
√

EqGr (yd)[hrgr (yd)
2]

where the last inequality is from Cauchy-Schwarz inequality,
where the equality holds when

hrgr (yd) ∝ h∗rgr (yd)
= EqGr (y−d|yd)

[(
srp
(
G−1r y

)
− srq

(
G−1r y

))]
where yd = xTgr.

Proof of theorem 2
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Proof. Let’s first re-write of Srgr and SKrgr .

Srgr = sup
hrgr∈Fq

Eq[(srp(y)− srq(x))hrgr (x
Tgr)]

=EqGr (yd)[
∫
qGr (y−d|yd)(srp(G−1r y)− srq(G−1r y))dy−d︸ ︷︷ ︸

h∗rgr (yd)

×h∗rgr (yd)]
=EqGr (yd)[h

∗
rgr (yd)

2]

where the second equality is from proposition 1.

SKrgr = 〈Eq[ξp,r,gr (x)],Eq[ξp,r,gr (x)]〉Hk
where ξp,r,gr (x, ·) is defined in Eq.5, and 〈·, ·〉Hrgr is the
RKHS inner product induced by kernel krgr . By simple
algebraic manipulation and Stein identity (Eq.23), we have

Eq[ξp,r,gr (x, ·)]
=Eq[(srp(x)− srq(x))krgr (x

Tgr, ·)]

=EqGr (yd)[
∫
qGr (y−d|yd)(srp(G−1r y)− srq(G−1r y))dy−d︸ ︷︷ ︸

h∗rgr (yd)

×krgr (yd, ·)]
=EqGr (yd)[h

∗
rgr (yd)krgr (yd, ·)]

Thus, we have

SKrgr

=Eyd,y′d∼qGr (yd)[h
∗
rgr (yd)krgr (yd, y

′
d)h
∗
rgr (y

′
d)]

≤
√
Eyd,y′d [krgr (yd, y

′
d)

2]
√

Eyd [h∗rgr (yd)
2]
√

Ey′d [h∗rgr (y
′
d)

2]

=MS∗rgr

where constant M is from the bounded kernel assumption,
and the inequality is from Cauchy-Schwarz inequality. With-
out the loss of generality, we can setM = 1. For other value
of M > 0, one can always set the optimal test function
(h∗rgr ) for SSD-rg with coefficient M . The the new SSD-g
will be M multiplied by the original SSD-rg with M = 1.

Thus, SSD-rg is an upper bound for SKSD-rg. From the
assumption 1, we know that the induced set K = {y ∈
R|y = xTg, ||g|| = 1,x ∈ X} is LCH, and the kernel
krgr : K × K → R is c0−universal. Then, from (Sripe-
rumbudur et al., 2011), c0−universal implies Lp−universal.
Namely, the induced RKHSHrgr is dense in Lp(K;µ) with
all Borel probability measure µ w.r.t. p-norm, defined as

||f ||p =

(∫
|f(x)|pdµ(x)

) 1
p

Now, from the assumption 4, we know h∗rgr (yd) is bounded
for all possible gr, we have∫

qGr (yd)|h∗rgr (yd)|2dyd <∞

This means h∗rgr ∈ L2(K, µGr ), where µGr is the probabil-
ity measure with density qGr (yd)

From the Lp−universality, there exists a function h̃∗rgr ∈
Hrgr , such that for any given ε > 0,

||h∗rgr − h̃∗rgr ||2 < ε

Let’s define S̃Krgr is the SKSD-rg with the specific kernel-
ized test function h̃∗rgr , and from the optimality of SKSD-rg,
we have

SKrgr ≥ S̃Krgr

Therefore, we have

0 ≤ Srgr − SKrgr

≤ Srgr − S̃Krgr

= Eq[(srp(x)− srq(x))(h∗rgr (x
Tgr)− h̃∗rgr (xTgr))]

≤
√

Eq[(srp(x)− srq(x))2]︸ ︷︷ ︸
Cr

×
√

Eq[(h∗rgr (xTgr)− h̃∗rgr (xTgr))2]

= Cr

√∫
qGr (yd,y−d)(h

∗
rgr (yd)− h̃∗rgr (yd))2dy

= Cr||h∗rgr − h̃∗rgr ||2 < Crε

From assumption 2, we know srp(x) − srq(x) is square in-
tegrable for all possible r. Therefore, let’s define C =
maxr∈SD−1 Cr, then,

0 ≤ Srgr − SKrgr < Cε

F. Theory related to active slice g
F.1. Optimal test function for PSD

Proposition 4 (Optimality of PSD). Assume the assumption
1− 3 (density regularity) are satisfied, then the optimal test
function for PSD given Or is proportional to the projected
score difference, i.e.

f∗r (x) ∝
(
srp(x)− srq(x)

)
(51)

Thus,

PSD(q, p;Or) =
∑
r∈Or

Eq[(srp(x)− srq(x))2] (52)

if the coefficient of f∗r to be 1.

