Gibbs with Gradients

A. Balancing Locally-Informed Proposals

As discussed in Section 2.2, locally informed proposals need
to balance the likelihood increase with the reverse proposal
probability. In particular, consider proposals of the form:

g-(2'|7) x ex V@11 (2 € H(z)).  (15)

where H(x) is the Hamming ball of some size around z
and 7 > 0 is a temperature parameter. Here we provide a
derivation of the fact that 7 = 2 balances these two terms.

When we examine the acceptance rate (Equation 1) of this
proposal we find
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where Z(z) =3~/ c () exp(L(f(2’) — f(z)) is the nor-
malizing constant of the proposal. By setting 7 = 2, the
most variable terms cancel and we are left with ZZ ((;”,)) . Thus,
the acceptance rate is equal to the ratio of the normalizing
constants of the proposal distributions. If the Hamming ball
is small and the function f is well behaved (i.e Lipschitz)
then, since «’ is near =, Z(z') will be near Z(x) and the

acceptance rate will be high.

B. Proof of Theorem 1

Our proof follows from Theorem 2 of Zanella (2020) which
states that for two p-reversible Markov transition kernels
Q1(2',x) and Q2 (2, ), if there exists ¢ > 0 for all 2’ # x
such that Q1 (z', ) > ¢- Q2(2’, x) then

(a) vary(h, Q1) < Varp(inl) + 1726 -vary(h)

(b) Gap(Q1) > c- Gap(Q2)

where var, (h, Q) is the asymptotic variance defined in Equa-
tion 7, Gap(Q) is the spectral gap defined in Equation 8, and
var,(h) is the standard variance E,[h(x)?] — E,[h(z)]%.

Our proof proceeds by showing we can bound
QV(z',7) > c-Q(2',z), and the results of the theo-
rem then follow directly from Theorem 2 of Zanella
(2020).

B.1. Definitions

We begin by writing down the proposal distribution of inter-
est and their corresponding Markov transition kernels. For

ease of notion we define some values
A, x) = f(2) = f(z)
V(' x) =V, f(x)"(z' — )

Dy = sup |l —all

x'€H(x)

We restate the target proposal for 2’ € H(z)
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where we have defined

> e (250).
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This proposal leads to the Markov transition kernel
Z
Q(2',x) = ¢2(2'|z) min {1, Z(<xx’)) }
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We now restate our approximate proposal for z’ € H(x)
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which leads to the Markov transition kernel
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B.2. Preliminaries

It can be seen that V(2/,z) is a first order Taylor-series
approximation to A(z’, z) and it follows directly from the
Lipschitz continuity of V,, f(x) that

L
V(@' 2) = Al z)| < Sl =2 (7

and since we restrict ' € H(x) we have

—gD% < V(2 z) — A, z) < gD%{ (18)
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B.3. Normalizing Constant Bounds

We derive upper- and lower-bounds on Z (z) in terms of
Z(x).
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Following the same argument we can show
~ —LD%
Z(x) > exp Z(x). (20)
B.4. Inequalities of Minimums
—LD?%

We show QY (2/,x) > c¢- Q(z', ) for c = exp( X

Since both

).

Q(«',z) = min{a, b}
and
QV(«',x) = min{a",bV}

it is sufficient to show aV > ¢-aand bY > ¢- b to prove
the desired result.

We begin with the a terms
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Now the b terms
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B.5. Conclusions
We have shown that aV > exp (_LD?{) a and
bY > exp (_LD’ZLI ) b and therefore it holds that
_LD2
QV(z',x) > exp ( H) Q2. x) (23)

From this, the main result follows directly from Theorem 2
of Zanella (2020).

