
Supplementary Material:

Dissecting Supervised Constrastive Learning

In this supplementary material, we provide all proofs (from §3 which were omitted in the main part
of the manuscript. Results which are restated from the main manuscript have the same numbering,
while Definitions, Lemmas, etc., which are only present in the supplementary material have their labels
suffixed by an “S”. Additionally, restatements are marked in blue.

In the following, we will frequently utilize standard inequalities (e.g., the Jensen inequality, or the
Cauchy-Schwarz inequality) and analyzing their equality conditions will be key to get the desired
results. In this context, the following notation has proved to be useful: If a symbol appears above an
inequality sign in an equation, it denotes that the corresponding equality conditions will be discussed
later on and referenced with the corresponding symbol. For example,

a
(P )

≥ b ,

denotes a ≥ b and equality is attained if and only if the condition (P) is satisfied.

S1. Proofs for Section 3.2
In this section, we will prove Theorem 2 of the main manuscript (restated below). Throughout this
section the following objects will appear repeatedly an thus are introduced one-off:

• h,N,K ∈ N
• ρZ > 0

• Z = Sh−1
ρZ

• Y = {1, . . . ,K} = [K]

Further, we will consider batches B ∈ B of an arbitrary but fixed size b ≥ 3. We additionally assume
|Y| = K ≤ h+ 1.

Theorem 2. Let ρZ > 0 and let Z = Sh−1
ρZ . Further, let Z = (z1, . . . , zN ) ∈ ZN be an N point

configuration with labels Y = (y1, . . . , yN ) ∈ [K]N . If the label configuration Y is balanced, it holds
that

LSC(Z;Y )

≥
b∑
l=2

lMl log

(
l − 1 + (b− l) exp

(
− Kρ2

Z
K − 1

))
,

where
Ml =

∑
y∈Y
|{B ∈ B : |By| = l}| .

Equality is attained if and only if the following conditions are satisfied. There are ζ1, . . . , ζK ∈ Rh

such that:

(C1) ∀n ∈ [N ] : zn = ζyn
(C2) {ζy}y form a ρZ -sphere-inscribed regular simplex
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S1.1. Definitions

First we will recall the definition of the supervised contrastive (SC) loss and introduce some necessary
auxiliary definitions. The SC loss is given by

LSC(Z;Y ) =
∑
B∈B

`SC(Z;Y,B) , (S1)

where `SC(Z;Y,B) is the batch-wise loss

`SC(Z;Y,B) = −
∑
i∈B
|Byi |>1

1

|Byi | − 1

∑
j∈Byi\{{i}}

log

 exp
(
〈zi, zj〉

)∑
k∈B\{{i}}

exp
(
〈zi, zk〉

)
 . (S2)

We next introduce the class-specific batch-wise loss

`SC(Z;Y,B, y) =


−
∑
i∈By

1
|Byi |−1

∑
j∈Byi\{{i}}

log

 exp
(
〈zi,zj〉

)
∑

k∈B\{{i}}
exp
(
〈zi,zk〉

) if |By| > 1

0 else .

, (S3)

This allows us to write

`SC(Z;Y,B) = −
∑
i∈B
|Byi |>1

1

|Byi | − 1

∑
j∈Byi\{{i}}

log

 exp
(
〈zi, zj〉

)∑
k∈B\{{i}}

exp
(
〈zi, zk〉

)
 (S4)

= −
∑
y∈Y
|By|>1

∑
i∈By

1

|Byi | − 1

∑
j∈Byi\{{i}}

log

 exp
(
〈zi, zj〉

)∑
k∈B\{{i}}

exp
(
〈zi, zk〉

)
 (S5)

=
∑
y∈Y

`SC(Z;Y,B, y) , (S6)

and so
LSC(Z;Y ) =

∑
y∈Y

∑
B∈B

`SC(Z;Y,B, y) . (S7)

We use the following notation: the multiplicity of an element x in the multisetM is denoted by mM (x).
Furthermore, we introduce the label configuration of a batch, i.e.,

Υ(B) = {{yi : i ∈ B}} , (S8)

thus mΥ(B)(y) = |By|.

For example, if Y = {a, b}, B = {{1, 2, 2, 5, 10}} and a = y1 = y2, b = y5 = y10, then mB(2) = 2,
Υ(B) = {{a, a, a, b, b}} and mΥ(B)(a) = 3 = |{{1, 2, 2}}| = |Ba|. We will slightly abuse notation
(Y is a tuple, not a multiset) and write mY (y) = mΥ([N ])(y) = |{{n ∈ [N ] : yn = y}}|. For every
batch B ∈ B and label y ∈ Y , we will also write ByC := {{i ∈ B : yi 6= y}} for the complement
of By := {{i ∈ B : yi = y}}, which was already introduced in the Definition 2 of the supervised
contrastive loss.

Definition 4 (Auxiliary functions S, Srep, Satt). Let h,N ∈ N, ρZ > 0 and Z = Sh−1
ρZ . For fixed label

configuration Y ∈ YN , batch B ∈ B and label y ∈ Y with mΥ(B)(y) > 1, we define

S( · ;Y,B, y) : ZN → R (S9)
Z 7→ Satt(Z;Y,B, y) + Srep(Z;Y,B, y) , (S10)
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where

Satt(Z;Y,B, y) = − 1

|By| (|By| − 1)

∑
i∈By

∑
j∈By\{{i}}

〈zi, zj〉 (S11)

Srep(Z;Y,B, y) =

{
1

|By| |ByC |
∑
i∈By

∑
j∈ByC 〈zi, zj〉 if mΥ(B)(y) 6= b

0 if mΥ(B)(y) = b
. (S12)

Definition 5 (Auxiliary partition of B). For every y ∈ Y and every l ∈ {0, . . . , b}, we define

By,l := {B ∈ B : mΥ(B)(y) = l} . (S13)

S1.2. Proof of Theorem 2

Proof. We first present the main steps of the proof of Theorem 2 and refer to subsequent technical
lemmas when needed.

(Step 1) For each class y ∈ Y and each batch B ∈ B with mΥ(B)(y) > 1, the class-specific batch-
wise loss `SC(Z;Y,B, y) (see Lemma S1) is bounded from below by

`SC(Z;Y,B, y) ≥ |By| log
(
|By| − 1 + |ByC | exp (S(Z;Y,B, y))

)
. (S14)

(Step 2) We regroup the addends of the sum LSC(Z;Y ), i.e.,

LSC(Z;Y ) =
∑
B∈B

∑
y∈Y

`SC(Z;Y,B, y) , (S15)

such that each group is defined by addends requiring B ∈ By,l = {B ∈ B| mΥ(B)(y) = l}.
As a result, we can leverage the bound of (Step 1) on each group, i.e.,

LSC(Z;Y ) =
∑
B∈B

∑
y∈Y

`SC(Z;Y,B, y) (S16)

=

b∑
l=0

∑
y∈Y

∑
B∈By,l

`SC(Z;Y,B, y) (S17)

≥
b∑
l=2

∑
y∈Y

∑
B∈By,l

l log (l − 1 + (b− l) exp (S(Z;Y,B, y))) . (S18)

Here the sum over the value of l starts at l = 2, because `SC(Z;Y,B, y) = 0 vanishes for
batches B ∈ {By,0,By,1}.

(Step 3) Applying Jensen’s inequality (see Lemma S2), then yields

LSC(Z;Y ) ≥
b∑
l=2

lMl log

l − 1 + (b− l) exp

 1

Ml

∑
y∈Y

∑
B∈By,l

S(Z;Y,B, y)

 ,

(S19)
where Ml =

∑
y∈Y |By,l|.

(Step 4) In Lemma S3, we characterize the equality case of the bound above. It is achieved if and
only if all intra-class and inter-class inner products agree, respectively.

The next steps investigate, for each l ∈ {2, . . . , b− 1}, the sum

∑
y∈Y

∑
B∈By,l

S(Z;Y,B, y) =

∑
y∈Y

∑
B∈By,l

Satt(Z;Y,B, y)

+

∑
y∈Y

∑
B∈By,l

Srep(Z;Y,B, y)

 .

(S20)
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(Step 5) The sum of the attraction terms, Satt, is maximal if and only if all intra-class inner products
are maximal, i.e., they are equal to ρZ2 (see Lemma S4). This implies∑

y∈Y

∑
B∈By,l

Satt(Z;Y,B, y) ≥ −Ml ρZ
2 . (S21)

(Step 6) If |Y| > 2, then the trivial bound on the repulsion term (inner products = −ρZ2) is not tight
as this could only be achieved if the classes were on opposite poles of the sphere. Thus we
need an additional step: instead of summing the repulsion terms, Srep(Z;Y,B, y), over all
labels and batches, as done in (Step 4), we re-write this summation as a sum over pairs of
indices (n,m) ∈ [N ]2 of different classes yn 6= ym (see Lemma S5). That is,∑

y∈Y

∑
B∈By,l

Srep(Z;Y,B, y) =
∑
y∈Y

∑
n∈[N ]
yn=y

∑
m∈[N ]
ym 6=y

Kn,m(y, l)〈zn, zm〉 , (S22)

where Kn,m(y, l) := 1
l(b−l)

∑
B∈By,l mBy (n) mByC (m) .