Proof. From the Stein identity (Eq.23), we can re-write the
inner part of the supremum of Eq.9 as

Eq[srp(x)fr(x) + rT∇xfr(x)]

=Eq[(srp(x)− srq(x))fr(x)]
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Then, we can upper bound the PSD (Eq.9) as the following∑
r∈Or

Eq[(srp(x)− srq(x))fr(x)]

≤
∑
r∈Or

√
Eq[(srp(x)− srq(x))2]

√
Eq[(fr(x))2]

by Cauchy-Schwarz inequality. It is well-known that the
equality holds when fr(x) ∝ (srp(x)− srq(x))

F.2. Proof of Theorem 3

Proof. The key to this proof is to notice that h∗rgr is the
conditional mean of f∗r w.r.t. the transformed distribution
qGr . By using the similar terminology of proposition 1, and
let srp = srp(x) for abbreviation. Then,

Eq[(srp − srq)f∗r (x)]− Eq[(srp − srq)h∗rgr (xTgr)]

=

∫
q(x)[(srp − srq)2 − (srp − srq)h∗rgr (xTgr)]dx

=

∫
qGr (yd)[

∫
qGr (y−d|yd)(srp(G−1r y)− srq(G−1r y))2dy−d

−
∫
qGr (s

r
p(G

−1
r y)− srq(G−1r y))dy−d︸ ︷︷ ︸
h∗rgr (yd)

h∗rgr (yd)]dyd

=

∫
qGr (yd)[

∫
qGr (y−d|yd)(f∗r (G−1r y)− h∗rgr (yd))2]dy

=Eq[(f∗r (x)− h∗rgr (xTgr))2] ≥ 0

where the 3rd equality is due to the fact that h∗rgr is the
conditional mean of f∗r . Thus,

PSD − Sgr
=
∑
r∈Or

Eq[(srp − srq)f∗r (x)]− Eq[(srp − srq)h∗rgr (xTgr)]

=
∑
r∈Or

Eq[(f∗r (x)− h∗rgr (xTgr))] ≥ 0

F.3. Proof of Theorem 4

Before we give the details, we introduce the main inequality
and its variant for the proof.

Lemma 3 (Poincaré Inequality). For a probabilistic distri-
bution p that satisfies assumption 7, for all locally Lipschitz
function f(x) : X ⊆ RD → R, we have the following
inequality

Varp(f(x)) ≤ Cp
∫
p(x)||∇xf(x)‖2dx

where Cp is called Poincaré constant that is only related to
p.

One should note that the assumption of log concavity of p is
a sufficient condition for Poincaré inequality, which means
it may be applied to a broader class of distributions. But it
is beyond the scope of this work.

Due to the form of optimal test functions of SSD-g, we need
to deal with the transformed distribution qGr and its condi-
tional expectations (see Eq.8). Unfortunately, the original
form of Poincaré inequality cannot be applied. In the fol-
lowing, we introduce its variant called subspace Poincaré
inequality (Constantine et al., 2014; Zahm et al., 2020; Par-
ente et al., 2020) to deal with the conditional expectation.
But before that, we need to make sure the transformed distri-
bution and its conditional density still satisfy the conditions
of Poincaré inequality, i.e. log concavity.

Lemma 4 (Preservation of log concavity). Assume distri-
bution q(x) = exp(−V (x)) is log-concave. With arbitrary
orthogonal matrix G and corresponding transformed dis-
tribution qG, the conditional distribution qG (y−d | yd) is
also log-concave for all d = 1, . . . , D.