C. Relationship to Relaxations

Han et al. (2020) show that sampling from any discrete
distribution can be transformed into sampling from a con-
tinuous distribution with a piece-wise density function. For
simplicity we focus on a distribution p(x) over binary data
x € {0,1}P. To do this we will create a D-dimensional con-
tinuous distribution p.(z) where = € R”. We must specify
a base distribution pg(z) which we choose to be N (0, ).
We must then specify a function I'(2) : RP — {0,1}P
which maps regions of equal mass under the base distri-
bution to values in {0,1}”. A natural choice is T'(z) =
sign(2)

We then define p..(z) as
pe(2) = N(2;0,1)p(I'(2))
and it can be easily verified that generating
z ~ pe(2), xz=T1(2)

will produce a sample from p(x).
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Thus, we have transformed a discrete sampling task into
a task of sampling from a continuous distribution with a
piece-wise density. Han et al. (2020) further relax this by
defining

pe(x) = N (20, Dp(Ta(2))

where T')(z) is a continuous approximation to I'(z). A
natural choice for sign(x) is a tempered sigmoid function

1

Ia@) = 5 + e~/

with temperature A which controls the smoothness of the
relaxation. This is similar to the Concrete relaxation (Mad-
dison et al., 2016) for binary variables.

D-SVGD proposes to use the gradients of log p () to pro-
duce updates for their continuous samples which are ad-
justed using an importance-weighted correction as proposed
in Han & Liu (2018).

We can apply this same approach to other sampling methods
such as MALA and HMC.

C.1. Relaxed MCMC

Gradient-based MCMC samplers such as MALA or HMC
consist of a proposal distribution, ¢(z’|x), and a metropolis
accept/reject step. As a baseline of comparison, we present
two straight-forward applications of the above relaxation to
sampling from discrete distributions. In both settings we
will use the continuous, differentiable surrogate p) () to
generate a proposal and we will perform our Metropolis
step using the piece-wise target p.(x).

Relaxed MALA (R-MALA):
ple a proposed update " from:

Given a sample x, we sam-

a(@'|e) = N (20 + SValogpd(@), )  @4)
and we accept this proposal with probability

. pe(z’)gq(z]2")
min { pe(@)a(@[7) , 1} . (25)

R-MALA has two parameters; the stepsize € and the temper-
ature of the relaxation A. We search over e € {.1,.01,.001}
and A € {2.,1.,.5}

Relaxed HMC (R-HMC) works similarly to R-MALA.
Given a sample x we sample an initial momentum vector
v ~ N (0, M) where M is the mass matrix. We perform &
steps of leapfrog integration on the relaxed Hamiltonian

1
H*(x,v) = —log p(x) + §UTM’U

with step-size e.

The proposal 2/, v’ is accepted with probability

) H(z,v)
min { m, 1 } (26)
where H is the target Hamiltonian

1
H(z,v) = —logp.(z) + ivTMv.

We fix the mass matrix M = I and the number of steps k =
5. This leaves two parameters, the ste-psize € and tempera-
ture A. As with R-MALA we search over ¢ € {.1, .01, .001}
and A € {.5,1,2.}.

C.2. Experimental Details

We compare D-SVGD, R-MALA, and R-HMC to Gibbs-
With-Gradients at the task of sampling from RBMs. We
present results in two settings; random RBMs with increas-
ing dimension, and an RBM trained on MNIST using Con-
trastive Divergence.

The random RBMs have visible dimension
[25, 50, 100, 250, 500, 1000] and all have 100 hidden
units. The MNIST RBM has 784 visible units and 500
hidden units and is trained as in Appendix E.1. Following
Han et al. (2020) the random RBMs are initialized as

W ~ N(0,.05I),  b,c~ N(0,I).

All samples are initialized to a random uniform Bernoulli
distribution and all samplers are run for 2000 steps. We
evaluate by computing the Kernelized MMD between each
sampler’s set of samples and a set of approximate “ground-
truth” samples generated with the RBMs efficient block-
Gibbs sampler. We generate 500 ground truth samples and
100 samples for each sampler tested. In Figure 2 we plot
the final log-MMD with standard-error over 5 runs with
different random seeds. Samples on the right of the figure
are generated in the same way from the MNIST RBM.

For D-SVGD we search over relaxation temperatures
A € {.5,1.,,2.}. We optimize the samples with the Adam
optimizer (Kingma & Ba, 2014). We search over learn-
ing rates in {.01,.001,.0001}. We use an RBF kernel

k(xz,2') = exp (M) and h = med?/(2log(n+1))
where med is the median pairwise distance between the
current set of » samples.

