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Abstract

Bias in ranking systems, especially among the top
ranks, can worsen social and economic inequali-
ties, polarize opinions, and reinforce stereotypes.
On the other hand, a bias correction for minor-
ity groups can cause more harm if perceived as
favoring group-fair outcomes over meritocracy.
Most group-fair ranking algorithms post-process
a given ranking and output a group-fair ranking.
In this paper, we formulate the problem of un-
derranking in group-fair rankings based on how
close the group-fair rank of each item is to its orig-
inal rank, and prove a lower bound on the trade-
off achievable for simultaneous underranking and
group fairness in ranking. We give a fair rank-
ing algorithm that takes any given ranking and
outputs another ranking with simultaneous under-
ranking and group fairness guarantees comparable
to the lower bound we prove. Our experimental
results confirm the theoretical trade-off between
underranking and group fairness, and also show
that our algorithm achieves the best of both when
compared to the state-of-the-art baselines.

1. Introduction

Search and recommendation systems have revolutionized
the way we consume an overwhelming amount of data and
find relevant information quickly (Brin & Page, 1998; Ado-
mavicius & Tuzhilin, 2005). They help us find relevant
documents, news, media, people, places, products and rank
them based on our interests and intent (Kofler et al., 2016;
Pei et al., 2019). Information presented through ranked lists
influences our worldview (Pariser, 2011; Tavani). Rank-
ings not only influence the users who consume them but
also act as vehicles of opportunities for the items being
ranked. Biased ranking of news, people, products raises
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ethical concerns and can potentially cause long-term eco-
nomic and societal harm to demographics and businesses
(Noble, 2018). Many state-of-the-art rankings that maxi-
mize utility or relevance reflect existing societal biases and
are often oblivious to the societal harm they may cause by
amplifying such biases. When these systems amplify so-
cietal biases observed in their training data, they worsen
social and economic inequalities, polarize opinions, and
reinforce stereotypes (O’Neil, 2016). In addition to ethi-
cal concerns, there are also legal obligations to remove bias.
Disparate impact laws prohibit even unintentional but biased
outcomes in employment, housing, and many other areas
if one group of people belonging to a protected group is
adversely affected compared to another (Barocas & Selbst,
2016). Protected groups could vary for specific statutes and
include race, gender, age, religion, national origin, etc.

Fairness in ranking. Fairness in ranking has three broad
requirements: sufficient presence of items belonging to dif-
ferent groups, consistent treatment of similar individuals,
and proper representation to avoid representational harm to
members of protected groups (Castillo, 2019). The first and
the third requirements are about fairness to groups, whereas
the second requirement is about fairness to individuals. For
example, diversity alone in top ranks satisfies sufficient pres-
ence but need not provide consistent treatment and proper
representation in the way the items are ranked. Fair ranking
algorithms can be divided into two categories. Re-ranking
algorithms that modify a given ranking of high utility to
incorporate fairness constraints while trying to preserve the
original utility, and learning-to-rank algorithms that incor-
porate fairness and utility objectives together into learning a
ranker from training data. Re-ranking can be used to post-
process the prediction as well as to pre-process the training
data of any given ranker.

Most of the fair ranking algroithms are designed to output
group-fair ranking. Group fairness in machine learning lit-
erature has focused on outcome-based or proportion-based
definitions of fairness (e.g., demographic parity, equality
of opportunity) (Hardt et al., 2016; Barocas et al., 2019).
Although group-fairness is a desirable goal, affirmative ac-
tion to achieve group-fairness is often misinterpreted as
non-meritocratic by individuals and requires a deeper un-
derstanding (Crosby, 2004). In this context, we argue that
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it is important to measure the worst-case effect of group-
fair ranking on the individuals, which is not addressed by
previous work.

Our contributions. To the best of our knowledge, our
paper is the first to study how group-fair re-ranking affects
individual ranks in the worst case. Previous work has looked
at re-ranking or learning-to-rank with group-fairness and
aggregate individual-fairness (or consistency) constraints.
Our group-fairness definition ensures sufficient presence of
all groups, similar to previous work, but we give a new, nat-
ural definition called underranking to study how re-ranking
affects the merit-based ranks of individual items in the worst
case. Our main contributions can be summarized as follows.

• We define underranking based on the worst-case deviation
from the true, merit-based (or color-blind) rank of any
individual item (see Definition 2.2) during re-ranking for
group fairness. This directly captures the loss of visibility
suffered by individual items of high merit in the process
to achieve high group-fairness. We prove a lower bound
on the trade-off achievable between underranking and
group-fairness simultaneously.

• We propose a re-ranking algorithm that takes a given
merit-based (or color-blind) ranking and outputs an-
other ranking with simultaneous underranking and group-
fairness guarantees, comparable to the lower bound men-
tioned above. Our algorithm is fast, flexible, and can
accommodate multiple groups, each with a different con-
straint on their group-wise representation.