(Step 7) As we assume the label configuration Y to be balanced, we get that

Kn,m(y, l) =
Ml

N2

|Y|
|Y| − 1

, (S23)

which only depends on l (and not on y), see Lemma S7 and Eq. (S98). Thus, it suffices to
bound ∑

y∈Y

∑
n∈[N ]
yn=y

∑
m∈[N ]
yn 6=y

〈zn, zm〉 ≥ −ρZ2
∑
y∈Y

mY (y)2 = −N
2

|Y|
ρZ

2 , (S24)

where equality is attained if and only if (a)
∑
n∈[N ] zn = 0, and (b) yn = ym ⇒ zn = zm

(see Lemma S8).

(Step 8) Finally, we combine all results from (Steps 1-7) and obtain the asserted lower bound (see
Lemma S11), i.e.,

LSC(Z;Y ) ≥
b∑
l=2

Mll log

(
l − 1 + (b− l) exp

(
− 1

Ml

(
Ml

N2

|Y|
|Y| − 1

N2

|Y|
+Ml

)
ρZ

2

))
(S25)

=

b∑
l=2

Mll log

(
l − 1 + (b− l) exp

(
− |Y|
|Y| − 1

ρZ
2

))
, (S26)

where equality is attained if and only if all instances zn with equal label yn collapse to a
vertex ζyn of a regular simplex, inscribed in a hypersphere of radius ρZ , i.e., conditions (C1)
and (C2) in Theorem 2.



Dissecting Supervised Constrastive Learning

S1.3. Technical lemmas

In the following, we provide proofs for all technical lemmas invoked throughout Steps 1-8 in the proof
of Theorem 2.

Lemma S1. Fix a class y ∈ Y and a batch B ∈ B with mΥ(B)(y) ∈ {2, . . . , b}. For every Z ∈ ZN
and every Y ∈ YN , the class-specific batch-wise loss `SC(Z;Y,B, y) is bounded from below by

`SC(Z;Y,B, y) ≥ mΥ(B)(y) log
(
mΥ(B)(y)− 1 + (b−mΥ(B)(y)) exp (S(Z;Y,B, y))

)
, (S27)

where equality is attained if and only if all of the following hold:

(Q1) ∀i ∈ B there is a Ci(B, y) such that ∀j ∈ By \ {{i}} all inner products 〈zi, zj〉 = Ci(B, y) are
equal.

(Q2) ∀i ∈ B there is a Di(B, y) such that ∀j ∈ ByC all inner products 〈zi, zj〉 = Di(B, y) are
equal.

Proof. The lemma follows from an application of Jensen’s inequality. In particular, we first need to
bring the class-specific batch-wise loss in a form amenable to Jensen’s inequality. Since mΥ(B)(y) > 1,
we have that

`SC(Z;Y,B, y) = − 1

|Byi | − 1

∑
j∈Byi\{{i}}

log

 exp
(
〈zi, zj〉

)∑
k∈B\{{i}}

exp
(
〈zi, zk〉

)
 (S28)

=
∑
i∈By

log


∑

k∈B\{{i}}
exp

(
〈zi, zk〉

)
∏

j∈Byi\{{i}}
exp

(
〈zi, zj〉

)1/|Byi |−1

 (S29)

=
∑
i∈By

log


∑

k∈B\{{i}}
exp

(
〈zi, zk〉

)
exp

(
1

|By\{{i}}|
∑

j∈Byi\{{i}}
〈zi, zj〉

)
 . (S30)

We will focus on the sum in the numerator: For every i ∈ By , we write∑
k∈B\{{i}}

exp(〈zi, zk〉) =
∑

k∈By\{{i}}

exp(〈zi, zk〉) +
∑

k∈ByC
exp(〈zi, zk〉) . (S31)

First, assume that mΥ(B)(y) 6= b. As the exponential function is convex, we can leverage Jensen’s
inequality on both sums, resulting in

∑
k∈By\{{i}}

exp(〈zi, zk〉)
(Q1)

≥ |By \ {{i}}| exp

 1

|By \ {{i}}|
∑

k∈By\{{i}}

〈zi, zk〉

 (S32)

∑
k∈ByC

exp(〈zi, zk〉)
(Q2)

≥ |ByC | exp

 1

|ByC |

∑
k∈ByC

〈zi, zk〉

 . (S33)

Herein, equality is attained if and only if

(Q1) There is a Ci(B, y) such that ∀j ∈ By \ {{i}} all inner products 〈zi, zj〉 = Ci(B, y) are equal.

(Q2) There is a Di(B, y) such that ∀j ∈ By \ {{i}} all inner products 〈zi, zj〉 = Di(B, y) are equal.
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Thus, using exp(a)/ exp(b) = exp(a− b), we bound the argument of the log in Eq. (S30) by∑
k∈B\{{i}} exp(〈zi, zk〉)

exp
(

1
|By\{{i}}|

∑
j∈By\{{i}}〈zi, zj〉

) (S34)

≥|By \ {{i}}|+ |ByC | exp


1

|ByC |

∑
k∈ByC

〈zi, zk〉 −
1

|By \ {{i}}|
∑

j∈By\{{i}}

〈zi, zj〉︸ ︷︷ ︸
S(Z;Y,B,y)

 . (S35)

Hence, using |By| = mB(y) and the definition of S(Z;Y,B, y), we obtain the claimed bound

`SC(Z;Y,B) ≥ mΥ(B)(y) log
(
mΥ(B)(y)− 1 + (b−mΥ(B)(y)) exp (S(Z;Y,B, y))

)
. (S36)

Note that equality is attained, if and only if the above conditions hold for every i ∈ By . Also, note that
the respective constants, Ci(B, y) and Di(B, y), depend indeed on the batch B and the label y.

The case of mΥ(B)(y) = b follows from a analogous argument starting from Eq. (S35) under the
observation that, in this case, By = B and ByC = ∅. This leads to the inequality

`SC(Z;Y,B) ≥ b log (b− 1) , (S37)

with equality condition (Q1). Note that the statement of the lemma is phrased such that the results
from this case are automatically included.

Lemma S2. Let l ∈ {2, . . . , b}. For every Y ∈ YN and every Z ∈ ZN , we have that

1

Ml

∑
y∈Y

∑
B∈By,l

log (l − 1 + (b− l) exp (S(Z;Y,B, y))) (S38)

≥ log

l − 1 + (b− l) exp

 1

Ml

∑
y∈Y

∑
B∈By,l

S(Z;Y,B, y)

 ,

where Ml =
∑
y∈Y |By,l| and equality is attained if and only if:

(Q3) l = b or there is a constant D(l) such that for every y ∈ Y and for every B ∈ By,l the values of
S(Z;Y,B, y) = D(l) agree.

Proof. Let α, β > 0 and f : R→ R, x 7→ log(α+ β exp(x)). The function f is smooth with second
derivative f ′′(x) = αβex

(α+βex)2 > 0 and therefore it is convex. Thus, by Jensen’ inequality, for every
finite sequence (xB,y)(y∈Y,B∈By,l) it holds that

1∑
y∈Y |By,l|

∑
y∈Y

∑
B∈By,l

f(xB,y)
(Q3)

≥ f

 1∑
y∈Y |By,l|

∑
y∈Y

∑
B∈By,l

xB,y

 . (S39)

Setting α = l − 1, β = b− l and xB,y = S(Z;Y,B, y), we obtain the bound from the statement of
the lemma. Furthermore, equality is attained if and only if:

(Q3) There is a constant D(l) such that for every y ∈ Y and for every B ∈ By,l the values of
S(Z;Y,B, y) = D(l) agree.
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Next, we combine Lemma S1 with Lemma S2, which implies a bound with more tangible equality
conditions.

Lemma S3. For every Y ∈ YN and every Z ∈ ZN the supervised contrastive loss LSC is bounded
from below by

LSC(Z;Y ) ≥
b∑
l=2

lMl log

l − 1 + (b− l) exp

 1

Ml

∑
y∈Y

∑
B∈By,l

S(Z;Y,B, y)

 , (S40)

where Ml is defined as in Lemma S2 and equality is attained if and only if:

(A1) There exists a constant α, such that ∀n,m ∈ [N ], yn = ym implies 〈zn, zm〉 = α .
(A2) There exists a constant β, such that ∀n,m ∈ [N ], yn 6= ym implies 〈zn, zm〉 = β .

Proof. First, observe that `SC(Z;Y,B, y) = 0 if B ∈ {By,0,By,1}. Leveraging Lemma S1 and
Lemma S2, we get

LSC(Z;Y ) =
∑
B∈B

∑
y∈Y

`SC(Z;Y,B, y) (S41)

=

b∑
l=2

∑
y∈Y

∑
B∈By,l

`SC(Z;Y,B, y) (S42)

Lem. S1
≥

b∑
l=2

∑
y∈Y

∑
By,l

l log (l − 1 + (b− l) exp (S(Z;Y,B, y))) (S43)

Lem. S2
≥

b∑
l=2

lMl log

l − 1 + (b− l) exp

 1

Ml

∑
y∈Y

∑
B∈By,l

S(Z;Y,B, y)

 . (S44)

Here equality is attained if and only if all of the following conditions hold:

(Q1) ∀l ∈ {2, . . . , b}, ∀y ∈ Y , ∀B ∈ By,l and ∀i ∈ B there is a Ci(B, y) such that ∀j ∈ By \ {{i}}
all inner products 〈zi, zj〉 = Ci(B, y) are equal.

