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Martijn Gösgens Alexey Tikhonov Liudmila Prokhorenkova

A. Further Related Work
Several attempts to the comparative analysis of cluster similarity indices have been made in the literature, both in machine
learning and complex networks communities. In particular, the problem of indices favoring clusterings with smaller or
larger clusters has been identified (Albatineh et al., 2006; Vinh et al., 2009; 2010; Lei et al., 2017). The most popular
approach to resolving the bias of an index is to subtract its expected value and normalize the resulting quantity to obtain an
index that satisfies the maximum agreement property. This approach has let to ‘adjusted’ indices such as AR (Hubert &
Arabie, 1985) and AMI (Vinh et al., 2009). In Albatineh et al. (2006), the family of pair-counting indices L is introduced
for which adjusted forms can be computed easily. This family corresponds to the set of all pair-counting indices that are
linear functions of N11 for fixed N11 +N10, N11 +N01. In (Romano et al., 2016), a generalization of information-theoretic
indices by the Tsallis q-entropy is given and this is shown to correspond to pair-counting indices for q = 2. Formulas are
provided for adjusting these generalized indices for chance.

A disadvantage of this adjustment scheme is that an index can be normalized in many ways, while it is difficult to grasp
the differences between these normalizations intuitively. For example, three variants of AMI have been introduced (Vinh
et al., 2009), and we show that normalization by the maximum entropies results in an index that fails monotonicity. Romano
et al. (2014) go one step further by standardizing mutual information, while Amelio & Pizzuti (2015) multiply NMI with a
penalty factor that decreases with the difference in the number of clusters.

In summary, all these works take a popular biased index and ‘patch’ it to get rid of this bias. This approach has two
disadvantages: firstly, these patches often introduce new problems (e.g., FNMI and SMI fail monotonicity), and secondly,
the resulting index is usually less interpretable than the original. We have taken a different approach in our work: instead of
patching existing indices, we analyze previously introduced indices to see whether they satisfy more properties. Our analysis
shows that AR is dominated by Pearson correlation, which was introduced more than 100 years before AR. Therefore, there
was no need to construct AR from Rand in the first place.

In Lei et al. (2017), the biases of pair-counting indices are characterized. They define these biases as a preference towards
either few or many clusters. They prove that the direction of Rand’s bias depends on the Havrda-Charvat entropy of the
reference clustering. In the present work, we show that the number of clusters is not an adequate quantity for expressing
these biases. We introduce methods to easily analyze the bias of any pair-counting index and simplify the condition for the
direction of Rand’s bias to mA < N/2.

A paper closely related to the current research (Amigó et al., 2009) formulates several constraints (axioms) for cluster
similarity indices. Their cluster homogeneity is a weaker analog of our monotonicity w.r.t. perfect splits while their cluster
equivalence is equivalent to our monotonicity w.r.t. perfect merges. The third rag bag constraint is motivated by a subjective
claim that “introducing disorder into a disordered cluster is less harmful than introducing disorder into a clean cluster”.
While this is important for their particular application (text clustering), we found no other work that deemed this constraint
necessary; hence, we disregarded this constraint in the current research. The last constraint by Amigó et al. (2009) concerns
the balance between making errors in large and small clusters. Though this is an interesting aspect that has not received
much attention in our research, this constraint poses a particular balance while we believe that the desired balance may
differ per application. Hence, this property seems to be non-binary and we are not aware of a proper formalization of this
“level of balance” in a general form. Hence, we do not include this in our list of formal properties. The most principal
difference of our work compared to Amigó et al. (2009) is the constant baseline which was not analyzed in their work. We
find this property extremely important while it is failed by most of the widely used indices including their BCubed. To
conclude, our research gives a more comprehensive list of constraints and focuses on those that are desirable in a wide range
of applications. We also cover all similarity indices often used in the literature and give formal proofs for all index-property
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combinations.

A property similar to our monotonicity property is also given in Meilă (2007), where the similarity between clusterings A
and B is upper-bounded by the similarity between A and A⊗B (as defined in Section C.4). One can show that this property
is implied by our monotonicity but not vice versa, i.e., the variant proposed by Meilă (2007) is weaker. Our analysis of
monotonicity generalizes and unifies previous approaches to this problem, see Theorem 2 of the main text, which relates
consistent improvements to perfect splits and merges.

While we focus on external cluster similarity indices that compare a candidate partition with a reference one, there are also
internal similarity measures that estimate the quality of partitions with respect to internal structure of data (e.g., Silhouette,
Hubert-Gamma, Dunn, and many other indices). Kleinberg (2002) used an axiomatic approach for internal measures and
proved an impossibility theorem: there are three simple and natural constraints such that no internal clustering measure can
satisfy all of them. More work in this direction can be found in, e.g., Ben-David & Ackerman (2008). In network analysis,
internal measures compare a candidate partition with the underlying graph structure. They quantify how well a community
structure (given by a partition) fits the graph and are often referred to as goodness or quality measures. The most well-known
example is modularity (Newman & Girvan, 2004). Axioms that these measures ought to satisfy are given in (Ben-David &
Ackerman, 2008; Van Laarhoven & Marchiori, 2014). Note that all pair-counting indices discussed in this paper can also be
used for graph-partition similarity, as we discuss in Section B.3.

B. Cluster Similarity Indices
B.1. General Indices

Here we give the definitions of the indices listed in Table 3. We define the contingency variables as nij = |Ai ∩Bj |. We
note that all indices discussed in this paper can be expressed as functions of these contingency variables.

The F-Measure is defined as the harmonic mean of recall and precision. Recall is defined as

r(A,B) =
1

n

kA∑
i=1

max
j∈[kB ]

{nij},

and precision is its symmetric counterpart r(B,A).

In (Amigó et al., 2009), recall is redefined as

r′(A,B) =
1

n

kA∑
i=1

1

|Ai|

kB∑
j=1

n2ij ,

and BCubed is defined as the harmonic mean of r′(A,B) and r′(B,A).

The remainder of the indices are information-theoretic and require some additional definitions. Let p1, . . . , p` be a discrete
distribution (i.e., all values are nonnegative and sum to 1). The Shannon entropy is then defined as

H(p1, . . . , p`) := −
∑̀
i=1

pi log(pi).

The entropy of a clustering is defined as the entropy of the cluster-label distribution of a random item, i.e.,

H(A) := H(|A1|/n, . . . , |AkA |/n),

and similarly for H(B). The joint entropy H(A,B) is then defined as the entropy of the distribution with probabilities
(pij)i∈[kA],j∈[kB ], where pij = nij/n.

Variation of Information (Meilă, 2007) is defined as

VI(A,B) = 2H(A,B)−H(A)−H(B).

Mutual information is defined as
M(A,B) = H(A) +H(B)−H(A,B).
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The mutual information between A and B is upper-bounded by H(A) and H(B), which gives multiple possibilities to
normalize the mutual information. In this paper, we discuss two normalizations: normalization by the average of the
entropies 1

2 (H(A) +H(B)), and normalization by the maximum of entropies max{H(A), H(B)}. We will refer to the
corresponding indices as NMI and NMImax, respectively:

NMI(A,B) =
M(A,B)

(H(A) +H(B))/2
,

NMImax(A,B) =
M(A,B)

max{H(A), H(B)}
.

Fair NMI is a variant of NMI that includes a factor that penalizes large differences in the number of clusters (Amelio &
Pizzuti, 2015). It is given by

FNMI(A,B) = e−|kA−kB |/kANMI(A,B).

In this definition, NMI may be normalized in various ways. We note that a different normalization would not result in more
properties being satisfied.