• We do extensive experiments to show that our algorithm
achieves the best of both underranking and group-fairness
compared to the baselines on standard real-world datasets
such as COMPAS recidivism and German credit risk.
Moreover, our algorithm runs significantly faster than the
baselines.

Related work. The two most important baselines related
to our work are the group-fair re-ranking algorithms (Celis
et al., 2018; Zehlike et al., 2017). Fair ranking to maximize
ranking utility subject to upper and lower bounds on group-
wise representation in the top k ranks, for all values of k, can
be framed as an integer optimization problem (Celis et al.,
2018). The authors propose an exact dynamic program-
ming (DP)-based algorithm, and a greedy approximation
algorithm to achieve fairness in ranking for intersectional
subgroups. The fair top-k ranking problem gives another
formulation for fair re-ranking of a given true or color-blind
ranking based on numerical quality values and a given k,
so that the top-k re-ranking maximizes certain selection
and ordering utilities subject to group-wise representation
constraints (Zehlike et al., 2017). The authors give an effi-

cient algorithm called FA*IR to solve the fair top-k ranking
problem.

Fair ranking has also been studied in the learning-to-rank
(LTR) setting, where the output ranking is probabilistic, so
the fairness and utility guarantees are often on average in-
stead of the worst case. Given a query-document pair, the
probability of each document being ranked at the top rank is
called its exposure. While the traditional ListNet framework
simply minimizes a loss function based on the items’ true
and predicted exposure (Cao et al., 2007), an extension of
this, DELTR (Zehlike & Castillo, 2020), learns fair ranking
via a multi-objective optimization that maximizes utility
and minimizes disparate exposure for different groups of
items for group-fairness or different items for individual-
fairness. This general learning-to-rank framework facilitates
optimizing multiple utility metrics while satisfying equal ex-
posure, and Fair-PG-LTR (Singh & Joachims, 2019) learns
a ranking that satisfies fairness of exposure. Aggregate or
average-case guarantees in ranking are more suited to the
applications in search and recommendation, whereas the
worst-case guarantees are more suited to the applications in
recruitment, school admissions, healthcare etc. where the
worst-case fairness to individuals could be critical.

There is related work on defining and maximizing various
group-fairness metrics over each prefix of the top k ranks
(Yang & Stoyanovich, 2017), for a given k, using an opti-
mization algorithm to learn fair representations (Zemel et al.,
2013). There are also other measures of group-fairness
in ranking based on pairwise comparisons (Narasimhan
et al., 2020; Beutel et al., 2019). Recent work has also
studied fairness-aware ranking in search and recommenda-
tions for real-world recruitment tools using fairness metrics
based on skew in the top k and Normalized Discounted
KL-divergence (NDKL) divergence (Geyik et al., 2019).
Fairness and ranking utility trade-offs have also been stud-
ied via counterfactually fair rankings (Yang et al., 2020).

2. Underranking and Group Fairness

Preliminaries. Let M,N 2 Z+ and N 6 M . Then, a
ranking is an assignment of M ranks to N items such that
each rank (denoted by a number in [M ]) is assigned to
at most one item (denoted by a number in [N ]) and each
item is assigned exactly one rank. Whenever a rank is not
assigned to any item, we call it an empty rank. Note the
whenever N = M , there are no empty ranks in the rank-
ing. We say that rank i is lower than rank j if i < j, and
rank i is higher than rank j if i > j. In a ranking the
top m ranks refer to the ranks (1, 2, . . . ,m), each prefix of
the top m ranks is the set {(1, 2, . . . , i)|i 2 {1, . . . ,m}},
every k consecutive ranks in the top m ranks is the set
{(i+ 1, i+ 2, . . . , i+ k)|i 2 {0, . . . ,m� k}}, ith block
of size k is the ranks ((i� 1)k + 1, (i� 1)k + 2, . . . , (i�



On the Problem of Underranking in Group-Fair Ranking

1)k + k), and hence, top d blocks of size k is the set
{((i�1)k+1, (i�1)k+2, . . . , (i�1)k+k)|i 2 {1, ..., d}}.
A true ranking is the ranking of the items based on a mea-
sure of merit of the items. A re-ranking algorithm rearranges
the items in the true ranking and outputs another ranking
of the items with some desired properties. We note that
a true ranking is not always available for the real-world
datasets. In our experiments, we use some natural substi-
tutes for the true ranking; see Section 3 for details. An
item’s true rank is its rank in the true ranking. The set of
N items is partitioned into ` groups based on the sensitive
attributes of the items. We denote each group by the sub-
script l whenever we refer to a group l 2 [`]. In all that
follows, ↵l, �l 2 [0, 1] such that ↵l > �l, and � > 1. The
fairness constraints are based on the representation (number
of items) from each group in the ranking, and are denoted
by ↵ = (↵1,↵2, . . . ,↵`) and � = (�1,�2, . . . ,�`), where
↵l,�l represent the fairness constraints for group l. And
for any c 2 R, c↵ = (c↵1, c↵2, . . . , c↵`), and similary
c� = (c�1, c�2, . . . , c�`).