Proof. Assume we have y = Gx. Thus, by change
of variable formula, qG(y) = q(x) = q

(
G−1y

)
=

exp
(
−V

(
G−1y

))
. Thus, the log conditional distribution

log qG (y−d | yd) = −V
(
G−1y

)
− log qG (yd)

We inspect its Hessian w.r.t y−d

∇2
y−d

(
V
(
G−1y

)
+ log qG (yd)

)
=∇2

y−d

(
V
(
G−1y

))
=∇y−d

(
G\dV

′ (G−1y))
=G\dV

′′ (G−1y)GT
\d

where G\d = [g1, . . . , gd−1, gd+1, . . . , gD]
T and

V ′
(
G−1y

)
= ∇G−1yV

(
G−1y

)
. We already know

that V (·) is a convex function. Thus, for all u ∈ RD,
uTV ′′(x)u ≥ 0, therefore,

uTG\dV
′′ (G−1y)GT

\du = lTV ′′
(
G−1y

)
l ≥ 0

where l = GT
\du.

Now, we can introduce the subspace Poincaré inequality

Lemma 5 (Poincaré inequality for conditional expectation).
Assume the assumption 2,4 (density regularity), 7 (Poincaré
inequality condition) are satisfied, with arbitrary orthogonal
matrix G,y = Gx and yd = xTg, we have the following
inequality∫

qG (y−d | yd)
[
f∗r
(
G−1y

)
− h∗rgr (yd)

]2
dy−d

≤CydEqG(y−d|yd)

[∥∥G\d∇f∗r ∥∥2]
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where Cyd is the Poincaré constant, G\d =

[a1, . . . ,ad−1,ad+1, . . . ,aD]
T is the orthogonal ma-

trix G excluding ad = g and f∗r , h∗rgr are the optimal
test functions defined in proposition 4, 1 respectively with
coefficient 1.

Proof. From lemma 4, we know qG (y−d | yd) is a log-
concave distribution. Therefore, it satisfies the Poincaré
inequality (lemma.3). We have∫

qG (y−d | yd)
[
f∗r
(
G−1y

)
− h∗rgr (yd)

]2
dy−d

=V arqG(y−d|yd)(f
∗
r (G−1y))

≤Cyd
∫
qG (y−d | yd)

∥∥∇y−df
∗
r

(
G−1y

)∥∥2 dy−d
=Cyd

∫
qG (y−d | yd)

∥∥G\d∇G−1yf
∗
r

(
G−1y

)∥∥2 dy−d
The first equality comes from the fact that h∗rgr (yd) is ac-
tually a conditional mean of f∗r (G−1y), and the inequality
comes from the direct application of Poincaré inequality on
qG(y−d|yd) and f∗r (G−1y).

With the above tools, it is now easy to prove theorem 4.

Theorem 4

Proof. We can re-write the inner part of controlled approxi-
mation (Eq.11) in the following:∫

qGr (yd,y−d)
[
f∗r
(
G−1r y

)
− h∗rgr (yd)

]2
dy

=

∫
qGr (yd)EqGr (y−d|yd)[(f

∗
r (G−1r y)− hrgr (yd))2]dy

≤
∫
qGr (yd,y−d)Cyd

∥∥Gr\d∇f∗r
∥∥2 dy

≤Csup
∫
qGr (yd,y−d)

∥∥Gr\d∇f∗r
∥∥2 dy

=Csup

∫
q(x) tr

[(
Gr\d∇f∗r

) (
Gr\d∇f∗r

)T ]
dx

=Csup tr
[
Gr\dHrG

T
r\d

]
where the first inequality is directly from lemma 5 and the
second inequality is from the definition of Csup.

To minimize this upper bound, we can directly use the
theorem 2.1 (Sameh & Tong, 2000) by setting B = I
and X = GT

r\d. Therefore, we only need to check if
Gr\dG

T
r\d = I . This is trivial as Gr is an orthogonal

matrix. Thus, the proof is complete.

G. Theory related to active slice r
G.1. Proof of proposition 2

First, from the theorem 3, we have

PSDr ≥ Sr,g
Thus, we can establish the following lower bound

Sr1,gr1 − Sr2,gr2
≥Sr1,gr1 − PSDr2
= Sr1,gr1 − PSDr1︸ ︷︷ ︸

controlled approximation

+PSDr1 − PSDr2

Thus, from theorem 4, we can obtain

Sr1,gr1 − PSDr1

=− Eq
[
(f∗r1(x)− h∗r1gr1 (xTgr1)2)

]
≥− Csuptr(Gr1\dHr1G

T
r1\d)