(Q2) ∀l ∈ {2, . . . , b}, ∀y ∈ Y , ∀B ∈ By,l and ∀i ∈ B there is a Di(B, y) such that ∀j ∈ ByC all
inner products 〈zi, zj〉 = Di(B, y) are equal.

(Q3) ∀l ∈ {2, . . . , b− 1}, there is a constant D(l) such that for every y ∈ Y and for every B ∈ By,l
the values of S(Z;Y,B, y) = D(l) agree.

It remains to show that (Q1) & (Q2) & (Q3) is equivalent to:

(A1) There exists a constant α, such that ∀n,m ∈ [N ], yn = ym implies 〈zn, zm〉 = α .
(A2) There exists a constant β, such that ∀n,m ∈ [N ], yn 6= ym implies 〈zn, zm〉 = β .

Recall the definition of the auxiliary function S, i.e

S(Z;Y,B, y) = Satt(Z;Y,B, y) + Srep(Z;Y,B, y) ,where (S45)

Satt(Z;Y,B, y) = − 1

|By| (|By| − 1)

∑
i∈By

∑
j∈By\{{i}}

〈zi, zj〉 (S46)

Srep(Z;Y,B, y) =
1

|By| |ByC |

∑
i∈By

∑
j∈ByC

〈zi, zj〉 . (S47)

We start with the direction (A1) & (A2) =⇒ (Q1) & (Q2) & (Q3).

(Q1) Fix l ∈ {2, . . . , b}, y ∈ Y , B ∈ By,l and i ∈ B. Let j ∈ By \{{i}}, i.e., yj = y = yi. Therefore
condition (A1) implies 〈zi, zj〉 = α, i.e., condition (Q1) is fulfilled with Ci(B, y) = α.
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(Q2) Fix l ∈ {2, . . . , b}, y ∈ Y , B ∈ By,l and i ∈ B. Let j ∈ ByC , i.e., yj 6= y = yi. Therefore
condition (A2) implies 〈zi, zj〉 = β, i.e. condition (Q2) is fulfilled with Di(B, y) = β.

(Q3) Fix l ∈ {2, . . . , b − 1}. Let y ∈ Y and B ∈ By,l. By condition (A1), Satt(Z;Y,B, y) =
−α and by condition (A2), Srep(Z;Y,B, y) = β, so S(Z;Y,B, y) = Srep(Z;Y,B, y) +
Satt(Z;Y,B, y) = β − α and condition (Q3) is fulfilled with D(l) = β − α.

Next, we show (Q1) & (Q2) & (Q3) =⇒ (A1) & (A2).

Let y, y′ ∈ Y and n,m, n′,m′ ∈ [N ] with yn = ym = y and yn′ = ym′ = y′. For brevity, we write
multisets such that the multiplicity of each element is denoted as a superscript, i.e., {{nb}} denotes the
multiset {{n, . . . , n}} which contains n exactly b times. Recall, that we assume the b ≥ 3.

(A1) We need to show that 〈zn, zm〉 = 〈zn′ , zm′〉. There are two cases: y = y′ and y 6= y′.
First, assume y 6= y′.
Choose l = 2 and pick the batch B1 = {{n,m, (n′)b−2}} ∈ By,2. Then

S(Z;Y,B1, y) = Satt(Z;Y,B1, y)+Srep(Z;Y,B1, y) = −〈zn, zm〉+
1

2
〈zn, zn′〉+

1

2
〈zm, zn′〉 .

Condition (Q2) implies that 〈zn, zn′〉 = 〈zm, zn′〉, and so the above simplifies to
S(Z;Y,B1, y) = −〈zn, zm〉 + 〈zn, zn′〉. An analogous argument for the batch B2 =
{{n′,m′, nb−2}} ∈ By′,2 implies that S(Z;Y,B2, y

′) = −〈zn′ , zm′〉 + 〈zn, zn′〉. Finally, by
condition (Q3), we have that S(Z;Y,B1, y) = S(Z;Y,B2, y

′) and thus 〈zn, zm〉 = 〈zn′ , zm′〉.

Now, assume y = y′.
Let p ∈ [N ] such that yp 6= y. Again, choose l = 2 and pick batches B1 = {{n,m, pb−2}} ∈
By,2 and B2 = {{n′,m′, pb−2}} ∈ By,2. By the same argument as in the preceding case of y 6=
y′, we have that S(Z;Y,B1, y) = −〈zn, zm〉 + 〈zn, zp〉 and S(Z;Y,B2, y) = −〈zn′ , zm′〉 +
〈zn′ , zp〉. Therefore, condition (Q3) implies that

−〈zn, zm〉+ 〈zn, zp〉 = −〈zn′ , zm′〉+ 〈zn′ , zp〉 .

Now, pick the batch B3 = {{zn, zm, pb−2}}. From condition (Q2) it follows that 〈zn, p〉 =
〈zm, p〉 and thus 〈zn′ , zm′〉 = 〈zn, zm〉.

(A2) We need to show that 〈zn, zn′〉 = 〈zm, zm′〉 if y 6= y′.
Choose l = 2 and pick the batches B1 = {{n2, (n′)b−2}} ∈ By,2 and B2 = {{m2, (m′)b−2}} ∈
By,2. We can already assume that condition (A1) holds, so for every batch B ∈ {By,2}, we
have that Satt(Z;Y,B, y) = −α and thus

S(Z;Y,B, y) = −α+ Srep(Z;Y,B, y) = −α+
1

2(b− 2)

∑
i∈By

∑
j∈ByC

〈zi, zj〉 . (S48)

Therefore, S(Z;Y,B1, y) = 〈zn, zn′〉 − α and S(Z;Y,B2, y) = 〈zm, zm′〉 − α. By condition
(Q3), we have that S(Z;Y,B1, y) = S(Z;Y,B2, y) and so 〈zn, zn′〉 = 〈zm, zm′〉.

In the following, we address the two parts of the sum in the exponent in Eq. (S40), i.e.,

∑
y∈Y

∑
B∈By,l

S(Z;Y,B, y) =

∑
y∈Y

∑
B∈By,l

Satt(Z;Y,B, y)


︸ ︷︷ ︸

Lem. S4

+

∑
y∈Y

∑
B∈By,l

Srep(Z;Y,B, y)


︸ ︷︷ ︸

Lem. S9

.

(S49)
While the first summand is handled easily via Lemma S4, handling the second summand needs further
considerations, encapsulated in Lemmas S5, S6, S7, S8 and finally combined into Lemma S9.
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Lemma S4 (Sum of attraction terms). Let l ∈ {2, . . . , b} and let Z = SρZ . For every Y ∈ YN and
every Z ∈ ZN , it holds that

∑
y∈Y

∑
B∈By,l

Satt(Z;Y,B, y) ≥ −

∑
y∈Y
|By,l|

 ρZ
2 , (S50)

where equality is attained if and only if:

(Q4) For every n,m ∈ [N ], yn = ym implies zn = zm .

Proof. Recall the definition of Satt(Z;Y,B, y) from Eq. (S11):

Satt(Z;Y,B, y) = − 1

|By| |By \ {{i}}|
∑
i∈By

∑
j∈By\{{i}}

〈zi, zj〉 . (S51)

Using the Cauchy-Schwarz inequality and the assumption that Z is a hypersphere of radius ρZ ,
Satt(Z;Y,B, y) is bounded from below by

Satt(Z;Y,B, y)
(Q4)

≥ − 1

|By| |By \ {{i}}|
∑
i∈By

∑
j∈By\{{i}}

‖zi‖ ‖zj‖ = −ρZ2 , (S52)

which already implies the bound in the statement of the lemma.

For fixed l ∈ {2, . . . , b}, equality is attained if and only if there is equality in the Cauchy-Schwarz
inequality. This means, that for every y ∈ Y , for every B ∈ By,l and for every i, j ∈ By there exists
λ ≥ 0, such that zi = λzj . Since the zi and zj are on a hypersphere, this is equivalent to zi = zj .
Furthermore, for each pair of indices n,m ∈ [N ] with equal class yn = ym = y, there exists a batch
B ∈ By,l containing both indices. Hence the equality condition is equivalent to

(Q4) For every n,m ∈ [N ], yn = ym implies zn = zm.