We now formally define the notion of group fairness of a
ranking of N items.
Definition 2.1 (Group Fairness). A ranking is said to satisfy
(↵,�, k) group fairness if every k consecutive ranks have
at most ↵lk and at least �lk items from group l, for every
group l 2 [`].

That is, each element, ranks (i+1, ..., i+k), in the set of ev-
ery k consecutive ranks in top N ranks is such that for each
group l 2 [`], at most ↵lk and at least �lk of these ranks are
assigned to the group l. The set of top bN/kc blocks of size
k is a strict subset of the set of every k consecutive ranks
in top N ranks. Therefore, any ranking that satisfies group
fairness constraints for every k consecutive ranks in top N

ranks also satisfies group fairness constraints for of the top
bN/kc blocks of size k.

Using the notion of underranking, we would like to capture
how much an item has been displaced from its true rank
during re-ranking for group fairness.
Definition 2.2 (Underranking). A ranking satisfies � under-
ranking if the rank of each item is at most � times its true
rank.

We remark that unless the true ranking satisfies the group
fairness conditions, some items with high merit must suffer
a loss of visibility during the process of re-ranking for group
fairness. That is, the output group fair ranking has under-
ranking strictly greater than 1. This manifests the trade-off
between the group fairness and the underranking in ranking.

Closely related to underranking is the well studied notion
of PRECISION@K of ranking (Järvelin & Kekäläinen, 2000;
Manning et al., 2008; Zehlike & Castillo, 2020). For a given
ranking, PRECISION@K is defined as the number of items

A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6
a) True Ranking

b) Group-Fair Ranking A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6

Group-Fair Rank: 1 2 3 4 5 6 7 8 9 10 11 12

Precision@K      nDCG@K      Underranking = � 0.5 � 0.987 11
6 � 1.83

True Rank: 1 2 3 4 5 6 7 8 9 10 11 12

A1 B1 A2 A3 B2 B3 B4 B5 B6 B7 B8 B9

A1 B1 B2 B3 A2 B4 B5 B6 A3 B7 B8 B9

Group-Fair Rank: 1 2 3 4 5 6 7 8 9 10 11 12

Precision@K      nDCG@K      Underranking = � 0.5 � 0.995 9
4 = 2.25

True Rank: 1 2 3 4 5 6 7 8 9 10 11 12

R1)

R2)

a) True Ranking

b) Group-Fair Ranking

Figure 1: High ranking utility does not imply better (lower)
underranking in group-fair rankings.

in the top K ranks of the true ranking which are still in the
top K ranks after re-ranking. We get the following relation
between underranking and PRECISION@K.
Corollary 2.3. A ranking satisfying � underranking also
has PRECISION@K at least bK/�c, 8K 2 Z+.

Proof. Fix a ranking having � underranking. By definition,
the top bK/�c items in the true ranking get displaced at most
to the rank bK/�c � 6 K. Hence, at least the top bK/�c
items in the true ranking are also in the top K ranks in
ranking with � underranking. Therefore, PRECISION@K is
at least bK/�c.

We note that our definition of group fairness in ranking is
slightly different from previous definitions in (Zehlike et al.,
2017; Celis et al., 2018; Castillo, 2019). There, the group
fairness constraints are at every prefix of the top k ranking,
whereas, in Definition 2.1 group fairness constraints are for
every k consecutive ranks. Our notion of group fairness has
the desirable property that even if items from top few ranks
are removed from the ranking, the remaining ranking still
satisfies the group fairness constraints. Using this notion
of group fairness, we propose Algorithm 1 that achieves
simultaneous group fairness and underranking guarantees.
Such theoretical guarantees are not available for the re-
ranking algorithms with prefix group fairness constraints.
We will also see in Section 3 that the algorithm proposed
in this paper achieves better representation of the protected
groups in the prefixes of the top k ranking as well.