Adjusted Mutual Information addresses for the bias of NMI by subtracting the expected mutual information (Vinh et al.,
2009). It is given by

AMI(A,B) =
M(A,B)−EB′∼C(S(B))[M(A,B′)]√
H(A) ·H(B)−EB′∼C(S(B))[M(A,B′)]

.

Here, a normalization by the geometric mean of the entropies is used, while other normalizations are also used (Vinh et al.,
2009).

Standardized Mutual Information standardizes the mutual information w.r.t. random permutations of the items (Romano
et al., 2014), i.e.,

SMI(A,B) =
M(A,B)−EB′∼C(S(B))(M(A,B′))

σB′∼C(S(B))(M(A,B′))
,

where σ denotes the standard deviation. Calculating the expected value and standard deviation of the mutual information is
nontrivial and requires significantly more computation power than other indices. For this, we refer to the original paper
(Romano et al., 2014). Note that this index is symmetric since it does not matter whether we keep A constant while randomly
permuting B or keep B constant while randomly permuting A.

B.2. Pair-counting Indices and Their Equivalences

Pair-counting similarity indices are defined in Table 1. Table 2 lists linearly equivalent indices (see Definition 2). Note
that our linear equivalence differs from the less restrictive monotonous equivalence given in (Batagelj & Bren, 1995). In
the current work, we have to restrict to linear equivalence as the constant baseline property is not invariant to non-linear
transformations.

B.3. Defining the Subclass of Pair-counting Indices

From Definition 1 of the main text, it follows that a pair-counting index is a function of two binary vectors ~A, ~B of
length N . Note that this binary-vector representation has some redundancy: whenever u, v and v, w form intra-cluster
pairs, we know that u,w must also be an intra-cluster pair. Hence, not every binary vector of length N represents a
clustering. The class of N -dimensional binary vectors is, however, isomorphic to the class of undirected graphs on n
vertices. Therefore, pair-counting indices are also able to measure the similarity between graphs. For example, for an
undirected graph G = (V,E), one can consider its incidence vector ~G = (1{{v, w} ∈ E})v,w∈V . Hence, pair-counting
indices can be used to measure the similarity between two graphs or between a graph and a clustering. So, one may see
a connection between graph and cluster similarity indices. For example, the Mirkin metric is a pair-counting index that
coincides with the Hamming distance between the edge-sets of two graphs (Donnat & Holmes, 2018). Another example is
the Jaccard graph distance, which turns out to be more appropriate for comparing sparse graphs (Donnat & Holmes, 2018).
Thus, all pair-counting indices and their properties discussed in the current paper can also be applied to graph-graph and
graph-partition similarities.
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Table 1. A selection of pair-counting indices. Most of these indices are taken from (Lei et al., 2017).

Index (Abbreviation) Expression

Rand (R) N11+N00

N11+N10+N01+N00

Adjusted Rand (AR)
N11− (N11+N10)(N11+N01)

N11+N10+N01+N00
(N11+N10)+(N11+N01)

2 − (N11+N10)(N11+N01)
N11+N10+N01+N00

Jaccard (J) N11

N11+N10+N01

Jaccard Distance (JD) N10+N01

N11+N10+N01

Wallace1 (W ) N11

N11+N10

Wallace2 N11

N11+N01

Dice 2N11

2N11+N10+N01

Correlation Coefficient (CC) N11N00−N10N01√
(N11+N10)(N11+N01)(N00+N10)(N00+N01)

Correlation Distance (CD) 1
π arccos

(
N11N00−N10N01√

(N11+N10)(N11+N01)(N00+N10)(N00+N01)

)
Sokal&Sneath-I (S&S1) 1

4

(
N11

N11+N10
+ N11

N11+N01
+ N00

N00+N10
+ N00

N00+N01

)
Minkowski

√
N10+N01

N11+N10

Hubert (H) N11+N00−N10−N01

N11+N10+N01+N00

Fowlkes&Mallow N11√
(N11+N10)(N11+N01)

Sokal&Sneath-II
1
2N11

1
2N11+N10+N01

Normalized Mirkin1 N10+N01

N11+N10+N01+N00

Kulczynski 1
2

(
N11

N11+N10
+ N11

N11+N01

)
McConnaughey N2

11−N10N01

(N11+N10)(N11+N01)

Yule N11N00−N10N01

N11N10+N01N00

Baulieu-I (N11+N10+N01+N00)(N11+N00)+(N10−N01)
2

(N11+N10+N01+N00)2

Russell&Rao N11

N11+N10+N01+N00

Fager&McGowan N11√
(N11+N10)(N11+N01)

− 1
2
√
N11+N10

Peirce N11N00−N10N01

(N11+N01)(N00+N10)

Baulieu-II N11N00−N10N01

(N11+N10+N01+N00)2

Sokal&Sneath-III N11N00√
(N11+N10)(N11+N01)(N00+N10)(N00+N01)

Gower&Legendre N11+N00

N11+
1
2 (N10+N01)+N00

Rogers&Tanimoto N11+N00

N11+2(N10+N01)+N00

Goodman&Kruskal N11N00−N10N01

N11N00+N10N01

In this section, we show that the subclass of pair-counting similarity indices can be uniquely defined by the property of
being pair-symmetric.

For two graphs G1 and G2 let MG1G2
denote the N ×2 matrix that is obtained by concatenating their adjacency vectors. Let

1Throughout the literature, the Mirkin metric is defined as 2(N10 +N01), but we use this variant as it satisfies the scale-invariance.
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Table 2. Equivalent pair-counting indices

Representative Index Equivalent indices

Rand Normalized Mirkin Metric, Hubert
Jaccard Jaccard Distance
Wallace1 Wallace2
Kulczynski McConnaughey

us write V (G)
M (MG1G2

) for the similarity between two graphs G1, G2 according to some graph similarity index V (G). We
will now characterize all pair-counting similarity indices as a subclass of the class of similarity indices between undirected
graphs.

Definition 1. We define a graph similarity index V (G)
M (MG1G2

) to be pair-symmetric if interchanging two rows of MG1,G2

leaves the index unchanged.

We give the following result.

Lemma 1. The class of pair-symmetric graph similarity indices coincides with the class of pair-counting cluster similarity
indices.

Proof. A matrix is an ordered list of its rows. An unordered list is a multiset. Hence, when we disregard the ordering of
the matrix MAB , we get a multiset of the rows. This multiset contains at most four distinct elements with multiplicities
corresponding to the four pair-counts. Therefore, each V

(G)
M (MAB) that is symmetric w.r.t. interchanging rows is

equivalently a function of the pair-counts of A and B.

C. Checking Properties for Indices
In this section, we check all non-trivial properties for all indices. The properties of symmetry, maximal/minimal agreement
and asymptotic constant baseline can trivially be tested by simply checking V (B,A) = V (A,B), V (A,A) = cmax,
V (0, N10, N01, 0) = cmin and V

(
N11, N10, N01, N00

)
= cbase respectively. For pair-counting indices, we will frequently

use the notation pAB = N11/N, pA = (N11 + N10)/N, pB = (N11 + N01)/N and write V (p)(pAB , pA, pB) instead of
V (N11, N10, N01, N00).

C.1. Distance

C.1.1. POSITIVE CASES

NMI and VI. In (Vinh et al., 2010) it is proven that for max-normalization 1−NMI is a distance, while in (Meilă, 2007)
it is proven that VI is a distance.

Rand. The Mirkin metric 1−R corresponds to a rescaled version of the size of the symmetric difference between the sets
of intra-cluster pairs. The symmetric difference is known to be a distance metric.