Next, we consider the repulsion component. Recall the definition of Srep(Z;Y,B, y) from Eq. (S12).
We want to bound∑

y∈Y

∑
B∈By,l

Srep(Z;Y,B, y) =
∑
y∈Y

∑
B∈By,l

1

|By| |ByC |

∑
i∈By

∑
j∈ByC

〈zi, zj〉 . (S53)

Similarly to the case of the sum of the attraction terms in Lemma S4, we could bound each inner
product by 〈zi, zj〉 ≥ −ρZ2. However, the obtained inequality will not be tight and thus useless for
identifying the minimizer of the sum. This is due to the fact that, in this case, equality would be
attained if and only if all points zn, zm ∈ Z of different class yn 6= ym were on opposite poles of the
sphere. Yet, this is impossible for |Y| > 2, i.e., if there are more than two classes.

Therefore, the argumentation is a bit more complex and we split it in a sequence of lemmas.

Lemma S5. Let l ∈ {2, . . . , b − 1} and let y ∈ Y . For every Y ∈ YN and every Z ∈ ZN the
following identity holds:∑

B∈By,l

Srep(Z;Y,B, y) =
∑
n∈[N ]
yn=y

∑
m∈[N ]
ym 6=y

Kn,m(y, l) 〈zn, zm〉 , (S54)

where for each n,m ∈ [N ] with yn = y and ym 6= y the combinatorial factor Kn,m(y, l) is defined by

Kn,m(y, l) =
1

l(b− l)
∑

B∈By,l

mBy (n) mByC (m) . (S55)



Dissecting Supervised Constrastive Learning

Proof. The lemma follows from appropriately partitioning the sum:∑
B∈By,l

Srep(Z;Y,B, y) =
∑

B∈By,l

1

|By| |ByC |

∑
i∈By

∑
j∈ByC

〈zi, zj〉 (S56)

=
∑
n∈[N ]

∑
m∈[N ]

1

l(b− l)
∑

B∈By,l

∑
i∈By
i=n

∑
j∈ByC
j=m

〈zi, zj〉 (S57)

=
∑
n∈[N ]
yn=y

∑
m∈[N ]
ym 6=y

〈zn, zm〉
1

l(b− l)
∑

B∈By,l

∑
i∈By
i=n

1


 ∑
j∈ByC
j=m

1

 (S58)

=
∑
n∈[N ]
yn=y

∑
m∈[N ]
ym 6=y

〈zn, zm〉
1

l(b− l)
∑

B∈By,l

mBy (n) mBCy
(m) (S59)

=
∑
n∈[N ]
yn=y

∑
m∈[N ]
ym 6=y

〈zn, zm〉Kn,m(y, l) . (S60)

In order to address the quantitiesKn,m(y, l), we will need the combinatorial identities of the subsequent
Lemma S6.

Lemma S6. Let n,m ∈ N.

1. The number of m-multisets over [n] is((
n

m

))
=

(
n+m− 1

m

)
. (S61)

2.
m∑
k=0

((
n

k

))
=

((
n+ 1

m

))
(S62)

3. ((
n+ 1

m

))
=

((
n

m

))
+

((
n+ 1

m− 1

))
(S63)

4. Let m ≥ 1, then ∑
k∈[m]

k

((
n− 1

m− k

))
=

((
n+ 1

m− 1

))
=
m

n

((
n

m

))
(S64)

Proof. The first three identities are well known and imply the last one.

Ad (1): Follows from the stars and bars representation of multisets. Therein, every m-mutliset over
[n] is uniquely determined by the position of m bars in an n+m− 1 tuple of stars and bars.
Hence, the cardinality of the set of such multisets is the number of m-element subsets of
an n + m − 1-element set, which is given by the binomial coefficient in Eq. (S61). More
precisely, the multiplicity of a number k ∈ [n] in the multiset is encoded by the number of
stars between the (k − 1)-th and the k-th bar. For example, for n = 5 and k = 4 the multiset
1, 3, 4, 4 is represented by (∗|| ∗ | ∗ ∗|).

Ad (2): Denote by P{{ }}(n,m) the set of all m-multisets over [n]. Then

P{{ }}(n+ 1,m) =

m⊔
k=0

{M ∈ P{{ }}(n+ 1,m)| mM (n+ 1) = k} . (S65)
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Thinking of a m-multiset over [n+ 1] containing the element (n+ 1) exactly k-times as a
m− k multiset over [n], we get from Eq. (S61)((

n+ 1

m

))
= |P{{ }}(n+ 1,m)| (S66)

=

m∑
k=0

|{M ∈ P{{ }}(n+ 1,m)|mM (n+ 1) = k}| (S67)

=

m∑
k=0

((
n

m− k

))
=

m∑
k=0

((
n

k

))
. (S68)

Ad (3): Follows directly from the previous argument. In particular,

((
n+ 1

m

))
(S62)
=

m∑
k=0

((
n

k

))
=

m−1∑
k=0

((
n

k

))
+

((
n

m

))
(S62)
=

((
n+ 1

m− 1

))
+

((
n

m

))
. (S69)

Ad (4): The second equality is obvious, once both sides are expanded to the level of factorials.
For the the first equality, we prove by induction the equivalent formula

m∑
k=0

(m− k)

((
n− 1

k

))
=

((
n+ 1

m− 1

))
. (S70)

First, consider the case m = 1. Then both

1∑
k=0

(1− k)

((
n− 1

k

))
= (1− 0)

((
n− 1

0

))
= 1 and

((
n+ 1

m− 1

))
=

((
n+ 1

0

))
= 1 .

(S71)
Secondly, assume that Eq. (S70) holds for m. We show that it then also holds for m+ 1, i.e.

m+1∑
k=0

(m+ 1− k)

((
n− 1

k

))
=

((
n+ 1

m

))
. (S72)

The proof is a simple application of the previously derived summation identities:

m+1∑
k=0

(m+ 1− k)

((
n− 1

k

))
=

m∑
k=0

(m− k)

((
n− 1

k

))
︸ ︷︷ ︸

(S70)

+

m∑
k=0

((
n− 1

k

))
︸ ︷︷ ︸

(S62)

(S73)

=

((
n+ 1

m− 1

))
+

((
n

m

))
(S74)

(S63)
=

((
n+ 1

m

))
. (S75)
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Lemma S7. Let l ∈ {1, . . . , b− 1}, Y ∈ YN and y ∈ Y . For every n,m ∈ [N ], the combinatorial
factor Kn,m(y, l) has value

Kn,m(y, l) =
|By,l|

mY (y)(N −mY (y))
. (S76)

Proof. We have

Kn,m(y, l) =
1

l(b− l)
∑

B∈By,l

mBy (n) mBCy
(m) =

1

l(b− l)

l∑
p=1

b−l∑
q=1

∑
B∈By,l

mBy (n)=p

mByC
(m)=q

mBy (n) mBCy
(m)

(S77)

=
1

l(b− l)

l∑
p=1

p

b−l∑
q=1

q
∑

B∈By,l
mBy (n)=p

mByC
(m)=q

1 . (S78)

Therefore, it is crucial to calculate the cardinality |{B ∈ By,l : mBy (n) = p, mByC (m) = q}|.

We can think of each batch B ∈ B satisfying the condition

B ∈ {B ∈ By,l, mBy (n) = p, mByC (m) = q}

as a disjoint union of multisets B = Cn t Cm t Cy t CyC , where

• Cn is a p-multiset over the singleton {n},
• Cm is a q-multiset over the singleton {m},
• Cy is a (l − p)-set over the multiset {i ∈ [N ] \ {n}| yi = y} of cardinality mY (y)− 1 and
• Cm is a (b− l− q)-set over the multiset {j ∈ [N ] \ {n}| yj 6= y} of cardinality N −mY (y)− 1.

We write Cn, Cm, Cy and CyC for the respective sets of multisets. These sets are of cardinalities (see
Eq. (S61))

|Cn| =
((

1

p

))
= 1, |Cy| =

((
mY (y)− 1

l − p

))
,

|Cm| =
((

1

q

))
= 1, |CyC | =

((
N −mY (y)− 1

b− l − q

))
,

and so

|{B ∈ By,l : mBy (n) = p, mByC (m) = q}| = |Cn| |Cm| |Cy| |CyC |

=

((
1

p

)) ((
1

q

))
︸ ︷︷ ︸

=1

((
mY (y)− 1

l − p

)) ((
N −mY (y)− 1

b− l − q

))
. (S79)

By a similar argument,

|{B ∈ By,l}| =
((

mY (y)

l

)) ((
N −mY (y)

b− l

))
. (S80)

Therefore, the sum from Eq. (S78) simplifies to

Kn,m(y, l) =
1

l(b− l)

l∑
p=1

p

b−l∑
q=1

q|{B ∈ By,l, mBy (n) = p, mByC (m) = q}| (S81)

=
1

l(b− l)

l∑
p=1

p

((
mY (y)− 1

l − p

)) b−l∑
q=1

q

((
N −mY (y)− 1

b− l − q

))
. (S82)
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Leveraging Eq. (S64), we get the claimed result

Kn,m(y, l) =
1

l(b− l)
l

mY (y)

((
mY (y)

l

))
b− l

N −mY (y)

((
N −mY (y)

b− l

))
(S83)

=
|By,l|

mY (y)(N −mY (y))
. (S84)

Lemma S8. Let Z = SρZ . For every Z ∈ ZN and every Y ∈ YN , we have that∑
y∈Y

∑
n∈[N ]
yn=y

∑
m∈[N ]
yn 6=y

〈zn, zm〉 ≥ −ρZ2
∑
y∈Y

mY (y)2 , (S85)

where equality is attained if and only if the following conditions hold:

(Q5)
∑
n∈[N ] zn = 0 .