=− Csuptr(H) + gTr1Hr1gr1︸ ︷︷ ︸
≥0

≥− Csuptr(Hr1)

where the first inequality is from the upper bound of con-
trolled approximation (theorem 4) and gTr1Hr1gr1 ≥ 0 is
due to the positive semi-definiteness of Hr1 . Assume we
have an orthogonal basisOr1 that contains r1, thus, for each
r ∈ Or1 , we have tr(Hr) ≥ 0. Then, we can show

tr(Hr1) ≤
∑

r∈Or1

tr(Hr)

=
∑

r∈Or1

tr(Eq[∇xf
∗(x)rrT∇xf

∗(x)T ])

= tr(Eq[∇xf
∗(x)

∑
r∈Or1

rrT∇xf
∗(x)T ])

= tr(Eq[∇xf
∗(x)∇xf

∗(x)T ])

=

D∑
i=1

ωi = Ω

where {ωi}Di are the eigenvalues of
Eq[∇xf

∗(x)∇xf
∗(x)T ], f∗(x) = sp(x) − sq(x)

and
∑

r∈Or1
rrT = I since r ∈ Or1 are orthogonal to

each other.

Thus, we can substitute it back, we have

Sr1,gr1 − Sr2,gr2 ≥ PSDr1 − PSDr2 − CsupΩ

G.2. Proof of theorem 5

Proof. From proposition 4 we know f∗r (x) =(
srp(x)− srq(x)

)
, thus, we can substitute into PSD
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(Eq.9), we get

PSDr = max
r∈SD−1

Eq
[(

(sp(x)− sq(x))
T
r
)2]

To maximize it, we consider the following constraint opti-
mization problem.

max
r

Eq
[(

(sp(x)− sq(x))
T
r
)2]

s.t. ‖r‖2 = 1

We take the derivative of the corresponding Lagrange multi-
plier w.r.t. r,

Eq
[
∇r

(
(sp(x)− sq(x))

T
r
)2]
− 2λr = 0

⇒Eq
[
(sp(x)− sq(x))

T
r (sp(x)− sq(x))

]
= λr

⇒Eq
[
(sp(x)− sq(x)) (sp(x)− sq(x))

T
]

︸ ︷︷ ︸
S=Eq [f∗(x)f∗(x)T ]

r = λr

⇒Sr = λr

This exactly the problem of finding eigenpair for matrix S.
Let’s assume r = v which is the eigenvector of S with
corresponding eigenvalue λ. Substituting it back to PSD,
we have

Eq
[(

(sp(x)− sq(x))
T
r
)2]

=Eq
[
(sp(x)− sq(x))

T
r (sp(x)− sq(x))

]T
r

=rTSr

=λvTv = λ

Thus, to obtain the active slice r, we only need to find the
eigenvector of S with the largest eigenvalue.

G.3. Greedy algorithm is eigen-decomposition

Corollary 6.2 (Greedy algorithm is eigen-decomposition).
Assume the conditions in theorem 5 are satisfied, then find-
ing the orthogonal basis Or from the greedy algorithm is
equivalent to the eigen-decomposition of S.

Proof. Assume we have obtained the active slice r from
theorem 5, thus, we have Sr = λr. The greedy algorithm
for r′ can be translated into the following constrained opti-
mization

max
r′

Eq
[(

(sp(x)− sq(x))
T
r′
)2]

s.t. ||r′||2 = 1

rTr′ = 0
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Figure 5. The test power difference with good r and fixed r.

By using Lagrange multipliers (µ, γ), and then take deriva-
tive w.r.t. r′,

Sr′ = µr′ + γr

Then taking the inner product with r in both side, and notice
S is a symmetric matrix, we obtain

γ = 〈Sr′, r〉
= 〈r′,STr〉
= 〈r′, λr〉 = 0

Therefore, the constrained optimization is the same as the
one in theorem 5, which is to find a eigenvector of S that
is different from r. Repeat the above procedure, the final
resulting Or is a group of eigenvectors of S.

H. Experiment Details
For all experiments in this paper, we use RBF kernel with
median heuristics.

H.1. Benchmark GOF test

For gradient based optimization, we use Adam (Kingma
& Ba, 2014) with learning rate 0.001 and β = (0.9, 0.99).
We use random initialization for SKSD-g+GO by drawing
gr from a Gaussian distribution before normalizing them
to unit vectors. For kernel smooth and gradient estimator,
we use RBF kernel with median heuristics. Although the
algorithm 1 states that small Gaussian noise are needed for
active slices, in practice, we found that active slices still
have the satisfactory performance without the noise.