Jaccard. In (Kosub, 2019), it is proven that the Jaccard distance 1− J is indeed a distance.

Correlation Distance. In Theorem 1 of the main text it is proven that Correlation Distance is indeed a distance.

C.1.2. NEGATIVE CASES

To prove that an index that satisfies symmetry and maximal agreement is not linearly transformable to a distance metric, we
only need to disprove the triangle inequality for one instance of its equivalence class that is nonnegative and equals zero for
maximal agreement.

FNMI and Wallace. These indices cannot be transformed to distances as they are not symmetric.
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SMI. SMI does not satisfy the maximal agreement property (Romano et al., 2014), so it cannot be transformed to a metric.

FMeasure and BCubed. We will use a simple counter-example, where |V | = 3, kA = 1, kB = 2, kC = 3. Let us denote
the FMeasure and BCubed by FM,BC respectively. We get

1− FM(A,C) = 1− 0.5 > (1− 0.8) + (1− 0.8) = (1− FM(A,B)) + (1− FM(B,C))

and

1− BC(A,C) = 1− 0.5 > (1− 0.71) + (1− 0.8) ≈ (1− BC(A,B)) + (1− BC(B,C)),

so that both indices violate the triangle inequality in this case.

Adjusted Rand, Dice, Correlation Coefficient, Sokal&Sneath and AMI. For these indices, we use the following
counter-example: Let A = {{0, 1}, {2}, {3}}, B = {{0, 1}, {2, 3}}, C = {{0}, {1}, {2, 3}}. Then pAB = pBC = 1/6
and pAC = 0 while pA = pC = 1/6 and pB = 1/3. By substituting these variables, one can see that

1− V (p)(pAC , pA, pC) > (1− V (p)(pAB , pA, pB)) + (1− V (p)(pBC , pB , pC)),

holds for each of these indices, contradicting the triangle inequality. The same A,B and C also form a counter-example for
AMI.

C.2. Linear Complexity

We will frequently make use of the following lemma:

Lemma 2. The nonzero values of nij can be computed in O(n).

Proof. We will store these nonzero values in a hash-table that maps the pairs (i, j) to their value nij . These values are
obtained by iterating through all n elements and incrementing the corresponding value of nij . For hash-tables, searches
and insertions are known to have amortized complexity complexity O(1), meaning that any sequence of n such actions has
worst-case running time of O(n), from which the result follows.

C.2.1. POSITIVE CASES

NMI, FNMI and VI. Given the positive values of nij , it is clear that the joint and marginal entropy values can be
computed in O(n). From these values, the indices can be computed in constant time, leading to a worst-case running time of
O(n).

FMeasure and BCubed. Note that in the expressions of recall and precision as defined by these indices, only the positive
values of nij contribute. Furthermore, all of the variables ai, bj and nij appear at most once, so that these can indeed be
computed in O(n).

Pair-counting indices. Note that N11 =
∑
nij>1

(
nij

2

)
can obviously be computed in O(n). Similarly, mA =

∑kA
i=1

(
ai
2

)
and mB can be computed in O(kA), O(kB) respectively. The other pair-counts are then obtained by N10 = mA −N11,
N01 = mB −N11 and N00 = N −mA −mB +N11.

C.2.2. NEGATIVE CASES: AMI AND SMI.

Both of these require the computation of the expected mutual information. It has been known (Romano et al., 2016) that this
has a worst-case running time of O(n ·max{kA, kB}) while max{kA, kA} can be O(n).

C.3. Strong Monotonicity

C.3.1. POSITIVE CASES

Correlation Coefficient. This index has the property that inverting one of the binary vectors results in the index flipping
sign. Furthermore, the index is symmetric. Therefore, we only need to prove that this index is increasing in N11. We take
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the derivative and omit the constant factor ((N00 +N10)(N00 +N01))
− 1

2 :

N00√
(N11 +N10)(N11 +N01)

−
(N11N00 −N10N01) · 12 (2N11 +N10 +N01)

[(N11 +N10)(N11 +N01)]1.5

=
1
2N11N00(N10 +N01) +N00N10N01

[(N11 +N10)(N11 +N01)]1.5
+

1
2N10N01(2N11 +N10 +N01)

[(N11 +N10)(N11 +N01)]1.5
> 0.

Correlation Distance. The correlation distance satisfies strong monotonicity as it is a monotone transformation of the
correlation coefficient, which meets the property.

Sokal&Sneath. All four fractions are nondecreasing in N11, N00 and nonincreasing in N10, N01 while for each of the
variables there is one fraction that satisfies the monotonicity strictly so that the index is strongly monotonous.

Rand Index. For the Rand index, it can be easily seen from the form of the index that it is increasing in N11, N00 and
decreasing in N10, N01 so that it meets the property.

C.3.2. NEGATIVE CASES

Jaccard, Wallace, Dice. All these three indices are constant w.r.t. N00. Therefore, these indices do not satisfy strong
monotonicity.

Adjusted Rand. It holds that
AR(1, 2, 1, 0) < AR(1, 3, 1, 0),

so that the index does not meet the strong monotonicity property.

C.4. Monotonicity

C.4.1. POSITIVE CASES

Rand, Correlation Coefficient, Sokal&Sneath, Correlation Distance. Strong monotonicity implies monotonicity.
Therefore, these pair-counting indices satisfy the monotonicity property.

Jaccard and Dice. It can be easily seen that these indices are increasing in N11 while decreasing in N10, N01. For N00,
we note that whenever N00 gets increased, either N10 or N01 must decrease, resulting in an increase of the index. Therefore,
these indices satisfy monotonicity.

Adjusted Rand. Note that for b, b+ d > 0, it holds that

a+ c

b+ d
>
a

b
⇔ c >

ad

b
. (1)

We will let a, b denote the numerator and denomenator of Adjusted Rand while c, d will denote their change when
incrementing N11 or N00 while decrementing N10 or N01. For Adjusted Rand, we have

a = N11 −
1

N
(N11 +N10)(N11 +N01), b = a+

1

2
(N10 +N01).

Because of this, when we increment either N11 or N00 while decrementing either N10 or N01, we get d = c− 1
2 . Hence,

we need to prove c > a(c− 1
2 )/b, or, equivalently

c > − a

2(b− a)
=

1
N (N11 +N10)(N11 +N01)−N11

N10 +N01
.

For simplicity we rewrite this to

c+
pAB − pApB

pA + pB − 2pAB
> 0,
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where pAB = N11

N , pA = 1
N (N11 +N10) and pB = 1

N (N11 +N01). If we increment N00 while decrementing either N10

or N01, then c ∈ {pA, pB}. The symmetry of AR allows us to w.l.o.g. assume that c = pA. We write

pA +
pAB − pApB

pA + pB − 2pAB
=
p2A + (1− 2pA)pAB
pA + pB − 2pAB

.

When pA ≤ 1
2 , then this is clearly positive. For the case pA > 1

2 , we bound pAB ≤ pA and bound the numerator by

p2A + (1− 2pA)pA = (1− pA)pA > 0.

This proves the monotonicity for increasing N00. When incrementing N11 while decrementing either N10 or N01, we get
c ∈ {1− pA, 1− pB}. Again, we assume w.l.o.g. that c = 1− pA and write

1− pA +
pAB − pApB

pA + pB − 2pAB
=
pA(1− pA) + (1− 2pA)(pB − pAB)

pA + pB − 2pAB
.