(Q6) For every n,m ∈ [N ], yn = ym implies zn = zm .

Proof. We first rewrite the sum as∑
y∈Y

∑
n∈[N ]
yn=y

∑
m∈[N ]
yn 6=y

〈zn, zm〉 =
∑
y∈Y

∑
y′∈Y
y 6=y′

∑
n∈[N ]
yn=y

∑
m∈[N ]
ym=y′

〈zn, zm〉 (S86)

=
∑
y∈Y

∑
y′∈Y

∑
n∈[N ]
yn=y

∑
m∈[N ]
ym=y′

〈zn, zm〉 −
∑
y∈Y

∑
n∈[N ]
yn=y

∑
m∈[N ]
ym=y

〈zn, zm〉 (S87)

=
∑
n∈[N ]

∑
m∈[N ]

〈zn, zm〉 −
∑
y∈Y

∑
n∈[N ]
yn=y

∑
m∈[N ]
ym=y

〈zn, zm〉 (S88)

= 〈
∑
n∈[N ]

zn,
∑
n∈[N ]

zn〉 −
∑
y∈Y

∑
n∈[N ]
yn=y

∑
m∈[N ]
ym=y

〈zn, zm〉 , (S89)

where, for the last step, we used the linearity of the inner product. Using that the norm is positive-
definite and applying the Cauchy-Schwarz inequality, yields the following lower bound:

∑
y∈Y

∑
n∈[N ]
yn=y

∑
m∈[N ]
yn 6=y

〈zn, zm〉 =

∥∥∥∥∥∥
∑
n∈[N ]

zn

∥∥∥∥∥∥
2

−
∑
y∈Y

∑
n∈[N ]
yn=y

∑
m∈[N ]
ym=y

〈zn, zm〉 (S90)

(Q5)

≥ 0−
∑
y∈Y

∑
n∈[N ]
yn=y

∑
m∈[N ]
ym=y

〈zn, zm〉 (S91)

(Q6)

≥ −
∑
y∈Y

∑
n∈[N ]
yn=y

‖zn‖
∑
m∈[N ]
ym=y

‖zm‖ (S92)

= −
∑
y∈Y

(mY (y)ρZ)
2

= −ρZ2
∑
y∈Y

mY (y)2 (S93)

Equality is attained if and only if the following conditions hold:

(Q5)
∑
n zn = 0

(Q6) We have equality in all applications of the Cauchy-Schwarz inequality, i.e., for every y ∈ Y and
every n,m ∈ [N ] with yn = ym = y there exists λ(y, n,m) ≥ 0 such that zn = λ(y, n,m)zm.
Since Z is a sphere λ(y, n,m) = 1 and so the above is equivalent to yn = ym implies zn = zm.
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Lemma S9 (Sum of repulsion terms). Let l ∈ {2, . . . , b− 1} and let Z = Sh−1
ρZ . For every Z ∈ ZN

and every balanced Y ∈ YN , we have that∑
y∈Y

∑
B∈By,l

Srep(Z;Y,B, y) ≥ −|By,l|
|Y|
|Y| − 1

ρZ
2 , (S94)

where equality is attained if and only if the conditions (Q5) & (Q6) from Lemma S8 are fulfilled.

Proof. Recall from Lemma S5 that∑
B∈By,l

Srep(Z;Y,B, y) =
∑
n∈[N ]
yn=y

∑
m∈[N ]
ym 6=y

Kn,m(y, l) 〈zn, zm〉 , (S95)

and from Lemma S7 that

Kn,m(y, l) =
|By,l|

mY (y)(N −mY (y))
. (S96)

Therefore,∑
y∈Y

∑
B∈By,l

Srep(Z;Y,B, y)
Lem. S5

=
∑
y∈Y

∑
n∈[N ]
yn=y

∑
m∈[N ]
ym 6=y

|By,l|
mY (y)(N −mY (y))

〈zn, zm〉 . (S97)

Since Y is balanced, i.e. mY (y) = N/|Y| for every y ∈ Y , the term

|By,l|
mY (y)(N −mY (y))

=
|By,l|
N2

|Y|2

|Y| − 1
(S98)

does not depend on the labels y as (1) |By,l| is independent from y due to symmetry and (2) so is
mY (y). For brevity, we will still write |By,l| in the following, but keep in mind that it is constant
w.r.t. y. Furthermore, by Lemma S8∑

y∈Y

∑
n∈[N ]
yn=y

∑
m∈[N ]
ym 6=y

〈zn, zm〉 ≥ −ρZ2
∑
y∈Y

mY (y)2 = −N
2

|Y|
ρZ

2 , (S99)

where equality is attained if and only if the conditions (Q5) & (Q6) are fulfilled. Therefore, we obtain
the claimed bound∑

y∈Y

∑
B∈By,l

Srep(Z;Y,B, y) =
|By,l|
N2

|Y|2

|Y| − 1

∑
y∈Y

∑
n∈[N ]
yn=y

∑
m∈[N ]
ym 6=y

〈zn, zm〉 (S100)

≥ −|By,l|
N2

|Y|2

|Y| − 1

N2

|Y|
ρZ

2 (S101)

= −|By,l|
|Y|
|Y| − 1

ρZ
2 . (S102)
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As we have lower-bounded the attraction and repulsion components in Lemmas S4 and S9, respectively,
the following lemma, bounding the exponent in Eq. (S40) of Lemma S3, is an immediate consequence.

Lemma S10. Let l ∈ {2, . . . , b − 1} and let Z = SρZ . For every Z ∈ ZN and every balanced
Y ∈ YN , we have that

1

Ml

∑
y∈Y

∑
B∈By,l

S(Z;Y,B, y) ≥ |Y|
|Y| − 1

ρZ
2 , (S103)

where equality is attained if and only if the following conditions hold:

(A3) For every n,m ∈ [N ], yn = ym implies zn = zm .
(A4)

∑
n∈[N ] zn = 0 .

Proof. Since Y is balanced, |By,l| does not depend on y, and so

Ml =
∑
y∈Y
|By,l| = |Y||By,l| . (S104)

Leveraging the bounds on the sums of the attraction terms Satt(Z;Y,B, y) and of the repulsion terms
Srep(Z;Y,B, y) from Lemma S4 and Lemma S9, respectively, we get

∑
y∈Y

∑
B∈By,l

S(Z;Y,B, y) =

∑
y∈Y

∑
B∈By,l

Satt(Z;Y,B, y)

+

∑
y∈Y

∑
B∈By,l

Srep(Z;Y,B, y)


(S105)

≥ −|Y||By,l|ρZ2 − |By,l|
|Y|
|Y| − 1

ρZ
2 (S106)

= −|Y||By,l|ρZ2

(
1 +

1

|Y| − 1

)
(S107)

= −|Y||By,l|ρZ2 |Y|
|Y| − 1

. (S108)

This is the bound as stated in the lemma. Herein, equality is attained if and only if equality is attained
in Lemma S4 and Lemma S9. Since conditions (Q4) and (Q6) are the same as condition (A3) and,
additionally, since condition (Q5) is the same as condition (A4), the lemma follows.

Lemma S11. Combining Lemma S3 and Lemma S10 implies that the supervised contrasive loss
LSC(Z;Y ) is bounded from below by

LSC(Z;Y ) ≥
b∑
l=2

lMl log

(
l − 1 + (b− l) exp

(
− |Y|
|Y| − 1

ρZ
2

))
, (S109)

where equality is attained if and only if there are ζ1, . . . , ζ|Y| ∈ Rh such that the following conditions
hold:

(C1) ∀n ∈ [N ] : zn = ζyn
(C2) {ζy}y∈Y form a ρZ -sphere-inscribed regular simplex

Proof. We have that

LSC(Z;Y )
Lem. S3
≥

b∑
l=2

lMl log

l − 1 + (b− l) exp

 1

Ml

∑
y∈Y

∑
B∈B

mΥ(B)(y)=l

S(Z;Y,B, y)




(S110)

Lem. S10
≥

b∑
l=2

lMl log

(
l − 1 + (b− l) exp

(
− |Y|
|Y| − 1

ρZ
2

))
. (S111)
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Equality holds if and only if the equality conditions of Lemma S3 and Lemma S10 are fulfilled, i.e. if
and only if:

(A1) There exists a constant α, such that ∀n,m ∈ [N ], yn = ym implies 〈zn, zm〉 = α .
(A2) There exists a constant β, such that ∀n,m ∈ [N ], yn 6= ym implies 〈zn, zm〉 = β .
(A3) For every n,m ∈ [N ], yn = ym implies zn = zm .
(A4)

∑
n∈[N ] zn = 0

Note that Lemma S10 does not hold for l = b, so the exponent in Eq. (S110) might differ in this
case. However, this is irrelevant as, in this case, the factor (b− l) in front of the exponential function
vanishes.