The significance level for GOF test α = 0.05, and the
dimensions of the benchmark problems grow from 2 to 100.
We use 1000 bootstrap samples to estimate the threshold
and run 100 trials for each benchmark problems.
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H.2. RBM GOF test

We set significance level α = 0.05 and use 1000 bootstrap
samples to compute the threshold. For methods that re-
quire training (SKSD based method), we need to collect
some training samples. Following the same settings as
(Gong et al., 2021), to avoid over-fitting to small training
set, we collect the pseudo-samples during the early burn-in
stage. Note that these pseudo-samples should not be used
for testing, as they are not drawn from the q. We collect
2000 samples. For gradient based optimization, we use
the same optimizer as benchmark GOF test with the same
hyper-parameters. The batch size is 100. For initialization
of SKSD+GO, we found that if the slices are initialized
randomly, the gradient optimization fails to find meaning-
ful slices within a reasonable amount of time, therefore,
we have initialize the r and gr as one-hot vectors and set
r = gr. For pruning ablation study, if the pruning level is
set to 50, we initialize r and gr to be the identity matrix.
The default number of gradient optimization for SKSD+GO
is 50. For active slice method, we directly use the active
slices without any further optimizations. We run 100 trials
for GOF test with 1000 test samples per trial.

(Gong et al., 2021) reports SKSD-rg+GO has near optimal
test power at perturbation level 0.01. The performance
difference is because they train the SKSD-rg with 200 batch
sizes per burn-in step. Namely, the training set size are
200× 2000 = 400000, which is 200 times larger than ours.
They also run 2000 iterations, which is equivalent to 100
epochs in our settings.

Figure 5 shows the test power difference with optimized
r and fixed r. The legend with rand annotation implies
we randomly initialized r as one-hot vectors and fix them
while updating gr using GO or active slice. Without rand,
it means both r and gr are optimized. We only use 3 r
for active slice method and 50 for gradient-based counter-
part. For active slice method with pruning (randSKSD-g+Ex
or randSKSD-g+KE), despite we show that any finite ran-
dom slices define a valid discrepancy, it is clear that the
performance is quite poor with random initialized r’s. It
indicates that using active slices of gr alone cannot com-
pensate the poor discriminating power of the random r’s.
Although SKSD-rg+GO demonstrates an advantage com-
pared to randSKSD-g+GO, the performance boost is less
clear compared to active slices method. This is because we
do not use any pruning for randSKSD-g+GO, and adopt
orthogonal basis Or = I . Despite the orthogonal basis
may not capture the important directions, they can provide
reasonable discriminating power due to their orthogonality
from each other. In summary, using good directions for r is
advantageous compared to fixed r.

H.3. Model learning: Training ICA

We use Adam optimizer for the model and slice directions
with learning rate 0.001 and β = (0.9, 0.99). We totally
run 15000 iterations. The batch size is 100. We evaluate
our method in dimension 10, 80, 100 and 150. For more
stable comparisons, we initialized the weight matrix W
until its conditional number is smaller than its dimensions.
For active slice method, we use randomly sampled 3000
data from training set to estimate the score difference and
the matrices used for eigen-decomposition.

For SKSD-rg+GO, we initialize the r to be a group of one-
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hot vectors to form identity matrix and gr = r. We use an
adversarial training procedure that updates both r and gr
using Adam once per iteration before we update the model.
For SKSD-g+GO, we fix the orthogonal basis Or to be the
identity matrix and only update gr. Each results are the
average of 5 runs of training.

As for the reason why SKSD-g+Ex+GO performs worse
than +KE+GO, we suspect that +Ex only focus on direc-
tions with high discriminating power. However, high dis-
criminating power is not necessarily good for model learn-
ing. It may focus on very small area that is different from
the target but ignore the larger area with small difference.
Because our algorithm for finding basis is greedy, this means
it can ignore the generally good directions if they are not
orthogonal to the directions with high discriminating power.