This is clearly positive whenever pA ≤ 1
2 . When pA > 1

2 , we bound pAB ≥ pA + pB − 1 and rewrite the numerator as

pA(1− pA) + (1− 2pA)(pA − 1) = (1− pA)(3pA − 1) > 0.

This proves monotonicity for increasing N11. Hence, the monotonicity property is met.

NMI and VI. Let B′ be obtained by a perfect split of a cluster B1 into B′1, B
′
2. Note that this increases the entropy

of the candidate while keeping the joint entropy constant. Let us denote this increase in the candidate entropy by the
conditional entropy H(B′|B) = H(B′) − H(B) > 0. Now, for NMI, the numerator increases by H(B′|B) while the
denominator increases by at most H(B′|B) (dependent on H(A) and the specific normalization that is used). Therefore,
NMI increases. Similarly, VI decreases by H(B′|B). Concluding, both NMI and VI are monotonous w.r.t. perfect splits.
Now let B′′ be obtained by a perfect merge of B1, B2 into B′′1 . This results in a difference of the entropy of the candidate
H(B′′) − H(B) = −H(B|B′′) < 0. The joint entropy decreases by the same amount, so that the mutual information
remains unchanged. Therefore, the numerator of NMI remains unchanged while the denominator may or may not change,
depending on the normalization. For min- or max-normalization, it may remain unchanged while for any other average it
increases. Hence, NMI does not satisfy monotonicity w.r.t. perfect merges for min- and max-normalization but does satisfy
this for average-normalization. For VI, the distance will decrease by H(B|B′′) so that it indeed satisfies monotonicity w.r.t.
perfect merges.

AMI. Let B′ be obtained by splitting a cluster B1 into B′1, B
′
2. This split increases the mutual information by H(B′|B)−

H(A⊗B′|A⊗B). Recall the definition of the meet A⊗B from C.4 and note that the joint entropy equals H(A⊗B). For
a perfect split we have H(A⊗B′|A⊗B) = 0. The expected mutual information changes with

EA′∼C(S(A))[M(A′, B′)−M(A′, B)] = H(B′|B)−EA′∼C(S(A))[H(A′ ⊗B′)−H(A′ ⊗B)],

where we choose to randomize A instead of B′ and B for simplicity. Note that for all A′,

H(A′ ⊗B)−H(A′ ⊗B′) = H(A′ ⊗B′|A′ ⊗B) ≥ 0,

with equality if and only if the split is a perfect split w.r.t. A′. Unless A consists exclusively of singleton clusters, there is a
positive probability that this split is not perfect, so that the expected value is positive. Furthermore, for the normalization
term, we have

√
H(A)H(B′) <

√
H(A)H(B) +H(B′|B). Combining this, we get

AMI(A,B′)

=
M(A,B)−EA′∼C(S(A))[M(A′, B)] +EA′∼C(S(A))[H(A′ ⊗B′|A′ ⊗B)]√

H(A)H(B′)−H(B′|B)−EA′∼C(S(A))[M(A′, B)] +EA′∼C(S(A))[H(A′ ⊗B′|A′ ⊗B)]

>
M(A,B)−EA′∼C(S(A))[M(A′, B)] +EA′∼C(S(A))[H(A′ ⊗B′|A′ ⊗B)]√
H(A)H(B)−EA′∼C(S(A))[M(A′, B)] +EA′∼C(S(A))[H(A′ ⊗B′|A′ ⊗B)]

>
M(A,B)−EA′∼C(S(A))[M(A′, B)]√
H(A)H(B)−EA′∼C(S(A))[M(A′, B)]

= AMI(A,B).
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This proves that AMI satisfies monotonicity w.r.t. perfect splits.

Now let B′′ be obtained by a perfect merge of B1, B2 into B′′1 . Again, we have H(B′′) − H(B) = −H(B|B′′ < 0)
and M(A,B′′) = M(A,B). Let A′ ∼ C(S(A)) (again, randomizing A instead of B and B′′ for simplicity), then
H(A′ ⊗B′′) ≥ H(A′ ⊗B)−H(B|B′′) with equality if and only if B′′ is a perfect merge w.r.t. A′ which happens with
probability strictly less than 1 (unless A consists of a single cluster). Therefore, as long as kA > 1, the expected mutual
information decreases. For the normalization, we have

√
H(A)H(B′′) <

√
H(A)H(B). Hence,

AMI(A,B′′) =
M(A,B′′)−EA′∼C(S(A))[M(A′, B′′)]√
H(A)H(B′′)−EA′∼C(S(A))[M(A′, B′′)]

=
M(A,B)−EA′∼C(S(A))[M(A′, B′′)]√
H(A)H(B′′)−EA′∼C(S(A))[M(A′, B′′)]

>
M(A,B)−EA′∼C(S(A))[M(A′, B)]√
H(A)H(B′′)−EA′∼C(S(A))[M(A′, B)]

>
M(A,B)−EA′∼C(S(A))[M(A′, B)]√
H(A)H(B)−EA′∼C(S(A))[M(A′, B)]

= AMI(A,B).

BCubed. Note that a perfect merge increases BCubed recall while leaving BCubed precision unchanged and that a perfect
split increases precision while leaving recall unchanged. Hence, the harmonic mean increases.

C.4.2. NEGATIVE CASES

FMeasure. We give a numerical counter-example: consider A = {{0, . . . , 6}}, B = {{0, 1, 2, 3}, {4, 5}, {6}} and merge
the last two clusters to obtain B′ = {{0, 1, 2, 3}, {4, 5, 6}}. Then, the FMeasure remains unchanged and equal to 0.73,
violating monotonicity w.r.t. perfect merges.

FNMI We will give the following numerical counter-example: Consider A = {{0, 1}, {2}, {3}}, B = {{0}, {1}, {2, 3}}
and merge the first two clusters to obtain B′ = {{0, 1}, {2, 3}}. This results in

FNMI(A,B) ≈ 0.67 > 0.57 ≈ FNMI(A,B′).

This non-monotonicity is caused by the penalty factor that equals 1 for the pair A,B and equals exp(−1/3) ≈ 0.72 for
A,B′.

SMI. For this numerical counter-example we rely on the Matlab-implementation of the index by its original authors
(Romano et al., 2014). Let A = {{0, . . . , 4}, {5}}, B = {{0, 1}, {2, 3}, {4}, {5}} and consider merging the two clusters
resulting in B′ = {{0, 1, 2, 3}, {4}, {5}}. The index remains unchanged and equals 2 before and after the merge.

Wallace. Let kA = 1 and let kB > 1. Then any merge ofB is a perfect merge, but no increase occurs sinceW1(A,B) = 1.

C.5. Constant Baseline

C.5.1. POSITIVE CASES

AMI and SMI. Both of these indices satisfy the constant baseline by construction since the expected mutual information
is subtracted from the actual mutual information in the numerator.

Adjusted Rand, Correlation Coefficient and Sokal&Sneath. These indices all satisfy ACB while being linear in
pAB-linear for fixed pA, pB . Thus, by linearity of expectation, the expected value equals the asymptotic constant.

C.5.2. NEGATIVE CASES

For all the following indices, we will analyse the counter-example given by kA = kB = n− 1. For each index, we will
compute the expected value and show that it is not constant. All of these indices satisfy the maximal agreement property
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and maximal agreement is achieved with probability 1/N (the probability that the single intra-pair of A coincides with the
single intra-pair of B). Furthermore, each case where the intra-pairs do not coincide will result in the same contingency
variables and hence the same value of the index. We will refer to this value as cn(V ). Therefore, the expected value will
only have to be taken over two values and will be given by

E[V (A,B)] =
1

N
cmax +

N − 1

N
cn(V ).