All reported results for D-SVGD, R-MALA, and R-HMC
are the best results obtained over all tested hyper-parameters.
We found all of these methods to be very sensitive to their
hyper-parameters — in particular, the relaxation temperature
A. We believe it may be possible to improve the performance
of these methods through further tuning of these parameters
but we found doing so beyond the scope of this comparison.
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D. Gibbs-With-Gradients Extensions

D.1. Extensions To Larger Windows

We can easily extend our approach to proposals with larger
window sizes. This would amount to a a Taylor-series ap-
proximation to likelihood ratios where more than 1 dimen-
sion of the data has been perturbed. These would come in
the form of linear functions of f(z) and V,, f (). It is likely,
of course, that as the window-size is increased, the accuracy
of our approximation will decrease as will the quality of the
sampler.

In all of our experiments, we found a window-size of 1 to
give a considerable improvement over various baselines so
we did not explore further. We believe this is an exciting
avenue for future work.

D.2. Multi-Sample Variant

As mentioned, all experiments presented in the main paper
use a window size of 1 meaning only 1 dimension can be
changed at a time. In the binary case, we sample a dimension
i ~ ¢(i|z) which tells us which dimension to flip to generate
our proposed update. A simple, and effective extension to
this is to simply re-sample multiple indices from this same
distribution

7:17 s 7iN ~ q(l|l’)

where N is the number of draws. We then generate z’ by
flipping the bit at each sampled index %,,. This changes the
acceptance probability to

| : I a(inle) 1}
min < exp(f(a’) — f(z))=2=—"21,. (27)
{e () — ) e

This proposal makes a larger number of approximations and
assumptions but we find that in some settings it can provide
faster convergence and can have reasonable acceptance rates.
We demonstrate this in our RBM experiments in Figure
9. We replicate Figure 3 but add the multi-sample variant
described above with N = 3 and N = 5 samples. We find
in this case the multi-sample variant has faster convergence
and greater ESS.

E. Restricted Boltzmann Machines

Restricted Boltzmann Machines define a distribution over
binary data = and latent variables h. The model is defined
as:

logp(z,h) = KTWax + Tz +cTh —log Z (28)

where Z is the normalizing constant and {W,b,c} are
the model’s parameters. In this model we can efficiently
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Figure 9. RBM Sampling with Gibbs-With-Gradients extensions.
GWG-3 and GWG-5 are the multi-sample variant of GWG de-
scribed above with n = 3 and n = 5, respectively.

marginalize out the latent variable h to obtain:
logp(z) =log Y p(a,h)
h
= log Z exp(hT Wz + bz + cTh)
h
=log(1 +exp(Wz +c¢)) +b'z —log Z (29)

While the joint and marginal are both unnormalized, we can
see the conditional distirbutions can be easily normalized
and take the form:

p(z|h) = Bernoulli(Wx + ¢)
p(h|x) = Bernoulli(W7h + b).

We can exploit this structure to more efficiently sample
from RBMs. We can perform Block-Gibbs updates by start-
ing at some initial x, and repeatedly sample h ~ p(h|x),
x ~ p(z|h). Exploiting this structure leads to much more
efficient sampling than standard Gibbs and other samplers
(see Figure 3).

E.1. Experimental Details

We explore the performance of various approaches to sample
from an RBM trained on the MNIST dataset. The RBM
has 500 hidden units (and 784 visible units). We train the
model using contrastive divergence (Hinton, 2002) for 1
epoch through the dataset using a batch size of 100. We
use 10 steps of MCMC sampling using the Block-Gibbs
sampler defined above to generate samples for each training
iteration. We use the Adam (Kingma & Ba, 2014) optimizer
with a learning rate of .001.

Our first result compares samples generated by various
approaches with samples generated with the Block-Gibbs
sampler described above. We generate a set of 500 sam-
ples using the Block-Gibbs sampler run for 10,000 steps.
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At this length, the samples are very close to true sam-
ples from the model. Next we generate a set of 100 sam-
ples from a number of other samplers: Gibbs, Hamming
Ball and Gibbs-With-Gradients. After every MCMC tran-
sition we compute the Kernelized Maximum Mean Dis-
crepancy (Gretton et al., 2012) between the current set
of samples and our “ground-truth” long-run Block-Gibbs
samples. We use an exponential average Hamming ker-

nel K(x,2') = exp (_ Zi’il 1(wiD=w§)) to compute the
MMD.