From figure 7, we can observe there is a spike of SKSD-
g+Ex+GO value at every 200 iterations due to the new
active slices found at the beginning of each training epoch.
However, the value drops significantly fast to the one be-
fore new active slices. This indicates the Ex indeed finds
directions with large discriminating power but they do not
represents good directions for learning due to the fast drop
of SKSD values. On the other hand, the directions provided
by KE does not give the highest discriminating power, but
it can find generally good directions of gr using GO refine-
ment steps within a few iterations. This means the directions
found by KE indeed represents good directions for learning
as the model cannot decrease this value quickly. We guess
this is due to the smooth estimation of KE, where very small
areas with high discriminating power are smoothed out.

Figure 6 shows the ICA training curve of other dimensions.
We can observe the convergence speed of LSD deteriorates
as the dimension increases due to the poor test function in
early training stage, whereas SKSD-g+KE+GO maintains
the fastest convergence in high dimensions.

I. Perturbation of eigenvectors
The active slice method (algorithm 1) is mainly based on
the eigenvalue-decomposition of matrixHHH , where

HHH =

∫
q(xxx)∇xxxf∗r (xxx)∇xxxf∗r (xxx)T dxxx

Obtaining the analytic form ofHHH involves complicated inte-
gration, so Monte Carlo estimation is often used for approx-
imation. We denote it as ĤHH , with M being the number of
samples:

ĤHH =
1

M

M∑
i=1

[∇xxxif∗r (xxxi)∇xxxif∗r (xxxi)
T ] (53)

Let ggg be the top eigenvector of HHH and ĝgg be the top eigen-

vector of ĤHH . Let λ1, λ2 be the top two eigenvalues of HHH .
Assuming the error matrix EEE = ĤHH −HHH is deterministic,
(Yu et al., 2015) proved that

||ggggggT (III − ĝggĝggT )||F ≤
2||EEE||op
λ1 − λ2

(54)

where we define the operator norm for a given n× n matrix
AAA as

||AAA||op = sup{||AAAxxx|| : x ∈ Rn with ||xxx|| = 1}
We also have (with proof below)

min
ε∈{−1,1}

||ggg − εĝgg||2 ≤
√

2||ggggggT (III − ĝggĝggT )||F (55)

Inequality 54 and 55 imply that,

min
ε∈{−1,1}

||ggg − εĝgg||2 ≤ 23/2
||ĤHH −HHH||op
λ1 − λ2

(56)

I.1. Proof of inequality 55

Proposition 5. Let S andU be two matrices with orthonor-
mal columns and equal rank r. Let ΠS (resp. ΠU ) indi-
cates the projection matrix to the column space of S (resp.
U ). Then

min
O∈Rr×r orthogonal

||S −UO||F ≤
√

2||ΠS(I −ΠU )||F
(57)

When r = 1, we denote OOO as ε. Following the definition
of orthogonal matrix, we have εT ε = ε2 = 1, hence ε ∈
{−1, 1}. Substituting S = ggg and UUU = ĝgg, we get inequality
55.

Proof. LetWΣV T be a singular value decomposition of
STU , and useO = VW T .Now,

||S −UO||2F = Tr((S −UO)T (S −UO))

= ||S||2F + ||U ||2F − 2 Tr(OSTU)

= 2r − 2 Tr(Σ)

where r is the rank of S and U . On the other hand, by
Pythagora’s theorem

||ΠS(I −ΠU )||2F = ||ΠS ||2F − ||ΠSΠU ||2F
= r − ||ΠSΠU ||2F
= r − ||SSTUUT ||2F
= r − Tr(Σ2)

We claim that the entries of Σ are bounded above by 1, such
that Tr(Σ) ≤ Tr(Σ2), then

min
O∈Rr×r orthogonal

||S −UO||2F ≤ 2r − 2 Tr(Σ)

≤ 2r − 2 Tr(Σ2)

= 2||ΠS(I −ΠU )||2F
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Taking the square root of both sides yields the desired
inequality. To prove the claim, let ω = [S,S′] and
Ũ = [U ,U ′] be orthogonal matrices. Then STU is
a diagonal block in ωT Ũ . It follows that maxi Σi,i =

||STU ||op ≤ ||ωT Ũ ||op = 1

From Eq.56, we can see if the top two eigenvalues are simi-
lar, then their corresponding eigenvectors can be arbitrary
different. In terms of our active slice algorithm, it means
if the most discriminating directions for two distributions
q, p have similar ”magnitude of difference”, our algorithm
may fail under Monte-carlo approximation. On the other
hand, if the eigenvalues are different, Eq.56 guarantees that
eigenvectors from Ĥ are not far-away from the truth.