We also note here that, even though low (better) underrank-
ing in the top K ranks implies high PRECISION@K, the
converse need not be true. Consider two pairs of a true
ranking and its corresponding group-fair ranking shown in
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Figure 1, R1(a), R1(b) and R2(a), R2(b) with items from
groups A and B. Both R1(b) and R2(b) satisfy proportional
representation (50% of each group in R1 and 25% A’s and
75% B’s in R2) in every prefix of the ranking (ignoring the
rounding errors), as well as in every k consecutive ranks,
for a reasonable choice of k, which is 4 or 8. If we assume
that in both R1(a) and R2(a), the merit of the item ranked at
rank i is 1� 0.01 ⇤ (i� 1), then the nDCG (see Section 3
for the formula), which is also a ranking utility metric like
PRECISION@K, is more for R2 than R1. We also note that,
in both R1 and R2, the PRECISION@K in any prefix of the
top 12 ranks is at least 0.5. From these two examples we
observe that even though the utility of the group-fair ranking
of R2 is greater than or equal to that of R1, the underrank-
ing in R2 is higher (worse) than that of R1. Hence, high
ranking utility may not imply better underranking. This is
also observed in our experiments on the real-world datasets.

2.1. Theoretical Results

Our first main result is a lower bound on the underranking
when satisfying group fairness in blocks of size k.
Theorem 2.4 (Lower bound). Fix ` 2 Z+. For each
group l 2 [`], fix ↵l,�l 2 (0, 1] \ Q such that ↵l > �l,P

l2[`] ↵l > 1, and
P

l2[`] �l 6 1. Fix k 2 Z+. For every
n0 2 Z+, there exists an n such that n > n0, and there
exists a true ranking of the N = `n items grouped into `

groups of n items each, such that the following holds. Any
ranking satisfying � underranking (w.r.t. the true ranking)
and (↵,�, k) group fairness in the top �n

k blocks of size k

must have � > 1
min{↵min,1�

P
l 6=l⇤ �l} , where ↵min = minl ↵l

and l⇤ = argminl �l.

Our next main result is a fair ranking algorithm that takes a
true ranking and outputs another ranking with underranking
and group fairness guarantees in any k consecutive ranks.
Theorem 2.5 (Trade-off 1). Given a true ranking of N
items grouped into ` disjoint groups, with each group having
at least n items, and fairness parameters k 2 Z+ and
↵l,�l, 8l 2 [`], where ↵l,�l define the upper and lower
group fairness constraints for the group l respectively such
that 0 6 �l 6 ↵l 6 1,

P
l2[`] ↵l > 1,

P
l2[`] �l < 1. Let

↵min := minl ↵l, ↵max := maxl ↵l, and l⇤ = argminl �l.

Let ✏ := 2
k ·max

⇢⇣
1 + `P

l2[`] ↵l�1

⌘
,

⇣
1 + `

1�
P

l2[`] �l

⌘
,

maxl2[`]

⇣
1 + 2

↵l��l

⌘�
.

Then there exists a polynomial time algorithm to compute a
ranking satisfying both of the following simultaneously,

1. 1
min{↵min� 1

b✏k/2c ,(1�
P

l 6=l⇤ �l)� `�1
b✏k/2c}

underranking,

2. ((1 + ✏)↵, (1� ✏)�, k) group fairness in the topj
n

↵max

k
� b✏k/2c ranks.

Algorithm 1 ALG
Input: A true ranking of the N items and parameters

↵l,�l, 8l 2 [`], and k satisfying the conditions in
Theorem 2.5.

1 Set ✏,↵min, l⇤ as in Theorem 2.5, set B :=
⌅
✏k
2

⇧

2 Set b := min
n
b↵minBc , B �

P
l 6=l⇤

d�lBe
o

3 Set M := dN/be ·B
4 for i := dN/be down to 1 do

5 for j := 1 to min{b,N � (i� 1)b} do

6 Move item at rank (i� 1)b+ j to rank (i� 1)B+ j

7 end

8 end

9 for each rank j in 1 to M do

10 if rank j is empty then

11 Set i := dj/Be
12 for j

0 := j + 1 to M such that rank j
0 is not empty

do

13 Set l := group the item ranked at j0 belongs to
14 if the lower bound for group l in the block i is

not satisfied _ (lower bounds of all the groups
are satisfied ^ upper bound for group l would
not be violated) then

15 Move the item at rank j
0 to rank j

16 Break the loop
17 end

18 end

19 end

20 end

21 for j := 1 to N do

22 if rank j is empty then

23 Move to rank j, the first item at rank higher than j

24 end

25 end

26 Output final ranking from rank 1 to rank N

We note that ✏ need not be smaller than 1.

We also obtain slightly stronger guarantees if we only need
group fairness in blocks of size k instead of group fairness
guarantees for any k consecutive ranks. That is, in each of
the top

j
n

↵maxk

k
blocks of size k, the output ranking has to

be such that, for each group l 2 [`], at least �lk and at most
↵lk ranks are assigned to items from group l.