The next result is the effective sample size of a test statistic
for each sampler. Following Zanella (2020), our test statistic
is the Hamming distance between the current sample and a
random input configuration. We present a box-plot showing
the median, standard-deviation, and outliers over 32 chains.

E.2. Additional Results

We visualize the samples after 10,000 steps of each tested
sampler in Figure 10. We can see the Gibbs-With-Gradients
samples much more closely matches the Block-Gibbs sam-
ples. This result is reflected in the improved MMD scores
see in Figure 3 (left).

Gibbs-1

Block Gibbs

W S s D

-With-Gi

radients

E
&
Y
&

oy

Figure 10. Sets of samples drawn from a fixed RBM with various
MCMC approaches after 10,000 steps.

F. Ising Models

Ising models are unnormalized models for binary data de-
fined as

logp(z) = 27 Jx 4+ bTx —log Z (30)

where J and b are the model’s parameters and Z is the
normalizing constant. J determines which other variables
each z; is correlated with. If J = 0 then the model becomes
a factorized Bernoulli distribution. If all of the non-zero
indices of J are the same, then we can pull out this value

and rewrite the model as

logp(x) = 02" Jx +b"x —log Z 31

where now 6 controls how correlated each x; is with its
connected variables and J controls which variables each
x; is connected to. Our lattice Ising models take this form
where the J is the adjacency matrix of a cyclic 2D lattice
and 6 controls the strength of the connectivity.

F.1. Experimental Details: Sampling

We experiment with our sampler’s ability to sample from
Ising models on the 2D cyclic lattice as various factors chage.
These include the connectivity strength and the size of the
lattice. We run each sampler for 100,000 steps and evaluate
using the ESS of a test statistic. Following Zanella (2020)
our test statistic is the Hamming distance between the cur-
rent sample and a random input configuration. We present
the ESS (in log-scale), averaged with standard-errors, over
32 random seeds.

We can see in both 10x10 and 40x40 lattice sizes, our sam-
pler outperforms Gibbs and the Hamming ball.

F.2. Experimental Details: Training

We create Ising models with 2 kinds of graph structure; a
cyclic 2D lattice and a random Erdos-Renyi (ER) graph.
For the lattice we create models with a 10x10, 25x25,
and 40x40 lattice leading to 100, 625, and 1600 dimen-
sional distributions. We train models with connectivity
6 € [-.1,0.0,.1,.25, .5].

For the ER graph, we create a model with 200 nodes. The
ER edge probability is chosen so each node has an average
of 4 neighbors. The strength of each edge is IID sampled
from N (O, i)

A dataset of 2000 examples is generated from each model
using 1,000,000 steps of Gibbs sampling. We train models
using persistent contrastive divergence (Tieleman, 2008)
with a buffer size of 256 examples. Models are trained
with the Adam optimizer (Kingma & Ba, 2014) using a
learning rate of .001 and a batch size of 256. We update the
persistent samples using Gibbs and Gibbs-With-Gradients.
We train models with {5, 10, 25, 50,100} steps of MCMC
per training iteration and compare their results. We train
all models with an /1 penalty to encourage sparsity with
strength .01.

We compare results using the root-mean-squared-error be-
tween the true connectivity matrix J and the inferred con-
nectivity matrix J.
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F.3. Additional Results: Training Ising Models

In Figure 11, we present an expanded version of Figure
6 which presents additional results. In these additional
experiments we find Gibbs-With-Gradients considerably
outperforms training with Gibbs sampling.