For each of these indices we will conclude that this is a non-constant function of n so that the index does not satisfy the
constant baseline property.

Jaccard and Dice. For both these indices we have cmax = 1 and cn(V ) = 0 (as N11 = 0 whenever the intra-pairs do not
coincide). Hence, E[V (A,B)] = 1

N , which is not constant.

Rand and Wallace. As both functions are linear in N11 for fixed mA = N11 +N10,mB = N11 +N01, we can compute
the expected value by simply substituting N11 = mAmB/N . This will result in expected values 1− 2/N + 2/N2 and 1/N
for Rand and Wallace respectively, which are both non-constant.

Correlation distance. Here cmax = 0 and

cn(CD) =
1

π
arccos

(
0− 1/N2

(N − 1)/N2

)
,

so that the expected value will be given by

E[CD(A,B)] =
N − 1

Nπ
arccos

(
− 1

N − 1

)
.

This is non-constant (it evaluates to 0.44, 0.47 for n = 3, 4 respectively). Note that this expected value converges to 1
2 for

n→∞, which is indeed the asymptotic baseline of the index.

FNMI and NMI. Note that in this case kA = kB so that the penalty term of FNMI will equal 1 and FNMI will coincide
with NMI. Again cmax = 1. For the case where the intra-pairs do not coincide, the joint entropy will equalH(A,B) = ln(n)
while each of the marginal entropies will equal

H(A) = H(B) =
n− 2

n
ln(n) +

2

n
ln(n/2) = ln(n)− 2

n
ln(2).

This results in

cn(NMI) =
2H(A)−H(A,B)

H(A)
= 1− 2 ln(n)

n ln(n)− 2 ln(2)
,

and the expected value will be given by the non-constant

E[NMI(A,B)] = 1− N − 1

N

2 ln(n)

n ln(n)− 2 ln(2)
.

Note that as H(A) = H(B), all normalizations of MI will be equal so that this counter-example proves that none of the
variants of (F)NMI satisfy the constant baseline property.

Variation of Information. In this case cmax = 0. We will use the entropies from the NMI-computations to conclude that

E[VI(A,B)] =
N − 1

N
(2H(A,B)−H(A)−H(B)) =

N − 1

N

4

n
ln(2),

which is again non-constant.



Systematic Analysis of Cluster Similarity Indices: How to Validate Validation Measures

F-measure. Here cmax = 1. In the case where the intra-pairs do not coincide, all contingency variables will be either
one or zero so that both recall and precision will equal 1− 1/n so that cn(FM) = 1− 1/n. This results in the following
non-constant expected value

E[FM(A,B)] = 1− N − 1

N

1

n
.

Note that because recall equals precision in both cases, this counter-example also works for other averages than the harmonic
average.

BCubed. Again cmax = 1. In the other case, the recall and precision will again be equal. Because for BCubed, the
contribution of cluster i is given by 1

n max{n2ij}/|Ai|, the contributions of the one- and two-clusters will be given by 1
n ,

1
2n

respectively. Hence, cn(BC) = n−2
n + 1

2n = 1− 3
2n and we get the non-constant

E[BC(A,B)] = 1− N − 1

N
· 3

2n
.

We note that again, this counter-example can be extended to non-harmonic averages of the BCubed recall and precision.

D. Further Analysis of Constant Baseline Property
D.1. Analysis of Exact Constant Baseline Property

In this section we will prove equivalence between Definition 8 of the main text and another formulation. Let S(B) denote
the specification of the cluster sizes of the clustering B, i.e., S(B) := [|B1|, . . . , |BkB |], where [. . . ] denotes a multiset.
For a cluster sizes specification s, let C(s) be the uniform distribution over clusterings B with S(B) = s. We prove the
following result:

Lemma 3. An index V has a constant baseline if and only if there exists a constant cbase so that, for any clustering A with
1 < kA < n and cluster sizes specification s, it holds that EB∼C(s)[V (A,B)] = cbase.

Proof. One direction follows readily from the fact that C(s) is an element-symmetric distribution for every s. For the other
direction, we write

EB∼B[V (A,B)] =
∑
s

PB∼B(S(B) = s)EB∼B[V (A,B)|S(B) = s]

=
∑
s

PB∼B(S(B) = s)EB∼C(s)[V (A,B)]

=
∑
s

PB∼B(S(B) = s) cbase = cbase,

where the sum ranges over cluster-sizes of n elements.

Symmetry of constant baseline Note that drawing B′ ∼ C(S(B)) is equivalent to obtaining B′ by randomly permuting
the cluster-assignments of B. Note that for the expectation EB′∼C(S(B))[V (A,B′)], it does not matter whether we randomly
permute the labels of B or A, i.e.

EB′∼C(S(B))[V (A,B′)] = EA′∼C(S(A))[V (A′, B)].

This shows that the definition of constant baseline is indeed symmetric.

D.2. Analysis of Asymptotic Constant Baseline Property

Definition 2. An index V is said to be scale-invariant, if it can be expressed as a continuous function of the three variables
pA := mA/N, pB := mB/N and pAB := N11/N .

All indices in Table 4 are scale-invariant. For such indices, we will write V (p)(pAB , pA, pB). Note that when B ∼ C(s) for
some s, the values pA, pB are constants while pAB is a random variable. Therefore, we further write PAB to stress that this
is a random variable.
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Theorem 1. Let V be a scale-invariant pair-counting index, and consider a sequence of clusterings A(n) and cluster-size
specifications s(n). Let N (n)

11 , N
(n)
10 , N

(n)
01 , N

(n)
00 be the corresponding pair-counts. Then, for any ε > 0, as n→∞,

P
(∣∣∣V (N (n)

11 , N
(n)
10 , N

(n)
01 , N

(n)
00

)
− V

(
N

(n)
11 , N

(n)
10 , N

(n)
01 , N

(n)
00

)∣∣∣ > ε
)
→ 0.

Proof. We prove the equivalent statement

V (p)
(
P

(n)
AB , p

(n)
A , p

(n)
B

)
− V (p)

(
p
(n)
A p

(n)
B , p

(n)
A , p

(n)
B

)
P→ 0 .

We first prove that P (n)
AB − p

(n)
A p

(n)
B

P→ 0 so that the above follows from the continuous mapping theorem. Chebychev’s
inequality gives

P
(∣∣P (n)

AB − p
(n)
A p

(n)
B

∣∣ > ε
)
≤ 1(

n
2

)2
ε2

Var
(
N

(n)
11

)
→ 0.

The last step follows from the fact that Var(N11) = o(n4), as we will prove in the remainder of this section. Even though
in the definition, A is fixed while B is randomly permuted, it is convenient to equivalently consider both clusterings are
randomly permuted for this proof.

We will show that Var(N11) = o(n4). To compute the variance, we first inspect the second moment. Let A(S) denote the
indicator function of the event that all elements of S ⊂ {1, . . . , n} are in the same cluster in A. Define B(S) similarly and
let AB(S) = A(S)B(S). Let e, e1, e2 range over subsets of {1, . . . , n} of size 2. We write

N2
11 =

(∑
e

AB(e)

)2

=
∑
e1,e2

AB(e1)AB(e2)

=
∑

|e1∩e2|=2

AB(e1)AB(e2) +
∑

|e1∩e2|=1

AB(e1)AB(e2) +
∑

|e1∩e2|=0

AB(e1)AB(e2)

=N11 +
∑

|e1∩e2|=1

AB(e1 ∪ e2) +
∑

e1∩e2=∅

AB(e1)AB(e2).