Theorem 2.6 (Trade-off 2). Given a true ranking of N
items grouped into ` disjoint groups, with each group hav-
ing at least n items, and fairness parameters k 2 Z+,
and ↵,�, where ↵l,�l define the upper and lower group
fairness constraints for the group l respectively such that
0 < �l 6 ↵l 6 1,

P
l2[`] ↵l > 1 and

P
l2[`] �l < 1, let

↵min = minl ↵l, ↵max = maxl ↵l, and l⇤ = argminl �l. If
the fairness parameters are also such that ↵lk 2 Z+ and
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�lk 2 Z+
, 8l 2 [`], then there exists a polynomial time algo-

rithm to compute a ranking satisfying both of the following
simultaneously,

1. 1
min{↵min,1�

P
l 6=l⇤ �l} underranking

2. (↵,�, k) group fairness in each of the top
j

n
↵maxk

k

blocks of size k,

2.2. Overview of the Algorithm 1 and Proof Outline.

We defer all the proofs to the supplementary material. Here
we present an overview of Algorithm 1. We use Algorithm
1 to prove Theorem 2.5. We invoke Algorithm 1 with a
different value of ✏ to prove Theorem 2.6.

Let ✏, b, and B be as set in the algorithm. The ith block
of size b✏k/2c refers to the ranks (i � 1) b✏k/2c + 1 to
i b✏k/2c. We are given a true ranking of N items. Let
M = dN/be ·B. Then M > N . Hence we assume that the
length of the true ranking is M such that the ranks N + 1
to M are empty at the beginning of the algorithm. We first
move the items to a rank higher than their true ranks in a
fashion such that at the end of Step 8 the underranking of
this intermediate ranking consisting of M ranks is bounded
(see Lemma A.2 in supplementary). By our choice of pa-
rameters, this also guarantees that in each block the top
min

�
b↵min b✏k/2cc , b✏k/2c�

P
l 6=l⇤

d�l b✏k/2ce
 

ranks
are occupied and the rest of the ranks in the block are empty.
Hence, the upper bound group fairness constraints in each
block are not violated after Step 8. Next, we greedily fill up
the empty ranks starting from the rank 1 while ensuring that
the group fairness is not violated, until there are items avail-
able from each group. We use the fact that there are at least
n items from each group to show that if there is any empty
rank in the top bn/↵maxc � b✏k/2c ranks, then there will be
at least one higher ranked item available from each group
which can be assigned to the empty rank without violating
the condition in Step 14. Therefore, top bn/↵maxc�b✏k/2c
ranks will be unchanged after Step 20.

Then we fill the remaining empty ranks till N while ensuring
that the underranking does not get worse. It is easy to show
that after Step 25, each of the top

j
n

b↵maxb✏k/2cc

k
blocks

have at most b↵l b✏k/2cc items and at least d�l b✏k/2ce
items from group l for each l. Finally we output the top N

ranks. Observe that any k consecutive ranks must include
some number of blocks completely, and will intersect at
most two blocks partially. Therefore, in the worst case, the
number of items from a group l in any k consecutive ranks
of the top bn/↵maxc � b✏k/2c ranks will be at most ↵lk +
2↵l b✏k/2c 6 ↵l(1 + ✏)k, and at least �lk � 2�l b✏k/2c >
�l(1 � ✏)k. This gives us our group fairness guarantee in
the top bn/↵maxc � b✏k/2c ranks.

3. Experimental Validation

In this section, we give empirical observations about three
broad questions – (i) Is there a trade-off between under-
ranking and group fairness in the real-world datasets? (ii)
How effective is underranking in choosing a group-fair rank-
ing? (iii) Does ALG achieve best trade-off between group
fairness and underranking?

Baselines. The baselines considered in this paper are de-
scribed below,

1. (Celis et al., 2018)’s DP algorithm: In (Celis et al.,
2018), Wij represents the utility of the item i placed at
rank j. Since we only have the scores (or relavance)
of the item when placed at the top rank, we construct
Wij using positional discounting as described in the
appendix of (Celis et al., 2018). We first sort the items in
the decreasing order of their scores, which gives the true
ranking. Wlog, let this ordering also represent the indices
of the items, i.e., the item with highest score is indexed
as item 1. Let yi be the score of item i. Then, Wij =

yi

log2(j+1) . Then W satisfies the Monge and monotonicity
properties required by the DP algorithm in (Celis et al.,
2018). Let there be ` groups the items can belong to.
Let Pl contain the indices of the items that belong to
group l, for each l 2 [`]. Since we have N items, let
x 2 {0, 1}N⇥N be a ranking (or assignment) whose j-th
column contains a one in the i-th position if item i is
assigned to rank j. Note that each rank can be assigned
to exactly one item and each item is assigned exactly
one rank. Then, the fairness constraints at every prefix
k
0 2 [k] of the top k ranking are in the form of the

following cardinality constraints,

Ll,k0 6
X

16k06k

X

i2Pl

xik0 6 Ul,k0 .

