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Abstract

In many RL applications, once training ends, it is
vital to detect any deterioration in the agent per-
formance as soon as possible. Furthermore, it of-
ten has to be done without modifying the policy
and under minimal assumptions regarding the en-
vironment. In this paper, we address this problem
by focusing directly on the rewards and testing
for degradation. We consider an episodic frame-
work, where the rewards within each episode are
not independent, nor identically-distributed, nor
Markov. We present this problem as a multi-
variate mean-shift detection problem with pos-
sibly partial observations. We define the mean-
shift in a way corresponding to deterioration of
a temporal signal (such as the rewards), and de-
rive a test for this problem with optimal statistical
power. Empirically, on deteriorated rewards in
control problems (generated using various envi-
ronment modifications), the test is demonstrated
to be more powerful than standard tests — often
by orders of magnitude. We also suggest a novel
Bootstrap mechanism for False Alarm Rate con-
trol (BFAR), applicable to episodic (non-i.i.d)
signal and allowing our test to run sequentially in
an online manner. Our method does not rely on a
learned model of the environment, is entirely ex-
ternal to the agent, and in fact can be applied to
detect changes or drifts in any episodic signal.

1. Introduction

Reinforcement learning (RL) algorithms have recently
demonstrated impressive success in a variety of sequential
decision-making problems (Badia et al.,|2020; |[Hessel et al.,
2018). While most RL works focus on the maximization of
rewards under various conditions, a key issue in real-world
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RL tasks is the safety and reliability of the system (Dulac-
Arnold et al., 2019; (Chan et al., [2020), arising in both of-
fline and online settings.

In offline settings, comparing the agent performance in dif-
ferent environments is important for generalization (e.g.,
in sim-to-real and transfer learning). The comparison may
indicate the difficulty of the problem or help to select the
right learning algorithms. Uncertainty estimation, which
could help to address this challenge, is currently considered
a hard problem in RL, in particular for model-free meth-
ods (Yu et al.| [2020).

In online settings, where a fixed, already-trained agent
runs continuously, its performance may be affected (grad-
ually or abruptly) by changes in the controlled system
or its surroundings, or when reaching unfamiliar states.
Some works address robustness to changes (Lecarpentier &
Rachelson, 2019; [Lee et al., |2020), yet performance degra-
dation is sometimes inevitable, and should be detected as
soon as possible. The detection allows us to fall back into
manual control, send the agent to re-train, guide diagno-
sis, or even bring the agent to halt. This problem is in-
herently different from robustness to changes during train-
ing: it focuses on safety and reliability, in post-training
phase where intervention in the policy is limited or forbid-
den (Matsushima et al., [2020). It also operates in different
time-scales: while training may take millions of episodes,
changes should often be detected within tens of episodes,
and critical failures — within less than an episode.

Such post-training performance-awareness is essential for
any autonomous system in risk-intolerant applications,
such as autonomous driving and medical devices. For ex-
ample, when an autonomous car starts acting suspiciously
with a passenger sitting inside, activating a training pro-
cess and exploring for new policies is not an option. The
priority is to notice the suspicious behavior as soon as
possible, so that it can be alerted in time to save lives.

Many sequential statistical tests exist for detection of mean
degradation in a random process. However, common meth-
ods (Page} |1954; [Lan, [1994; |Harel et al.,|2014) assume in-
dependent and identically distributed (i.i.d) samples, while
in RL the feedback from the environment is usually both
highly correlated over consecutive time-steps, and varies
over the life-time of the task (Korenkevych et al., [2019).
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Figure 1: Properties of the rewards of a fixed agent in HalfCheetah, estimated over N = 10000 episodes of 7" = 1000 time-steps: (a)
distribution of rewards per time-step; (b) variance per time-step; (c) correlation(¢1, t2) vs. t2 — t1. The estimations are in resolution of
25 time-steps, i.e., every episode was split into 40 intervals of 25 consecutive steps, and each sample is the average over an interval.

This is demonstrated in Fig.

A possible solution is to apply statistical tests to large
blocks of data assumed to be i.i.d (Ditzler et al., [2015).
This is particularly common in RL, where the episodic set-
tings allow a natural blocks-partition (see for example |Co-
las et al.|(2019)). However, this approach requires com-
plete episodes for change detection, while a faster response
is often required. Furthermore, naively applying a statisti-
cal test on the accumulated feedback (e.g., sum of rewards)
from complete episodes, ignores the dependencies within
the episodes and misses vital information, leading to highly
sub-optimal tests (as demonstrated in Section[6.2).