We take the expectation

E[N2
11] = E[N11] + 6

(
n

3

)
E[AB({v1, v2, v3})] +

(
n

2

)(
n− 2

2

)
E[AB(e1)AB(e2)],

where v1, v2, v3 ∈ V distinct and e1 ∩ e2 = ∅. The first two terms are obviously o(n4). We inspect the last term(
n

2

)(
n− 2

2

)
E[AB(e1)AB(e2)] =

(
n

2

)∑
i,j

P(e1 ⊂ Ai ∩Bj)×
(
n− 2

2

)
E[AB(e2)|e1 ⊂ Ai ∩Bj ] . (2)

Now we rewrite E[N11]
2 to

E[N11]
2 =

(
n

2

)∑
i,j

P(e1 ⊂ Ai ∩Bj)
(
n

2

)
E[AB(e2)].

Note that
(
n
2

)
E[AB(e2)] >

(
n−2
2

)
E[AB(e2)] so that the difference between (2) and E[N11]

2 can be bounded by(
n

2

)(
n− 2

2

)∑
i,j

P(e1 ⊂ Ai ∩Bj) · (E[AB(e2)|e1 ⊂ Ai ∩Bj ]−E[AB(e2)]).

As
(
n
2

)(
n−2
2

)
= O(n4), what remains to be proven is∑

i,j

P(e1 ⊂ Ai ∩Bj) · (E[AB(e2)|e1 ⊂ Ai ∩Bj ]−E[AB(e2)]) = o(1).
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Note that it is sufficient to prove that

E[AB(e2)|e1 ⊂ Ai ∩Bj ]−E[AB(e2)] = o(1),

for all i, j. Note that E[AB(e2)] = mAmB/N
2, while

E[AB(e2)|e1 ⊂ Ai ∩Bj ] =
(mA − (2ai − 3))(mB − (2bj − 3))

(N − (2n− 3))2
.

Hence, the difference will be given by

(mA − (2ai − 3))(mB − (2bj − 3))

(N − (2n− 3))2
− mAmB

N2

=
N2(mA − (2ai − 3))(mB − (2bj − 3))

N2(N − (2n− 3))2
− (N − (2n− 3))2mAmB

N2(N − (2n− 3))2

=
N2((2ai − 3)(2bj − 3)−mA(2bj − 3)−mB(2ai − 3))

N2(N − (2n− 3))2
+
mAmB(2N(2n− 3)− (2n− 3)2)

N2(N − (2n− 3))2

=
((2ai − 3)(2bj − 3)−mA(2bj − 3)−mB(2ai − 3))

(N − (2n− 3))2
+
mAmB

N2

(2N(2n− 3)− (2n− 3)2)

(N − (2n− 3))2

=
O(n3)

(N − (2n− 3))2
+
mAmB

N2

O(n3)

N2(N − (2n− 3))2

=o(1),

as required.

D.3. Statistical Tests for Constant Baseline

In this section, we provide two statistical tests: one test to check whether an index V satisfies the constant baseline property
and another to check whether V has a selection bias towards certain cluster sizes.

Checking constant baseline. Given a reference clustering A and a number of cluster sizes specifications s1, . . . , sk, we
test the null hypothesis that

EB∼C(si)[V (A,B)]

is constant in i = 1, . . . , k. We do so by using one-way Analysis Of Variance (ANOVA). For each cluster sizes specification,
we generate r clusterings. Although ANOVA assumes the data to be normally distributed, it is known to be robust for
sufficiently large groups (i.e., large r).

Checking selection bias. In (Romano et al., 2014) it is observed that some indices with a constant baseline do have a
selection bias; when we have a pool of random clusterings of various sizes and select the one that has the highest score
w.r.t. a reference clustering, there is a bias of selecting certain cluster sizes. We test this bias in the following way: given a
reference clustering A and cluster sizes specifications s1, . . . , sk, we repeatedly generate B1 ∼ C(s1), . . . , Bk ∼ C(sk).
The null-hypothesis will be that each of these clusterings Bi has an equal chance of maximizing V (A,Bi). We test this
hypothesis by generating r pools and using the Chi-squared test.

We emphasize that these statistical tests cannot prove whether an index satisfies the property or has a bias. Both will return a
confidence level p with which the null hypothesis can be rejected. Furthermore, for an index to not have these biases, the
null hypothesis should be true for all choices of A, s1, . . . , sk, which is impossible to verify statistically.

The statistical tests have been implemented in Python and the code is available at https://github.com/
MartijnGosgens/validation_indices. We applied the tests to the indices of Tables 3 and 4. We chose
n = 50, 100, 150, . . . , 1000 and r = 500. For the cluster sizes, we define the balanced cluster sizes BS(n, k) to
be the cluster-size specification for k clusters of which n − k ∗ bn/kc clusters have size dn/ke while the remainder
have size bn/kc. Then we choose A(n) to be a clustering with sizes BS(n, bn0.5c) and consider candidates with sizes

https://github.com/MartijnGosgens/validation_indices
https://github.com/MartijnGosgens/validation_indices
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s
(n)
1 = BS(n, bn0.25c), s(n)2 = BS(n, bn0.5c), s(n)3 = BS(n, bn0.75c). For each n, the statistical test returns a p-value. We

use Fisher’s method to combine these p-values into one single p-value and then reject the constant baseline if p < 0.05. The
obtained results agree with Tables 3 and 4 except for Correlation Distance, which is so close to having a constant baseline
that the tests are unable to detect it.

D.4. Illustrating Significance of Constant Baseline

In this section, we conduct two experiments illustrating the biases of various indices. We perform two experiments that allow
us to identify the direction of the bias in different situations. Our reference clustering corresponds to the expert-annotated
clustering of the production experiment described in Section 3 of the main text and Appendix F.3, where n = 924 items are
grouped into kA = 431 clusters (305 of them consist of a single element).

In the first experiment, we randomly cluster the items into k approximately equally sized clusters for various k. Figure 1
shows the averages and 90% confidence bands for each index. It can be seen that some indices (e.g., NMI and Rand) have a
clear increasing baseline while others (e.g., Jaccard and VI) have a decreasing baseline. In contrast, all unbiased indices
have a constant baseline.

In Section 4.6 we argued that these biases could not be described in terms of the number of clusters alone. Our second
experiment illustrates that the bias also heavily depends on the sizes of the clusters. In this case, items are randomly clustered
into 32 clusters, 31 of which are “small” clusters of size s while one cluster has size n− 31 · s, where s is varied between 1
and 28. In Figure 2, that the biases are clearly visible. This shows that, even when fixing the number of clusters, biased
indices may heavily distort an experiment’s outcome.

Finally, recall that we have proven that the baseline of CD is only asymptotically constant. Figures 1 and 2 show that for
practical purposes its baseline can be considered constant.

E. Additional Results
E.1. Proof of Theorem 2 in the Main Text

Let B′ be an A-consistent improvement of B. We define

B ⊗B′ = {Bj ∩B′j′ |Bj ∈ B,B′j′ ∈ B′, Bj ∩B′j′ 6= ∅}

and show that B ⊗B′ can be obtained from B by a sequence of perfect splits, while B′ can be obtained from B ⊗B′ by a
sequence of perfect merges. Indeed, the assumption that B′ does not introduce new disagreeing pairs guarantees that any
Bj ∈ B can be split into Bj ∩B′1, . . . , Bj ∩B′kB′ without splitting over any intra-cluster pairs of A. Let us prove that B′

can be obtained from B ⊗ B′ by perfect merges. Suppose there are two B′′1 , B
′′
2 ∈ B ⊗ B′ such that both are subsets of

some B′j′ . Assume that this merge is not perfect, then there must be v ∈ B′′1 , w ∈ B′′2 such that v, w are in different clusters
of A. As v, w are in the same cluster of B′, it follows from the definition of B ⊗B′ that v, w must be in different clusters of
B. Hence, v, w is an inter-cluster pair in both A and B, while it is an intra-cluster pair of B′, contradicting the assumption
that B′ is an A-consistent improvement of B. This concludes the proof.