The set of rankings that satisfy the above fairness con-
straints is represented with B. Then the fair ranking
problem posed as the following integer program,

max
x2B

X

j2[N ]

X

i2[N ]

xijWij .

The DP algorithm solves the above integer program ex-
actly. In the expeirments with only one protected group
represented by l = 1 and one non-protected group repre-
sented by l = 2, we use the lower bounds on the represen-
tation of the protected group, L1,k0 = dpk0e , 8k0 2 [k]
such that every prefix of the top k ranks has minimum
p proportion of the items from the protected group. All
other constraints are removed, i.e., U1,k0 = k

0
, U2,k0 =

k
0
, L2,k0 = 0. In case of experiments with upper bound

on the protected group (Figure 12 to Figure 17), we use
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U1,k0 = bpk0c , U2,k0 = k
0
, L1,k0 = 0, L2,k0 = 0, since

we want a maximum proportion of p of the protected
group in each prefix of the top k ranks. In our experi-
ments, we show the trade-offs between representation
and underranking by varying the parameter p. We use
p = p

⇤
l + � where p

⇤
l is the proportion of group l in the

dataset and � 2 R.

2. (Zehlike et al., 2017): This greedy algorithm solves
top-k ranking problem such that the proportion of the
protected group stays significantly above the given min-
imum p, in every prefix k

0 2 [k]. Since, in our exper-
iments with just one protected and one non-protected
group, we want all the algorithms to achieve a minimum
representation of p

⇤ + � of the protected group with
true representation p

⇤ and small number � 2 R, we run
FA*IR by choosing the parameter p = p

⇤ + �. Note that
FA*IR can not handle the upper bound constraints on
the representation of the groups. Hence in Figure 12 to
Figure 17 we do not consider comparison with FA*IR.

In ALG and both the baselines, we choose k = 100.

Running Time and Space Complexity. Let � =
min{↵min� 1

b✏k/2c , 1�
P

l 6=l⇤
�l� `�1

b✏k/2c}. Then dN/�e is
the total length of the intermediate ranking. Hence, Steps 4
to 8 of ALG take time O(N/�) altogether. In Steps 9 to 20,
for each empty rank in the top 1 to top k, ALG searches for
a suitable item in the rest of the intermediate ranking. This
takes time O(kN/�), and the space complexity is O(N/�+
`N/min{b↵min b✏k/2cc , b✏k/2c�

P
l 6=l⇤

d�l b✏k/2ce}) to
store the intermediate ranking and the counters for each
block. Steps 21 to 25 again take time O(N/�) altogether.
The running time shown in Table 1 in the paper is for a naive
implementation of ALG. We also note that the items within
a group appear in the same order in both the true ranking
as well as the ranking output by ALG. For each group we
can maintain a list according to this ordering from the true
ranking. When filling an empty rank, we can simply pick
the best among each group’s next item; whichever has the
lowest rank and satsifies all the fairness constraints. The
time complexity will then be O(`k +N/�) with the same
space complexity. Celis et al’s DP algorithm runs in time
O(`2k` + `N), and has space complexity O(k`). FA*IR
runs in time O(N + n log n) time where n is the minimum
number of items from each group, and has space complexity
O(N + `n).

Datasets. We experiment on two real-world datasets.

1. German Credit Risk dataset consists of credit risk scor-
ing of 1000 adult German residents (Dua & Graff, 2017)
along with their demographic information such as per-
sonal status, gender, age, etc. as well as financial status

such as credit history, property, housing, job etc. Sch-
ufa scores of these individuals is used to get a global
ranking on the dataset similar to Zehlike et al. (2017).
Castillo (2019) observed that Schufa scoring is biased
against young adults. Hence, we divide the dataset into
protected and non-protected groups based on age. We
consider two such cases (i) age < 25 as protected group,
and (ii) age < 35 as protected group similar to Zehlike
et al. (2017).

2. COMPAS1 recidivism dataset consists of violent recidi-
vism assessment of nearly 7000 criminal defendants
based on a questionnaire. Angwin et al. (2016) have anal-
ysed this tool and pointed out the biases in the recidivism
score against African Americans and females. We con-
sider ranking based on the recidivism score (individual
with the least negative recidivism score is ranked at the
top) with (i) gender (=female)2 and (ii) race (=African
American) as protected groups similar to Zehlike et al.
(2017). We use the processed subsets of German credit
risk and COMPAS recidivism datasets3. The implemen-
tation of the algorithm proposed in this paper is also
made public4.