In this work, we devise an optimal test for detection of
degradation of the rewards in an episodic RL task (or in any
other episodic signal), based on the covariance structure
within the episodes. Even in absence of the assumptions
that guarantee its optimality, the test is still asymptotically
superior to the common approach of comparing the mean
reward (Colas et al.| |2019). The test can detect changes
and drifts in both the offline and the online settings defined
above. Since tuning of the False Alarm Rate (FAR) of a
sequential test usually relies on the underlying signal be-
ing i.i.d, we also suggest a novel Bootstrap mechanism for
FAR control (BFAR) in sequential tests on episodic signals.
The suggested procedures rely on the ability to estimate the
correlations within the episodes, e.g., through a “reference
dataset” of episodes.

Since the test is applied directly to the rewards, it is model-
free in the following senses: the underlying process is not
assumed to be known, to be Markov, or to be observable at
all (as opposed to other works, e.g.,Banerjee et al.|(2016)),
and we require no knowledge about the process or the run-
ning policy. Furthermore, as the rewards are simply re-
ferred to as episodic time-series, the test can be similarly
applied to detect changes in any episodic signal.

We demonstrate the new procedures in the environments
of Pendulum (OpenAl), HalfCheetah and Humanoid (Mu-
JoCo; [Todorov et al.l [2012). BFAR is shown to success-
fully control the false alarm rate. The suggested test de-
tects degradation faster and more often than three alterna-
tive tests — in certain cases by orders of magnitude.

The paper is organized as follows: Section [3| formulates
the offline setup (individual tests) and the online setup (se-
quential tests). Section 4] defines the model of an episodic
signal, and derives an optimal degradation-test for such a
signal. Section[5|shows how to adjust the test for online set-
tings and control the false alarm rate. Section [6] describes
the experiments, and Section [/|discusses related works.

To the best of our knowledge, we are the first to exploit the
covariance between rewards in post-training phase to test
for changes in RL-based systems. Our main contribution
is an optimal test that can detect deterioration in agent re-
wards and other episodic signals reliably, in much shorter
times than current standard tests. We also suggest a novel
bootstrap mechanism to control false alarm rate of such
tests on episodic (non-i.i.d) data. Finally, we lay a new
framework for statistical tests on episodic signals, which
opens the way for further research on this problem.

2. Preliminaries

Reinforcement learning and episodic framework: A
Reinforcement Learning (RL) problem is usually modeled
as a sequential decision process, where a learning agent
has to repeatedly make decisions that affect its future states
and rewards. The process is often organized as a finite
sequence of time-steps (an episode) that repeats multiple
times in different variants, e.g., with different initial states.
Common examples are board and video games (Brockman
et al.,2016)), as well as more realistic problems such as au-
tonomous driving tasks.
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Once the agent is fixed (which is the case in this work),
the rewards of the decision process essentially reduce to a
(decision-free) random process { X }7_;, which can be de-
fined by its PDF (f{x,j»_ : R™ — [0,00)). {X;} usually
depend on each other: even in the popular Markov Decision
Process (Bellmanl, [1957), where the dependence goes only
a single step back, long-term correlations may still carry
information if the states are not observable by the agent.

Hypothesis tests: Consider a parametric probability
function p(X |#) describing a random process, and consider
two different hypotheses Hy, H4 determining the value
(simple hypothesis) or allowed values (complex hypothe-
sis) of . When designing a test to decide between the
hypotheses, the basic metrics for the test efficacy are its
significance P(notreject Hy|Hp) = 1 — « and its power
P(reject Hy|H 4) = 5. A hypothesis test with significance
1 — « and power S is optimal if any test with as high sig-
nificance 1 — & > 1 — « has smaller power B <B.

The likelihood of the hypothesis H : § € © given data
X is defined as L(H|X) = supycgop(X|f). Accord-
ing to Neyman-Pearson lemma (Neyman et al.| [1933), a
threshold-test on the likelihood ratio LR(Hy, H4|X) =
L(Hy|X)/L(H4|X) is optimal. The threshold is uniquely
determined by the desired significance level «, though is
often difficult to practically calculate given a.

In many practical applications, a hypothesis test is repeat-
edly applied as the data change or grow, a procedure known
as a sequential test. If the null hypothesis H is true, and
any individual hypothesis test falsely rejects Hy with some
probability «, then the probability that at least one of the
multiple tests will reject Hy is ag > o, termed family-wise
type-I error (or false alarm rate when associated with fre-
quency). See Appendix [A]for more details about hypothe-
sis testing and sequential tests in particular.