To finish the proof, we need to show under the assumption Z = SρZ , that these conditions are
equivalent to that there are ζ1, . . . , ζ|Y| such that

(C1) ∀n ∈ [N ] : zn = ζyn and
(C2) {ζy}y∈Y form a ρZ -sphere-inscribed regular simplex, i.e.,

(S1)
∑
y∈Y ζy = 0,

(S2) ‖ζy‖ = ρZ for y ∈ Y ,
(S3) ∃d ∈ R : d = 〈ζy, ζy′〉 for y, y′ ∈ Y with y 6= y′.

Obviously, (A3)⇐⇒ (C1), (S2) holds by assumption, (A4)⇐⇒ (S1) and (A2) =⇒ (S3).

Thus it remains only to show that (C1) & (C2) =⇒ (A1). Let n,m ∈ [N ] such that y = yn = ym.
By condition (C1), zn = zm = ζy, so by condition (S2), 〈zn, zm〉 = ‖ζy‖2 = ρZ

2, which does not
depend on n and m.
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S2. Proofs for Section 3.1
In this section, we will prove Theorem 1 of the main manuscript and its corollaries. First, we recall the
main definitions of the paper and introduce an auxiliary function.

Throughout this section the following objects will appear repeatedly an thus are introduced one-off:

• h,N,K ∈ N
• Z = Rh

• Y = {1, . . . ,K} = [K]

We additionally assume |Y| = K ≤ h+ 1.

Definition 1 (Cross-entropy loss). Let Z ⊆ Rh and let Z be an N point configuration, Z =
(z1, . . . , zN ) ∈ ZN , with labels Y = (y1, . . . , yN ) ∈ [K]N ; let wy be the y-th row of the linear
classifiers weight matrix W ∈ RK×h. The cross-entropy loss LCE(·,W ; Y ) : ZN → R is defined as

Z 7→ 1

N

N∑
n=1

`CE(Z,W ;Y, n) (2)

with `CE(·,W ;Y, n) : ZN → R given by

`CE(Z,W ;Y, n) = − log

 exp(〈zn, wyn〉)
K∑
l=1

exp(〈zn, wl〉)

 . (3)

Definition 3 (ρ-Sphere-inscribed regular simplex). Let h,K ∈ N with K ≤ h + 1. We say that
ζ1, . . . , ζK ∈ Rh form the vertices of a regular simplex inscribed in the hypersphere of radius ρ > 0,
if and only if the following conditions hold:
(S1)

∑
i∈[K] ζi = 0

(S2) ‖ζi‖ = ρ for i ∈ [K]

(S3) ∃d ∈ R : d = 〈ζi, ζj〉 for 1 ≤ i < j ≤ K

Definition S1 (Auxiliary function S). Let Z = Rh, then we define

S( · , · ; Y ) : ZN ×ZK → R

(Z,W ) 7→ 1

N

K

K − 1

∑
n∈[N ]

〈zn, w̄ − wyn〉 ,

where w̄ = 1
|Y|
∑
y∈Y wy .

Lemma S12. Let h,K,N ∈ N, Z = Rh. Further, let

Z = (zn)Ni=n ∈ ZN ,
W = (wy)Ky=1 ∈ ZK ,
Y = (yn)Ni=n ∈ YN .

It holds that
LCE(Z,W ;Y ) ≥ log

(
1 + (K − 1) exp

(
S(Z,W ; Y )

))
,

where S is as in Definition S1. Equality is attained if and only if the following conditions hold:
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(P1) ∀n ∈ [N ] ∃Mn such that ∀y ∈ Y \ {yn} all inner products 〈zn, wy〉 = Mn are equal.
(P2) ∃M ∈ R such that ∀n ∈ [N ] it holds that

∑
y∈Y
y 6=yn

(〈zn, wy〉 − 〈zn, wyn〉) = M .

Proof. Using the identities log(t) = − log(1/t) and exp(a)/ exp(b) = exp(a − b), rewrite the
cross-entropy loss in the equivalent form

LCE(Z,W ;Y ) =
1

N

∑
n∈[N ]

log

1 +
∑
y∈Y
y 6=yn

exp (〈zn, wy〉 − 〈zn, wyn〉)

 . (S112)

In order to bound LCE from below, we apply Jensen’s inequality twice; first for the convex function
t 7→ exp(t) and then for the convex function t 7→ log(1 + exp(t)):

LCE(Z,W ;Y )
(P1)

≥ 1

N

∑
n∈[N ]

log

1 + (K − 1) exp

 1

K − 1

∑
y∈Y
y 6=yn

(〈zn, wy〉 − 〈zn, wyn〉)




(S113)

(P2)

≥ log

1 + (K − 1) exp

 1

N

1

K − 1

∑
n∈[N ]

∑
y∈Y
y 6=yn

(〈zn, wy〉 − 〈zn, wyn〉)


 .

(S114)

By the linearity of the inner product and as the addend for y = yn equals zero, the exponent in
Eq. (S114) is simply S(Z,W ;Y ), which proves the bound.

The equality condition is obtained from the combination of the equality cases in both applications of
Jensen’s inequality. These are:

(P1) ∀n ∈ [N ] ∃Mn such that ∀y ∈ Y \ {yn} all inner products 〈zn, wy〉 = Mn are equal.
(P2) ∃M ∈ R such that ∀n ∈ [N ] it holds that

∑
y∈Y
y 6=yn

(〈zn, wy〉 − 〈zn, wyn〉) = M .

Lemma S13. Let h,K,N ∈ N, ρZ > 0 and Z = {z ∈ Rh : ‖z‖ ≤ ρZ}. Further, let

Z = (zn)Nn=1 ∈ ZN ,

W = (wy)Ky=1 ∈ (Rh)K ,

Y = (yn)Nn=1 ∈ YN .

If the class configuration Y is balanced, i.e., for all y ∈ Y , Ny =
∣∣{i ∈ [N ] : yi = y}

∣∣ = N/K, then

S(Z,W ; Y ) ≥ −ρZ
√
K

K − 1
‖W‖F ,

where ‖·‖F denotes the Frobenius norm. We get equality if and only if the following conditions hold:

(P3) ∀n ∈ [N ] there ∃λn ≤ 0 such that zn = λn(w̄ − wyn)

(P4) ∀n : ‖zn‖ = ρZ

(P5) ∀y ∈ Y the terms ‖w̄‖2 + ‖wy‖2 − 2〈w̄, wy〉 are equal
(P6) w̄ = 0



Dissecting Supervised Constrastive Learning

Proof. We will bound the function S from Lemma S12, using the norm constraint on each zn ∈ Z . In
particular,

S(Z,W ;Y ) =
1

N

K

K − 1

∑
n∈[N ]

〈zn, w̄ − wyn〉

(P3)

≥ − 1

N

K

K − 1

∑
n∈[N ]

‖zn‖ ‖w̄ − wyn‖

(P4)

≥ − 1

N

K

K − 1

∑
n∈[N ]

ρZ ‖w̄ − wyn‖

= − 1

N

K

K − 1
ρZ
∑
y∈Y
‖w̄ − wy‖

 ∑
n∈[N ]
yn=y

1


= − 1

N

K

K − 1
ρZ
∑
y∈Y
‖w̄ − wy‖Ny

= − 1

N

K

K − 1
ρZ

N

K

∑
y∈Y
‖w̄ − wy‖ (by assumption Ny = N

K )

= − 1

K − 1
ρZ
∑
y∈Y

√
‖w̄‖2 + ‖wy‖2 − 2〈w̄, wy〉

(P5)

≥ −ρZ
K

K − 1

√
1

K

∑
y∈Y

(
‖w̄‖2 + ‖wy‖2 − 2〈w̄, wy〉

)

= −ρZ
K

K − 1

√√√√√ 1

K

K ‖w̄‖2 +
∑
y∈Y
‖wy‖2 − 2〈w̄,

∑
y∈Y

wy〉


= −ρZ

K

K − 1

√
1

K

∑
y∈Y
‖wy‖2 − ‖w̄‖2

(P6)

≥ −ρZ
K

K − 1

√
1

K

∑
y∈Y
‖wy‖2

= −ρZ
√
K

K − 1
‖W‖F ,

where

(P3) follows from the Cauchy-Schwarz inequality with equality if and only if ∀n ∈ [N ] there
∃λn ≤ 0 such that zn = λn(w̄ − wyn),

(P4) follows from the assumption on the space Z , with equality if and only if ∀n, ‖zn‖ = ρZ is
maximal,

(P5) follows from Jensen’s inequality for the convex function t 7→ −
√
t with equality if and only if

∀y ∈ Y the terms ‖w̄‖2 + ‖wy‖2 − 2〈w̄, wy〉 are equal,
(P6) follows from the positivity of the norm, with equality if and only if w̄ = 0, i.e. W is centered at

the origin.
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Theorem 1. Let ρZ > 0, Z = {z ∈ Rh : ‖z‖ ≤ ρZ}. Further, let Z = (z1, . . . , zN ) ∈ ZN be
an N point configuration with labels Y = (y1, . . . , yN ) ∈ [K]N and let W ∈ RK×h be the weight
matrix of the linear classifier from Definition 1. If the label configuration Y is balanced,

LCE(Z,W ; Y ) ≥

log

(
1 + (K − 1) exp

(
−ρZ

√
K

K − 1
‖W‖F

))
,

holds, with equality if and only if there are ζ1, . . . , ζK ∈ Rh such that:

(C1) ∀n ∈ [N ] : zn = ζyn
(C2) {ζy}y form a ρZ -sphere-inscribed regular simplex
(C3) ∃ρW > 0 : ∀y ∈ Y : wy = ρW

ρZ
ζy

Proof. To prove the bound, we consecutively leverage Lemma S12 and Lemma S13.