Lattice Ising 6 Lattice Ising Dimension
— GWG — GWG
-1 1 Gibbs 5 Gibbs
-2 3
N / -4 4
R — - " -5 : .
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2] Dim
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Figure 11. Training Ising models. Top Left: Lattice Ising with
increasing 6 (dim = 50, steps = 50). Top Right: Lattice Ising with
increasing dimension (6 = .25, steps = 25). Bottom Right: Lattice
Ising with increasing steps (dim = 25, § = .25). Bottom Right:
Erdos-Renyi Ising with increasing steps. Values are log(RMSE)
between the learned J and the true J. Gibbs-With-Gradients leads
to better solutions with lower computational cost.

G. Factorial Hidden Markov Models

Factorial Hidden Markov Models (FHMM) are a general-
ization of Hidden Markov Models and model real-valued
time-series data. The observed data y € R’ is generated
conditioned on a discrete latent-variable 2 € {0, 1}5* X,
This latent-variable is drawn from the product of K inde-
pendent Markov processes as seen below. The data y; is
generated by by the K -dimensional state vector x; with

Gaussian noise added.
(ylfﬂ) (2)

p(ylz) = HJ\/ Y Way +b,0?)

p(x,y) =

t=1
L
p(x) = p(a1) [ plalwi—)
t=2
K
p(xy) = H Bernoulli(z1x; a)
k=1

p(Tis1lre) = H Bernoulli( (441yx; B (1 — Br) k)
_ (32)

The posterior p(z|y) has no closed form and thus we must
rely on MCMC techniques to sample from it.

G.1. Experimental Details

We sample the parameters of an FHMM randomly as

W,b~ N(0,1) 33)

and set 02 = .5, a, = .1 and 3, = .95 for for all k.

We then sample @ ~ p(z) and y ~ p(y|z) and run all
samplers for 10,000 steps to generate samples from p(x|y).
The Hamming Ball Sampler (Titsias & Yau, 2017) is special
for this model as it exploits the known block-structure of
the posterior. We use a block size of 10 and the blocks are
chosen to be all 10 dims of the latent state at a randomly
chosen time z;. Thus, this sampler is aware of more hard-
coded structure in the model than the Gibbs baseline and
Gibbs-With-Gradients.

H. Potts Models for Proteins

We train the MCMC models using PCD (Tieleman, 2008)
with a buffer size of 2560. At each training iteration we
sample a mini batch of 256 examples and 256 random sam-
ples from the persistent sample buffer. These are updated
using 50 steps of either Gibbs or Gibbs-With-Gradients and
the gradient estimator of Equation 12 is used to update the
model parameters. We train for 10,000 iterations using the
Adam optimizer (Kingma & Ba, 2014). Following Marks
etal. (2011) we use block-¢1 regularization. This regularizer
takes the form

Ly(J) =

> 11 ija-

j

(34)

We add this regularizer to the maximum likelihood gradient
estimator. We tested regularization strength parameters in
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{.1,.03,.01} and found .01 to work best for PLM, Gibbs,
and Gibbs-With-Gradients.

Ground truth couplings were extracted from an experimen-
tally validated distance-map. As is standard, we consider
any pair of amino acids to be a contact if they are within 5
angstroms of each other.

H.1. Recall on PF10018

We do not present results on PF10018 in the main body as
it was used to tune hyper-parameters. For completeness,
we present them here in Figure 12. As with the other pro-
tiens, the MCMC-based training outperforms PLM but by a
smaller margin and GWG and Gibbs perform comparably
here. This further supports the benefit of MCMC training
over PLM sets in on larger data as does the benefit of GWG
over Gibbs.

PF00018

—— Gibbs
GWG
— PLM

T T T T T
0 50 100 150 200
# Contacts

Figure 12. Recall Curves for contact prediction with Potts models.

H.2. Visualized Contacts

We visualize the inferred couplings for CADH1_HUMAN
in Figure 13. We see that GWG most accurately matches
the known structure with Gibbs inferring spurious couplings
and PLM missing many couplings near the diagonal.

I. Deep EBMs
I.1. Architectures

We train on two types of data; binary and categorical. For
the binary datasets, the data is represented as {0, 1}¥ where
D is the dimension of the data.