E.2. Deviation of CD from Constant Baseline

Theorem. Given ground truth A with a number of clusters 1 < kA < n, a cluster-size specification s and a random
partition B ∼ C(s), the expected difference between Correlation Distance and its baseline is given by

EB∼C(s)[CD(A,B)]− 1

2
= − 1

π

∞∑
k=1

(2k)!

22k(k!)2
EB∼C(s)[CC(A,B)2k+1]

2k + 1
.

Proof. We take the Taylor expansion of the arccosine around CC(A,B) = 0 and get

CD(A,B) =
1

2
− 1

π

∞∑
k=0

(2k)!

22k(k!)2
CC(A,B)2k+1

2k + 1
.

We take the expectation of both sides and note that the first moment of CC equals zero, so the starting index is k = 1.
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Figure 1. The reference clustering of Appendix F.3 (n = 924 and kA = 431) is compared to random clusterings. Each clustering consists
of k approximately equally-sized clusters, where k is varied between 2 and 512. For each k, 200 random clusterings are generated. For
each index, we plot the average score, along with a 90% confidence band.
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Figure 2. The reference clustering of Appendix F.3 (n = 924 and kA = 431) is compared to random clusterings. Each clustering consists
of 31 “small” clusters of size s while the last cluster has size 924− 31 · s, where s is varied between 1 and 28. For each s, 200 random
clusterings are generated. For each index, we plot the average score, along with a 90% confidence band.
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For B ∼ C(s) and large n, the value CC(A,B) will be concentrated around 0. This explains that in practice, the mean tends
to be very close to the asymptotic baseline.

E.3. Comparison with Lei et al. (2017)

Lei et al. (2017) describe the following biases for cluster similarity indices: NCinc — the average value for a random guess
increases monotonically with the Number of Clusters (NC) of the candidate; NCdec — the average value for a random
guess decreases monotonically with the number of clusters, and GTbias — the direction of the monotonicity depends on the
specific Ground Truth (GT), i.e., on the reference partition. In particular, the authors conclude from numerical experiments
that Jaccard suffers from NCdec and analytically prove that Rand suffers from GTbias, where the direction of the bias
depends on the quadratic entropy of the ground truth clustering. Here we argue that these biases are not well defined, suggest
replacing them by well-defined analogs, and show how our analysis allows to easily test indices on these biases.

We argue that the quantity of interest should not be the number of clusters, but the number of inter-cluster pairs of the
candidate. Theorem 1 shows that the asymptotic value of the index depends on the number of intra-cluster pairs of both
clusterings (or equivalently, the number of inter-cluster pairs). The key insight is that more clusters do not necessarily
imply more inter-cluster pairs. For example, let s denote a cluster-sizes specification for 3 clusters each of size ` > 2. Now
let s′ be the cluster-sizes specification for one cluster of size 2` and ` clusters of size 1. Then, any B ∼ C(s) will have 3
clusters and N − 3

(
`
2

)
inter-cluster pairs while any B′ ∼ C(s′) will have ` + 1 > 3 clusters and N −

(
2`
2

)
< N − 3

(
`
2

)
intra-cluster pairs. For any ground truth A with cluster-sizes s, we have E[J(A,B′)] > E[J(A,B)] because of a smaller
amount of inter-cluster pairs In contrast, Lei et al. (2017) classifies Jaccard as an NCdec index, so that we would expect
the inequality to be the other way around, contradicting the definition of NCdec. The PairInc and PairDec biases that are
defined in Definition 10 of the main text are sound versions of these NCinc and NCdec biases because they depend on the
expected number of agreeing pairs. This allows to analytically determine which bias a given pair-counting index has.

F. Experiment
F.1. Synthetic Experiment

In this experiment, we construct several simple examples to illustrate the inconsistency among the indices. Recall that
two indices V1 and V2 are inconsistent for a triplet of partitions (A,B1, B2) if V1(A,B1) > V1(A,B2) but V2(A,B1) <
V2(A,B2).

We take all indices from Tables 3 and 4 and construct several triplets of partitions to distinguish them all. Let us note that
the pairs Dice vs Jaccard and CC vs CD cannot be inconsistent since they are monotonically transformable to each other.
Also, we do not compare with SMI since it is much more computationally complex than all other indices. Thus, we end up
with 13 indices and are looking for simple inconsistency examples.

The theoretical minimum of examples needed to find inconsistency for all pairs of 13 indices is 4. We were able to find such
four examples, see Figure 3. In this figure, we show four inconsistency triplets. For each triplet, the shapes (triangle, square,
etc.) denote the reference partition A. Left and right figures show candidate partitions B1 and B2. In the caption, we specify
which similarity indices favor this candidate partition over the other one.

It is easy to see that for each pair of indices, there is a simple example where they disagree. For example, NMI and NMImax
are inconsistent for triplets 3. Also, we know that Jaccard in general favors larger clusters, while Rand and NMI often prefer
smaller ones. Hence, they often disagree in this way (see the triplets 2 and 4).

F.2. Experiments on Real Datasets

In this section, we test whether the inconsistency affects conclusions obtained in experiments on real data.

For that, we used the following 16 UCI datasets (Dua & Graff, 2017): Arrhythmia, Balance Scale, Ecoli, Heart Statlog,
Letter, Segment, Vehicle, WDBC, Wine, Wisc, Cpu, Iono, Iris, Sonar, Thy, Zoo (see GitHub (2020) for datasets and
references). The values of the “target class” field were used as a reference partition.

On these datasets, we ran 8 well-known clustering algorithms (Scikit-learn, 2020): KMeans, AffinityPropagation, Mean-
Shift, AgglomerativeClustering, DBSCAN, OPTICS, Birch, GaussianMixture. For AgglomerativeClustering, we used
4 different linkage types (‘ward’, ‘average’, ‘complete’, ‘single’). For GaussianMixture, we used 4 different covariance
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(1a) FNMI, Rand, AdjRand, Jac-
card, Dice, Wallace, FMeasure,
BCubed

(1b) NMI, NMImax, VI, AMI,
S&S, CC, CD

(2a) NMI, NMImax, FNMI, Rand,
FMeasure, BCubed

(2b) VI, AMI, AdjRand, Jaccard,
Dice, Wallace, S&S, CC, CD

(3a) NMImax, Rand, AdjRand, Jac-
card, Dice, S&S, CC, CD, FMea-
sure

(3b) NMI, VI, FNMI, AMI, Wal-
lace, BCubed

(4a) NMI, NMImax, FNMI, AMI,
Rand, AdjRand, CC, CD

(4b) VI, Jaccard, Dice, Wallace,
S&S, FMeasure, BCubed

Figure 3. Inconsistency of indices: each row corresponds to a triplet of partitions, shapes denote the reference partitions, the captions
indicate which indices favor the corresponding candidate.