Fairness constraints. Representation of a group in a rank-
ing is measured by its proportion in the ranking. FA*IR
can only work with one protected and one non-protected
group, and can only handle minimum representation re-
quirements in each prefix of the top k ranks. Hence, in
all the results shown in Figures 2 to 4 there is only one
protected group and the algorithms are run only with lower
bound constraints on representation of the protected group
as follows. Let l = 1 and l = 2 correspond to protected
and non-protected group respectively. Let p⇤l be the rep-
resentation of the group l in the entire dataset. Sufficient
representation of a group need not necessarily mean there
has to be exactly p

⇤
l fraction of items in the top k ranks from

group l. Hence, we run experiments by varying this suffi-
cient representation requirement using a control parameter
�. FA*IR is run with p = p

⇤
1 + �, the DP algorithm from

(Celis et al., 2018) is run with the fairness constraints, 8k0 2
[k], L1,k0 = d(p⇤1 + �)k0e , L2,k0 = 0, U1,k0 = k

0
, U2,k0 =

k
0. ALG is also run with group fairness constraints

(↵ = (1, 1),� = (p⇤1 + �, 0), k = 100), and the parameter
✏ = 0.4. In Figure 5, we run ALG with fairness constraints
(↵ = (p⇤1 + �, p

⇤
2 + �),� = (p⇤1 � �, p

⇤
2 � �), k = 100).

Evaluation metrics. In all the datasets, the true ranking
is generated based on the decreasing order of the score (or

1Correctional Offender Management Profiling for Alternative
Sanctions

2Non-binary genders were not annotated in any of the datasets
used in this paper.

3https://github.com/DataResponsibly/FairRank/tree/master/datasets
4Implementation of ALG
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True (representation)Top k’ (representation)

(a) Representation at top 20 ranks (b) Representation at top 40 ranks (c) Representation at top 100 ranks

(d) Underranking, nDCG at top 20 ranks (e) Underranking, nDCG at top 40 ranks (f) Underranking, nDCG at top 100 ranks

Figure 2: Results on the German Credit Risk dataset with age< 25 as the protected group.

relevance) of the item. For an algorithm run with k = 100,
we evaluate its group fairness, underranking and ranking
utility – normalised discounted cumulative gain (nDCG) –
at top k

0 = 20, 40, 100 ranks since we are comparing with
the baselines that have group fairness constraints in every
prefix of the top k ranking.

1. Let G1 represent the ranks assigned to items from the
protected group. Then,

repersentation in top k
0 =

|{i 2 G1, i 6 k
0}|

k0
.

2. For an item ranked at j 6 k
0 in true ranking, let rj be its

rank in the group-fair ranking. Then,

underranking for top k
0 ranks = max

j2[k0],rj

rj

j
.

3. Let yi be the score of the item at rank i in true ranking
and ŷi be the score of the item at rank i in the group-fair
ranking. Then,

nDCGk0 =

Pk0

i=1
2ŷi

log2(i+1)
Pk0

i=1
2yi

log2(i+1)

.

Despite being designed to satisfy group fairness constraints
for every k consecutive ranks, ALG achieves representation

in prefixes of the ranking similar to that of the baselines.
In supplementary, we also show (1) evaluation of all the
algorithms in consecutive ranks, (2) results for true ranking
based on negative scores, for example, in the COMPAS
dataset, if candidate with highest recidivism score is ranked
at top 1 and so on, the protected groups are overrepresented
in the top few ranks, and hence, the upper bound constraints
could be used to achieve proportional representation, (3)
results of experiments on the German Credit dataset with
disjoint subgroups based on age and gender.

Reading the plots. For every combination of a dataset and
a protected group, we show a pair of plots. Consider Fig-
ure 2a, 2d. Y-axis in Figure 2a shows the representation of
the protected group age < 25 in the top 20 ranks for each
run of the algorithm with fairness constraints controlled by
� on X-axis. Here, the dashed green line shows the propor-
tion of age < 25 in the dataset, whereas the dashed red line
shows their proportion in the top 20 ranks of the true ranking.
These two lines serve as guidelines to understand the behav-
ior of various algorithms. Figure 2d shows corresponding
underranking and nDCG in the top 20 ranks.

3.1. Experimental Observations

Trade-off between underranking and group fairness.

In the COMPAS dataset the female candidates are under-
represented in any of the top k

0 2 [k] ranks (see dashed
red lines in Figures 4a to 4c) compared to their true rep-
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True (representation)Top k’ (representation)

(a) Representation at top 20 ranks. (b) Representation at top 40 ranks. (c) Representation at top 100 ranks.

(d) Underranking, nDCG at top 20 ranks. (e) Underranking, nDCG at top 40 ranks. (f) Underranking, nDCG at top 100 ranks.