For the categorical datasets, each categorical variable is
represented as a “one-hot” vector. Thus, for image data,
each pixel is represented with a 256-dimensional vector. To
deal with the very high dimensionality of this input param-
eterization, we first map each one-hot vector to a learned,
low-dimensional embedding with a linear transformation.
We map to D,, = 4 dimensions for all models tested. We
then feed this (D x D,)-dimensional input to our network.
There are certainly more efficient ways to represent this

Ground Truth

gibbs awg

Figure 13. Inferred Couplings for CADH1_HUMAN. “Ground
Truth” is the matrix of known distances between amino acids.
All other matrices are the norms of the Potts model .J;; parameter.

data, but our intention was not to achieve state-of-the-art
results on these datasets and instead to demonstrate our sam-
pler could enable the training of energy-based models on
high-dimensional discrete data, so we use the most straight-
forward parameterization.

The ResNet used for our EBM is identical for all datasets.
The network has 8 residual blocks with 64 feature maps.
Each residual block has 2 convolutional layers. The first
two residual blocks have a stride of 2. The output features
are mean-pooled across the spatial dimensions and a sin-
gle linear layer is used on top to provide the energy. The
Swish (Ramachandran et al., 2017) nonlinearity (z - o(z))
is used throughout.

1.2. Experimental Details

We trained all models Adam (Kingma & Ba, 2014) using
a learning rate of 0.0001. We linearly warm-up the learn-
ing rate for the first 10,000 iterations. We found this was
necessary to help burn in the replay buffer of samples.

For the large datasets (static/dynamic MNIST, Omniglot)
we use a replay buffer with 10,000 samples. For the smaller
datasets (Caltech, Freyfaces, Histopathology) the buffer size
is 1000. Unlike recent work on continuous EBMs (Du &
Mordatch, 2019; Grathwohl et al., 2019), we do not reini-
tialize the buffer samples to noise. We found this resulted
in unstable training and lower likelihoods.

‘We train all models for 50,000 iterations. We use the same
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training/validation/testing splits as Tomczak & Welling
(2018). We evaluate models every 5000 iterations using
10,000 steps of AIS. We select the model which performs
the best on the validation data under this procedure. Final
results in Table 2 are generated from the selected models
by running 300,000 iterations of AIS. We evaluate using a
model who’s weights are given by an exponential moving
average of the training model’s weights. This is analogous to
training with “fast-weights” as in Tieleman & Hinton (2009).
We find this greatly improves likelihood performance and
sample quality. We use an exponential moving average with
weight 0.999 and did not experiment with other values.

We believe better results could be obtained with larger mod-
els or alternative architectures, but we leave this for future
work.

1.2.1. PARTITION FUNCTION ESTIMATION WITH AIS

We estimate likelihoods by estimating the partition function
using Annealed Importance Sampling (AIS) (Neal, 2001).
AIS underestimates the log-partition-function leading to
over-estimating the likelihood. The estimation error can be
reduced by using a larger number of intermediate distribu-
tions or a more efficient MCMC sampler. Results presented
in Table 2 were generated with 300,000 intermediate distri-
butions. We chose this number as it appears to be sufficiently
high for our partition function estimate to converge. Despite
this, these are upper-bounds and therefore should not be
considered definitive proof that one model achieves higher
likelihoods than another.

We anneal between our model’s unnormalized log-
probability f(z) and a multivariate Bernoulli or Categorical
distribution, log p,, (), fit to the training data, for binary
and categorical data, respectively.

fi(@) = Bef (z) + (1 = B¢) log pn () (35)

where [3; is linearly annealed from O to 1. Alternative strate-
gies such as sigmoid annealing could be used, but we leave
this for future work.

In Figure 14 we plot the estimated likleihoods for our Cal-
tech Silhouettes models as the number of intermediate dis-
tributions increases. It can be seen that between 30,000
and 300,000 (= 10*® — 105-5) the values appear to be con-
verged, thus we feel our reported number faithfully represent
our models’ performance.

1.3. Additional Results

We present additional long-run samples from our convolu-
tional EBM. These samples were generated using an an-
nealed Markov Chain (as described above) and Gibbs-With-
Gradients as the base MCMC sampler.