Systematic Analysis of Cluster Similarity Indices: How to Validate Validation Measures

Table 3. Inconsistency of indices on real-world clustering datasets, %

NMI NMImax VI FNMI AMI R AR J W S&S CC FMeas BCub

NMI – 5.4 40.3 17.3 9.2 13.4 15.7 35.2 68.4 20.1 18.5 31.7 32.0
NMImax – 41.1 16.5 13.2 12.5 14.1 34.3 68.8 21.1 18.9 30.3 32.4
VI – 34.7 41.8 45.2 37.6 17.1 28.8 36.0 37.2 18.1 13.6
FNMI – 23.3 24.0 19.0 29.9 57.0 26.7 23.8 27.5 26.7
AMI – 21.1 17.3 33.3 61.3 15.1 13.6 35.0 34.4
R – 15.5 35.6 71.5 21.1 20.7 32.5 35.8
AR – 23.5 59.4 11.7 8.3 25.3 28.1
J – 35.9 23.1 23.8 10.7 9.7
W – 53.5 54.8 40.7 37.4
S&S – 3.6 26.2 27.8
CC – 27.0 28.8
FMeas – 7.7
BCub –

Table 4. Algorithms preferred by different indices

NMI NMImax VI FNMI AMI R AR J W S&S1 CC FMeas BCub

k = 2 2 1 9 4 2 0 4 6 10 3 3 7 7
k = 2 · ref 8 9 1 6 8 10 6 4 0 7 7 3 3

types (‘spherical’, ‘diag’, ‘tied’, ‘full’). For methods requiring the number of clusters as a parameter (KMeans, Birch,
AgglomerativeClustering, GaussianMixture), we took up to 4 different values (less than 4 if some of them are equal): 2,
ref-clusters, max(2,ref-clusters/2), min(items, 2·ref-clusters), where ref-clusters is the number of clusters in the reference
partition and items is the number of elements in the dataset. For MeanShift, we used the option cluster all = True. All
other settings were default or taken from examples in the sklearn manual.

For all datasets, we calculated all the partitions for all methods described above. We removed all partitions having only one
cluster or which raised any calculation error. Then, we considered all possible triplets A,B1, B2, where A is a reference
partition and B1 and B2 are candidates obtained with two different algorithms. We have 8688 such triplets in total. For each
triplet, we check whether the indices are consistent. The inconsistency frequency is shown in Table 3. Note that Wallace is
highly asymmetrical and does not satisfy most of the properties, so it is not surprising that it is in general very inconsistent
with others. However, the inconsistency rates are significant even for widely used pairs of indices such as, e.g., Variation of
Information vs NMI (40.3%, which is an extremely high disagreement). Interestingly, the best agreeing indices are S&S and
CC which satisfy most of our properties. This means that conclusions made with these indices are likely to be similar.

Actually, one can show that all indices are inconsistent using only one dataset. This holds for 11 out of 16 datasets:
heart-statlog, iris, segment, thy, arrhythmia, vehicle, zoo, ecoli, balance-scale, letter, wine. We do not present statistics for
individual datasets since we found the aggregated Table 3 to be more useful.

Finally, to illustrate the biases of indices, we compare two KMeans algorithms with k = 2 and k = 2·ref-clusters. The
comparison is performed on 10 datasets (where both algorithms are successfully completed). The results are shown in
Table 4. In this table, biases and inconsistency are clearly seen. We see that NMI and NMImax almost always prefer the larger
number of clusters. In contrast, Variation of Information and Rand usually prefer k = 2 (Rand prefers k = 2 in all cases).

F.3. Production Experiment

To show that the choice of similarity index may have an effect on the final quality of a production algorithm, we conducted
an experiment within a major news aggregator system. The system aggregates all news articles to events and shows the list
of most important events to users. For grouping, a clustering algorithm is used and the quality of this algorithm affects the
user experience: merging different clusters may lead to not showing an important event, while too much splitting may cause

1 The code is available at https://github.com/MartijnGosgens/validation_indices.

https://github.com/MartijnGosgens/validation_indices
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Table 5. Similarity of candidate partitions to the reference one. In bold are the inconsistently ranked pairs of partitions. For some indices,
we flipped the sign of the index, so that larger values correspond to better agreement.

Aprod A1 A2

NMI 0.9326 0.9479 0.9482
NMImax 0.8928 0.9457 0.9298
FNMI 0.7551 0.9304 0.8722
AMI 0.6710 0.7815 0.7533
VI -0.6996 -0.5662 -0.5503
FMeasure 0.8675 0.8782 0.8852
BCubed 0.8302 0.8431 0.8543
R 0.9827 0.9915 0.9901
AR 0.4911 0.5999 0.6213
J 0.3320 0.4329 0.4556
W 0.8323 0.6287 0.8010
D 0.4985 0.6042 0.6260
S&S 0.7926 0.8004 0.8262
CC 0.5376 0.6004 0.6371
CD -0.3193 -0.2950 -0.2802

the presence of duplicate events.

There is an algorithm Aprod currently used in production and two alternative algorithms A1 and A2. To decide which
alternative is better for the system, we need to compare them. For that, it is possible to either perform an online experiment or
make an offline comparison, which is much cheaper and allows us to compare more alternatives. For the offline comparison,
we manually grouped 1K news articles about volleyball, collected during a period of three days, into events. Then, we
compared the obtained reference partition with partitions Aprod, A1, and A2 obtained by Aprod, A1, and A2, respectively
(see Table 5). According to most of the indices, A2 is closer to the reference partition than A1, and A1 is closer than Aprod.
However, according to some indices, including the well-known NMImax, NMI, and Rand, A1 better corresponds to the
reference partition than A2. As a result, we see that in practical application different similarity indices may differently rank
the algorithms.

To further see which algorithm better agrees with user preferences, we launched the following online experiment. During
one week we compared Aprod and A1 and during another — Aprod and A2 (it is not technically possible to compare A1

and A2 simultaneously). In the first experiment, A1 gave +0.75% clicks on events shown to users; in the second, A2 gave
+2.7%, which clearly confirms that these algorithms have different effects on user experience and A2 is a better alternative
thanA1. Most similarity indices having nice properties, including CC, CD, and S&S, are in agreement with user preferences.
In contrast, AMI ranks A1 higher than A2. This can be explained by the fact that AMI gives more weight to small clusters
compared to pair-counting indices, which can be undesirable for this particular application, as we discuss in Section 5 of the
main text.
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Amigó, E., Gonzalo, J., Artiles, J., and Verdejo, F. A comparison of extrinsic clustering evaluation metrics based on formal
constraints. Information retrieval, 12(4):461–486, 2009.

Batagelj, V. and Bren, M. Comparing resemblance measures. Journal of classification, 12(1):73–90, 1995.



Systematic Analysis of Cluster Similarity Indices: How to Validate Validation Measures

Ben-David, S. and Ackerman, M. Measures of clustering quality: A working set of axioms for clustering. Advances in
neural information processing systems, 21:121–128, 2008.

Donnat, C. and Holmes, S. Tracking network dynamics: A survey of distances and similarity metrics. arXiv preprint
arXiv:1801.07351, 2018.

Dua, D. and Graff, C. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/ml.

GitHub. Clustering datasets. https://github.com/deric/clustering-benchmark, 2020.

Hubert, L. and Arabie, P. Comparing partitions. Journal of classification, 2(1):193–218, 1985.

Kleinberg, J. An impossibility theorem for clustering. Advances in neural information processing systems, 15:463–470,
2002.

Kosub, S. A note on the triangle inequality for the jaccard distance. Pattern Recognition Letters, 120:36–38, 2019.

Lei, Y., Bezdek, J. C., Romano, S., Vinh, N. X., Chan, J., and Bailey, J. Ground truth bias in external cluster validity indices.
Pattern Recognition, 65:58–70, 2017.
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