LCE(Z,W ; Y )
Lem. S12
≥ log

(
1 + (K − 1) exp

(
S(Z,W ; Y )

))
Lem. S13
≥ log

(
1 + (K − 1) exp

(
−ρZ

√
K

K − 1
‖W‖F

))
.

The application of Lemma S12 and S13 above also yields the sufficient and necessary conditions for
equality, which are (P1), (P2), (P3), (P4), (P5) and (P6). It remains to prove that those conditions are
equivalent to (C1), (C2), (C3). That is, we need to show that

(P1) ∀n ∈ [N ] ∃Mn such that ∀y ∈ Y \ {yn} all inner products 〈zn, wy〉 = Mn are equal,
(P2) ∃M ∈ R such that ∀n ∈ [N ] it holds that

∑
y∈Y
y 6=yn
〈zn, wy〉 − 〈zn, wyn〉 = M .

(P3) ∀n ∈ [N ] there ∃λn ≤ 0 such that zn = λn(w̄ − wyn),
(P4) ∀n : ‖zn‖ = ρZ ,
(P5) ∀y ∈ Y the terms ‖w̄‖2 + ‖wy‖2 − 2〈w̄, wy〉 are equal,
(P6) w̄ = 0

are equivalent to that the existence of ζ1, . . . , ζ|Y| ∈ Rh such that

(C1) ∀n ∈ [N ] : zn = ζyn
(C2) {ζy}y∈Y form a ρZ -sphere-inscribed regular simplex, i.e., it holds that

(S1)
∑
y∈Y ζy = 0 ,

(S2) ‖ζy‖ = ρZ for y ∈ Y ,
(S3) ∃d ∈ R : d = 〈ζy, ζy′〉 for 1 ≤ y < y′ ≤ K .

(C3) ∃ρW > 0 : ∀y ∈ Y : wy = ρW
ρZ
ζy .

The arguments for the equivalencies are given below:

First, we show (P1) - (P6) =⇒ (C1) - (C3):

Ad (C1): We need to show that ∀n ∈ [N ] : zn = ζyn .

Let n ∈ [N ]. Conditions (P3) and (P6) yield zn = −λnwyn where λn ≤ 0. If wyn = 0, this
immediately implies (C1) with ζyn = 0. If wyn 6= 0, we have |λ| = ‖zn‖ / ‖wyn‖, and thus by (P4)

zn = −
(
− ‖zn‖
‖wyn‖

)
wyn

(P4)
=

ρZ
‖wyn‖

wyn . (S115)

Consequently, condition (C1) is fulfilled with ζyn = ρZ
wyn
‖wyn‖

.
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Ad (C3): We need to show that ∃ρW > 0 such that ∀y ∈ Y we have wy = ρW
ρZ
ζy .

Since Y is balanced, for every label y ∈ Y we have that Ny = N/K > 0 and so there exists n ∈ [N ]
with yn = y. Thus Eq. (S115) implies for every y ∈ Y that ζy = ρZ

wy
‖wy‖ . Hence, condition (C3) is

fulfilled with ρW = ‖wy‖ if all such norms ‖wy‖ agree. Indeed, by condition (P5), there is C ∈ R
such that for each y ∈ Y

C
(P5)
= ‖w̄‖2 + ‖wy‖2 − 2〈w̄, wy〉

(P6)
= 0 + ‖wy‖2 − 2 · 0 = ‖wy‖2 .

Ad (C2): We need to show that {ζy}y∈Y fulfill the requirements (S1), (S2) and (S3) of the regular
simplex from Definition 3.

From condition (C1) and condition (C3), we already know that

ρZ
ρW
· wy = ζy for y ∈ Y , (S116)

which we will use in the following.

Ad (S1): We need to show that
∑
y∈Y ζy = 0.

This follows directly from Eq. (S116) and condition (P6), because∑
y∈Y

ζy
Eq. (S116)

=
ρZ
ρW

∑
y∈Y

wy
(P6)
= 0 . (S117)

Ad (S2): We need to show for every y ∈ Y that ‖ζy‖ = ρZ .

This follows directly from Eq. (S116) and the already proven condition (C3), because

‖ζy‖
Eq. (S116)

= ‖ ρZ
ρW
· wyn‖

(C3)
=

ρZ
ρW
· ρW = ρZ . (S118)

Ad (S3): We need to show that for every y, y′ ∈ Y with y 6= y′ there ∃d ∈ R : d = 〈ζy, ζy′〉 .

Let y, y′ ∈ Y with y 6= y′. Since Y is balanced, we have that Ny′ = N/K > 0. Hence, there exists
n ∈ [N ] with y′ = yn and so

ρW
ρZ
〈ζy′ , ζy〉 = 〈ζyn ,

ρW
ρZ

ζy〉
Eq. (S116)

= 〈ζyn , wy〉
(C1)
= 〈zn, wy〉

(P1)
= Mn . (S119)

Similarly,

〈zn, wyn〉
(C1)
= 〈ζyn , wyn〉

Eq. (S116)
= 〈ζyn ,

ρW
ρZ

ζyn〉 =
ρW
ρZ
‖ζyn‖2

(S2)
= ρWρZ . (S120)

We leverage condition (P1) and condition (P2) to get that there exists M ∈ R such that

M
(P2)
=

∑
ŷ∈Y
ŷ 6=yn

(〈zn, wŷ〉 − 〈zn, wyn〉) (S121)

(S120)
=

( ∑
ŷ∈Y
ŷ 6=yn

〈zn, wŷ〉
)
− (K − 1)ρWρZ (S122)

(P1)
= (K − 1)(Mn − ρWρZ) (S123)

(S119)
= (K − 1)(

ρW
ρZ
〈ζy′ , ζy〉 − ρWρZ) . (S124)

Thus 〈ζy′ , ζy〉 = d is constant, and d can be calculated by rearranging the equation above.
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Next, we show (C1) - (C3) =⇒ (P1) - (P6) :

We assume that there exist ζ1, . . . , ζK ∈ Rh such that conditions (C1) - (C3) are fulfilled.

Ad (P1): We need to show that ∀n ∈ [N ] ∃Mn such that ∀y ∈ Y \ {yn} all inner products 〈zn, wy〉 =
Mn are equal.

Let n ∈ [N ] and y ∈ Y \ {yn}, then

〈zn, wy〉
(C1)
= 〈ζyn , wy〉

(C3)
= 〈ζyn ,

ρW
ρZ

ζy〉
(S3)
=

ρW
ρZ

d , (S125)

so condition (P1) is fulfilled with Mn = ρW
ρZ
d.

Ad (P2): We need to show that ∃M such that ∀n ∈ [N ] it holds that
∑

y∈Y
y 6=yn

(〈zn, wy〉 − 〈zn, wyn〉) =

M . Let n ∈ [N ]. From Eq. (S125), we already now that for y ∈ Y \{y} it holds that 〈zn, wy〉 = ρW
ρZ
d.

Similarly,

〈zn, wyn〉
(C1)
= 〈ζyn , wy〉

(C3)
= 〈ζyn ,

ρW
ρZ

ζyn〉
(S2)
= ρWρZ . (S126)

Therefore, ∑
y∈Y\{yn}

(〈zn, wy〉 − 〈zn, wyn〉) = (K − 1)

(
ρW
ρZ

d− ρWρZ
)

(S127)

and condition (P2) is fulfilled with M = (K − 1)
(
ρW
ρZ
d− ρWρZ

)
.

Ad (P4): We need to show that ∀n : ‖zn‖ = ρZ .

This follows immediately from condition (C1) and condition (S2):

‖zn‖
(C1)
= ‖ζyn‖

(S2)
= ρZ . (S128)

Ad (P6): We need to show that w̄ = 0.

This follows immediately from condition (C3) and condition (S1):

w̄ =
1

K

∑
y∈Y

wy
(C3)
=

1

K

ρW
ρZ

∑
y∈Y

ζy
(S1)
= 0 . (S129)

Ad (P5): We need to show that ∀y ∈ Y the terms ‖w̄‖2 + ‖wy‖2 − 2〈w̄, wy〉.

This follows from conditions (C3) and (S2), such as the already proven condition (P6).

Let y ∈ Y then

‖w̄‖2 + ‖wy‖2 − 2〈w̄, wy〉
(P6)
= 0 + ‖wy‖2 − 2 · 0 (C3)

= ‖ρW
ρZ

ζyn‖2
(S2)
= ρ2

W , (S130)

which, indeed, does not depend on y.