Caltech AIS Evaluation
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Figure 14. AlS likelihood estimates as the number of intermediate
distributions increases for our Caltech Silhouettes Resnet EBM.
Values converge after 30,000 ~ 10%5 step s
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Figure 15. Static MNIST Samples
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Figure 18. Caltech Silhouette Samples
Figure 19. Freyfaces Samples
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Figure 16. Dynamic MNIST Samples
Figure 17. Omniglot Samples
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J. Preliminary Text EBM Results

There has recently been interest in learning Energy-Based
Models of text data. An EBM for text could enable non-
autoregressive generation and more flexible conditioning
than autoregressive models. For example, an EBM trained
on language pairs p(x,y) could be used to translate in ei-
ther direction without retraining and could be structured as
log p(x,y) = fo(x)" g4(y) — log Z so that each language
component could be trained separately. We also have much
more architectural freedom when specifying EBMs meaning
fo is free to be a CNN, RNN, transformer, or MLP.

A few works have had success training and applying text
EBMs. Deng et al. (2020) find that EBMs can be used to
improve the generative modeling performance of large-scale
transformer language models and He et al. (2021) find that
Joint Energy-Based Models (Grathwohl et al., 2019) can
improve the calibration of text classifiers. Because of the
discrete structure of the text data, both of these works train
using Noise Contrastive Estimation (Gutmann & Hyvirinen,
2010) using a pretrained autoregressive language model as
the noise distribution. NCE requires a noise distribution
which can be sampled from and enables exact likelihood
computation. Thus, these approaches rely on and are limited
by the quality of these autoregressive models.

Ideally, we could train a text EBM on its own, without an
auxiliary model. One way to do this is to use the gradient
estimator of Equation 12 but the MCMC sampling task is
very challenging. Text models typically have a vocabulary
above 10,000 words so the size of the discrete sample space
is tremendous. Further, as noted in Section 8, to apply Gibbs
sampling to a model like this we would need to evaluate the
energy function over 10,000 times to perform a single step
of sampling!

We believe Gibbs-With-Gradients can provide an avenue
to train and sample from these kinds of models. As a
preliminary experiment we train non-autoregressvive lan-
guage models on a shortened version of the Penn Tree Bank
dataset (Taylor et al., 2003). This is a dataset of short sen-
tences with 10,000 words. We cut out all sentences with
greater than 20 words and pad all shorter sentences with an
“end of sequence” token. We feel this simplified setting is
sufficient for a proof-of-concept as the configuration space
is very large and Gibbs sampling is not feasible.

Our model consists of a bidirectional LSTM (Gers et al.,
1999) with 512 hidden units. We project the 10,000 words
to an embedding of size 256 with a learned mapping. To
compute the energy, we take the last hidden-state from each
direction, concatenate them together to a 1024-dimensional
vector. We project this to 512 dimensions with a linear layer,
apply a Swish nonlinearity and then map to 1 dimension
with another linear layer.

We train using PCD with a buffer size of 1000 and we use
20 steps of MCMC with Gibbs-With-Gradients to update
the samples at every training iteration. Besides this, training
was identical to our image EBMs in section 8.

We compare with a simple autoregressive language model
which is based on an LSTM with 512 hidden units and use
a learned word embedding of size 256.

We find the autoregressive model slightly outperforms the
EBM. The test-set log-likelihoods of the EBM and autore-
gressive model are —77.16 and —74.0, respectively. For
comparison, a uniform distribution over possible tokens
obtains —184.21 and a Categorical distribution fit to the
training data obtains —100.05.

While we are aware these are far from state-of-the-art lan-
guage modelling results, we believe they demonstrate that
Gibbs-With-Gradients can enable MCMC-trained EBMs to
successfully model text data with large vocabulary sizes. At
every step, the sampler has 10, 000 x 20 = 200, 000 choices
for possible updates. Despite this massive sampling space,
we find our acceptance rates during training are just above
70% making our approach at least 3500 times more efficient
than Gibbs sampling.

We believe improvements could be obtained through larger
models and more tuning. To further scale this approach,
we believe we will need to develop further approximations
which make sampling from very large categorical distribu-
tions more efficient and numerically stable. We leave this
for future work.