Figure 3: Results on the COMPAS Recidivism dataset with African American as the protected group.

resentation in the dataset, p⇤ = 0.19 (dashed green lines).
By varying � (on X-axis), we run the experiments with the
minimum female representation constraint, p⇤ + �. Now,
comparing Figure 4a with Figure 4d for varying �, we show
the trade-off between group fairness and underranking. As
the value of � increases from �0.15 to 0.2, the underrank-
ing gets worse since more number of male candidates with
lower true ranks have to be moved to higher ranks in order
to accomodate for the required female repersentation in the
top k ranks. Similarly, even though African Americans have
very high representation, p⇤ = 0.55 (see green line in Fig-
ure 3a), in the true ranking, their representation in the top
k
0 ranks is again significantly less (see red lines in Figures

3a to 3c). Even in this case, we observe a trade-off between
group fairness and underranking in the top k

0 ranks. These
trends are also observed at any of the top k

0 = 20, 40, 100
ranks in the German Credit dataset (see Figure 2).

We also partition the candidates in the German Credit dataset
into three disjoint groups based on age, and enforce the con-
straints ↵l = p

⇤
l + � and �l = p

⇤
l � � for each group with

corresponding p
⇤
l (see Figure 5). Even in this case, the

underranking gets worse with increase in the lower bound
representation requirements because of the underrepresenta-
tion of the protected groups, hence confirming the trade-off
even for more than two groups. These experimental results
show evidence of the trade-off between group fairness and
underranking in the real-world datasets.

Underranking for comparing different group-fair rank-

ings. In previous work, only the trade-off between fairness
and utility of the ranking such as nDCG has been studied.
However, as established in Figure 1 and is evident from our
experimental results, high nDCG does not imply anything
for the underranking of a group-fair ranking. For example,
in Figure 3, Celis et al.’s DP algorithm achieves almost same
nDCG and group fairness as ALG but suffers badly in terms
of underranking. Hence, underranking allows us to break
ties when aggregate ranking utility and group fairness are
same for any two group-fair rankings.

ALG achieves best trade-off between group fairness and

underranking. In all the results in Figures 2 to 4, Celis et
al.’s DP algorithm achieves worse underranking and same
representation as ALG, and FA*IR achieves worse repre-
sentation and same underranking as ALG. We note that
even though in Figure 3d to 3f, FA*IR seems to achieve
better underranking than ALG, it has significantly below
the minimum protected group representation in the top k

0

ranks. Hence, we posit that ALG achieves the best trade-off
between underranking and representation of the protected
group in the real-world datasets.

ALG runs significantly faster than the baselines. Table
1 shows the average running time of each algorithm. The
experiments were run on a Dual Intel Xeon 4110 processor
consisting of 16 cores (32 threads), with a clock speed of
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True (representation)Top k’ (representation)

(a) Representation at top 20 ranks. (b) Representation at top 40 ranks. (c) Representation at top 100 ranks.

(d) Underranking, nDCG at top 20 ranks. (e) Underranking, nDCG at top 40 ranks. (f) Underranking, nDCG at top 100 ranks.

Figure 4: Results on the COMPAS Recidivism dataset with Female as the protected group.

Table 1: Average wall clock running time (in seconds) of five
runs of the algorithms on the German Credit Risk dataset
with age < 25 as the protected group (n = 1000, p⇤ =
0.15), ` = 2. For these experiments we choose, � = 0.
ALG is run for ((1, 1), (0.15, 0), k) group fairness, with
✏ = 0.4. FA*IR is run with p = 0.15 and Celis et al. with
Lage<25,k0 = d0.15 · k0e , 8k0 2 [k].

k = 100 k = 300 k = 500 k = 1000
Celis et al.’s DP algorithm 11.0 100.0 186.0 301.0
FA*IR 3.0 3.3 3.3 3.5
ALG 1.1 1.6 1.8 1.8

2.1 GHz and DRAM of 128GB. ALG runs faster that the
Celis et al.’s DP algorithm. Note that both the algorithms
work for any number of groups. ALG also runs faster than
the greedy algorithm, FA*IR.

4. Conclusion

Previous works involving group-fair ranking are mainly fo-
cused on the trade-off between its utility and group fairness.
We presented the first (to the best of our knowledge) algo-
rithm that takes a true ranking and outputs another ranking
with simultaneous group fairness and underranking guaran-
tees. Our algorithm achieves the best of both underranking
and group fairness compared to the state-of-the-art group-
fair ranking algorithms. It also works in the case of more

Figure 5: Results of ALG on the German Credit Risk dataset
with three groups based on age. The bar plot (left) shows
the representation achieved by ALG at top 100 ranks. The
line p⇤ for each group shows its representation in the dataset.
Corresponding underranking, nDCG shown on the right.

than two disjoint groups, and with different group fairness
constraints for each of these groups. One limitation of our
work (and other re-ranking algorithms) is that it requires the
true ranking as input. All our theoretical guarantees are with
respect to this true ranking; in practice, a true merit-based
ranking may be debatable or unavailable due to incomplete
data, unobserved features, legal and ethical considerations
behind the downstream application of these rankings, etc.
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