Ad (P3): We need to show that ∀n ∈ [N ] there ∃λn ≤ 0 such that zn = λn(w̄ − wyn).

Let n ∈ [N ] and consider

zn
(C1)
= ζyn

(C3)
=

ρZ
ρW

wyn (S131)

Thus, from the already proven condition (P6), it follows that

w̄ − wyn
(P6)
= −wyn = −ρW

ρZ
zn (S132)

and condition (P3) is fulfilled with λn = − ρZ
ρW
≤ 0.
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Corollary 1. Let Z, Y,W be defined as in Theorem 1. Upon requiring that ∀y ∈ [K] : ‖wy‖ ≤ rW ,
it holds that

LCE(Z,W ; Y ) ≥ log

(
1 + (K − 1) exp

(
−K ρZ rW

K − 1

))
with equality if and only if (C1) and (C2) from Theorem 1 are satisfied and condition (C3) changes to

(C3r) ∀y ∈ Y : wy = rW
ρZ
ζy .

Proof. By leveraging Theorem 1, we get

LCE(Z,W ; Y )
Thm. 1
≥ log

(
1 + (K − 1) exp

(
−ρZ

√
K

K − 1
‖W‖F

))
(S133)

= log

1 + (K − 1) exp

−ρZ √K
K − 1

√∑
y∈Y
‖wy‖2

 (S134)

≥ log

1 + (K − 1) exp

−ρZ √K
K − 1

√∑
y∈Y

r2
W

 (S135)

= log

(
1 + (K − 1) exp

(
−ρZ

K

K − 1
rW

))
, (S136)

where equality is attained if and only if the bound from Theorem 1 is tight, i.e., conditions (C1), (C2),
(C3) are fulfilled and, additionally,

rW = ‖wy‖ for y ∈ Y . (S137)

It remains to show that if conditions (C1) (C2) are fulfilled, then the following equivalency holds:(
rW = ‖wy‖ for y ∈ Y ∧ (C3)

)
⇐⇒ (C3r) . (S138)

“=⇒”: We need to show that ∀y ∈ Y : wy = rW
ρZ
ζy .

So, let y ∈ Y . By condition (C3), there is ρW > 0 such that

wy =
ρW
ρZ

ζy . (S139)

Thus (C3r) holds if ρW = rW . Indeed,

rW
(S137)

= ‖wy‖
(S139)

=
ρW
ρZ
‖ζy‖

(C2)
=

ρW
ρZ

ρZ = ρW . (S140)

“⇐=”: Follows immediately as we can choose ρW = rW > 0.
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Lemma S14. Let λ, ρZ > 0, K,h ∈ N and W ∈ (Rh)K . The function

f(x) = log

(
1 + (K − 1) exp

(
−ρZ

K

K − 1
x

))
+ λKx2 (S141)

is minimized by x0 = rW(ρZ , λ) > 0, i.e., the unique solution to

0 = K

(
2λx− ρZ

e
KρZx
K−1 +K − 1

)
. (S142)

Proof. The first derivative of f is given by

f ′(x) = K

(
2λx− ρZ

e
KρZx
K−1 +K − 1

)
. (S143)

Note that f ′ is strictly increasing. Thus f is strictly convex and has a unique minimum at the point x0

where f ′(x0) = 0. As f ′ is continuous on (0,∞) with

f ′(0) = −ρZ < 0 (S144)

and
lim
x→∞

f ′(x) =∞ , (S145)

the intermediate value theorem implies 0 < x0 = rW(ρZ , λ) <∞.

Corollary 2. Let Z, Y,W be defined as in Theorem 1. For the L2-regularized objective
LCE(Z,W ; Y ) + λ‖W‖2F with λ > 0, it holds that

LCE(Z,W ; Y ) + λ‖W‖2F

≥ log

(
1 + (K − 1) exp

(
−ρZ

K

K − 1
rW(ρZ , λ)

))
+ λKrW(ρZ , λ)2 ,

where rW(ρZ , λ) > 0 denotes the unique solution, in x, of

0 = K

(
2λx− ρZ

exp(KρZxK−1 ) +K − 1

)
.

Equality is attained in the bound if and only if (C1) and (C2) from Theorem 1 are satisfied and (C3)
changes to

(C3wd) ∀y ∈ Y : wy = rW(ρZ ,λ)
ρZ

ζy .

Proof. By leveraging Theorem 1 and Lemma S14 (with x = ‖W‖F /
√
K), we get

LCE(Z,W ; Y ) + λ ‖W‖2F
Thm. 1
≥ log

(
1 + (K − 1) exp

(
−ρZ

√
K

K − 1
‖W‖F

))
+ λ ‖W‖2F

= log

(
1 + (K − 1) exp

(
−ρZ

K

K − 1
x

))
+ λKx2 (by setting x = ‖W‖F /

√
K)

Lem. S14
≥ log

(
1 + (K − 1) exp

(
−ρZ

K

K − 1
rW(ρZ , λ)

))
+ λKrW(ρZ , λ)2 ,
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where equality is attained if and only if the bound from Theorem 1 is tight, i.e., conditions (C1), (C2),
(C3) are fulfilled and, additionally,

‖W‖F /
√
K = rW(ρZ , λ) . (S146)

It remains to show that if (C1) and (C2) are fulfilled, it holds that(
‖W‖F /

√
K = rW(ρZ , λ) ∧ (C3)

)
⇐⇒ (C3wd) . (S147)

“=⇒“: We need to show for every y ∈ Y that wy = rW(ρZ ,λ)
ρZ

ζy .

So let y ∈ Y . By condition (C3), there exists ρW > 0 such that wy = ρW/ρZζy. Thus, condi-
tion (C3wd) is fulfilled if ρW = rW(ρZ , λ). Indeed,

rW(ρZ , λ)
(S146)

=
‖W‖F√

K
=

√
1

K

∑
y∈Y
‖wy‖2

(C3)
=

√∑
y∈Y
‖ρW
ρZ

ζy‖2 (S148)

(C2)
=

√
1

K

∑
y∈Y

ρ2
W = ρW . (S149)

“⇐=“:

Condition (C3) Is fulfilled as we can choose

ρW = rW(ρZ , λ)
Lem. S14
> 0 . (S150)

Finally, rW(ρZ , λ) = ‖W‖F /
√
K, as

‖W‖F =

√∑
y∈Y
‖wy‖2

(C3wd)
=

√√√√∑
y∈Y
‖rW(ρZ , λ)

ρZ
ζy‖2

(C2)
=

√∑
y∈Y

rW(ρZ , λ)2 =
√
KrW(ρZ , λ) .
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S3. Additional Experiments
The experiments in §5.2 suggest that representations learned by minimizing the SC loss might arrange
closer to the (theoretically optimal) simplex configuration, compared to representations learned by
minimizing the CE loss. To corroborate that this disparity is due to differing optimization dynamics of
the loss functions, i.e., differing trajectories in the parameter space, and not an artifact of terminating the
loss minimization to early, we repeat6 these experiments when optimizing over 500k SGD iterations
instead of 100k. After every 10k iterations, we freeze the model, compute the class means of
representation of the training data and evaluate two geometric properties on all of the training data: (1)
the cosine similarity across class means and (2) the cosine similarity to class means, 7, as illustrated
in Figs. S1, S2.
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Figure S1: Distribution of geometric properties of representations, ϕθ(xn), tracked during training. Representa-
tions are obtained from a ResNet-18 model trained (b) with and (a) without data augmentation on CIFAR10, with
CE and SC, respectively. Blue and green lines indicate the evolution of the medians over the iterations; Red lines
indicate the sought-for value at a regular simplex configuration.

The results reveal that (1) optimizing for 500k iterations improves convergence to the optimal state, yet
at a very low speed, and (2) minimizing SC still yields representations closer to the simplex, compared
to CE. The latter not only holds at the terminal stage of training, but at (almost) every evaluation step.
Interestingly, on both datasets, the distributions of the computed properties obtained from the model
trained via CE have notably more spread than the ones obtained from the model trained with SC.

6i.e., the same setup and hyperparameters as in §5.2, except for the number of training iterations
7We omit the cosine similarity across weights, as, for SC, this requires to train an additional linear classifier each time.



Dissecting Supervised Constrastive Learning

Finally, we compare the geometric properties after training for 500k iteration with the ones from
training over 100k iterations, i.e., Fig. 7 in §5.2. In case of SC, the distributions are roughly the same,
whereas for CE, the distributions after 500k iterations are notably closer to the theoretical optimum
than the ones after 100k iterations, particularly on the more complex CIFAR100 dataset. Once more,
this highlights the faster convergence to the simplex arrangement via minimizing SC.
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Figure S2: Distribution of geometric properties of representations, ϕθ(xn), tracked during training. Representa-
tions are obtained from a ResNet-18 model trained (b) with and (a) without data augmentation on CIFAR10, with
CE and SC, respectively. Blue and green lines indicate the evolution of the medians over the iterations; Red lines
indicate the sought-for value at a regular simplex configuration.