Common approaches for sequential tests, such as
CUSUM (Page, (1954} Ryan, [2011) and a-spending func-
tions (Lanl|1994; Pocock, |1977), usually require strong as-
sumptions such as independence or normality, as further
discussed in Appendix

3. Problem Setup

In this work, we consider two setups where detect-
ing performance deterioration is important — sequential
degradation-tests and individual degradation-tests. The in-
dividual tests, in addition to their importance in offline set-
tings such as sim-to-real and transfer learning, are used in
this work as building-blocks for the online sequential tests.

Both setups assume a fixed agent that was previously
trained, and aim to detect whenever the agent performance
begins to deteriorate, e.g., due to environment changes.

The ability to notice such changes is essential in many real-
world problems, as explained in Section|[I]

Setup 1 (Individual degradation-test). We consider a
fixed trained agent (policy must be fixed but is not neces-
sarily optimal), whose rewards in an episodic environment
(with episodes of length T) were previously recorded for
multiple episodes (the reference dataset). The agent runs
in a new environment for n time-steps (both n < T and
n > T are valid). The goal is to decide whether the re-
wards in the new environment are smaller than the original
environment or not. If the new environment is identical, the
probability of a false alarm must not exceed «.

Setup 2 (Sequential degradation-test). As in Setup|[I] we
consider a fixed trained agent with reference data of multi-
ple episodes. This time the agent keeps running in the same
environment, and at a certain point in time its rewards begin
to deteriorate, e.g., due to changes in the environment. The
goal is to alert to the degradation as soon as possible. As
long as the environment has not changed, the probability of
a false alarm must not exceed ayy per h episodes.

Note that while in this work the setups focus on degrada-
tion, they can be easily modified to look for any change
(as positive changes may also indicate the need for further
training, for example).

4. Optimization of Individual Tests

To tackle the problem of Setup [I] we first define the prop-
erties of an episodic signal and the general assumptions re-
garding its degradation.

Definition 4.1 (T-long episodic signal). Let n,T € N,
and write n = KT + 1y (for non-negative integers K,
with 19 < T'). A sequence of real-valued random variables
{X:}7, is a T-long episodic signal, if its joint probability
density function can be written as

f{Xt}?zl (3717 '~~7xn) =

K—-1
1T foxom, Qarree i) | - Fixam, (e iey)
k=0

(D

(where an empty product is defined as 1). We fur-
ther denote py = FE[(Xi,...,X7)"] € RT, &y =
COV((Xl, ...,XT)T, (Xl, ,XT)) S RTXT,

Note that the episodic signal consists of i.i.d episodes, but
is not assumed to be independent or identically-distributed
within the episodes — a setup particularly popular in RL.

In the analysis below we assume that both po and Xy are
known. This can be achieved either with detailed domain
knowledge, or by estimation from the recorded reference
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dataset of Setup [I] assuming it satisfies Eq. (I). The esti-
mation errors decrease as O(1/v/N) with the number N
of reference episodes, and are distributed according to the
Central Limit Theorem (for means) and Wishart distribu-
tion (K. V. Mardia & Bibby, 1979) (for covariance). While
in this work we use up to N = 10000 reference episodes,
Appendix [J] shows that N = 300 reference episodes are
sufficient for reasonable results in HalfCheetah, for exam-
ple. Note that correlations estimation has been already dis-
cussed in several other RL works (Alt et al., [2019).

Fig. [T] demonstrates the estimation of mean and covari-
ance parameters for a trained agent in the environment
of HalfCheetah, from a reference dataset of N = 10000
episodes. This also demonstrates the non-trivial correla-
tions structure in the environment. According to Fig.
the variance in the rewards varies and does not seem to
reach stationarity within the scope of an episode. Fig.
shows the autocorrelation function ACF(ty — t1) =
corr(ty,te) for different reference times ¢1. The correla-
tions clearly last for hundreds of time-steps, and depend
on the time ¢; rather than merely on the time-difference
to — t1. This means that the autocorrelation function is not
expressive enough for the actual correlations structure.

Once the per-episode parameters gg € R, % € RT*T
are known, the mean p € R"™ and covariance > € R"*"™
of the whole signal can be derived directly: p consists of
periodic repetitions of pg, and ¥ consists of copies of ¥
as T x T blocks along its diagonal. For both, the last repeti-
tion is cropped if n is not an integer multiplication of 7T". In
other words, by taking advantage of the episodic setup, we
can treat the temporal univariate non-i.i.d signal as a multi-
variate signal with easily-measured mean and covariance —
even if the signal ends in the middle of an episode.

The degradation in the signal X = {X;}7; is defined
through the difference between two hypotheses. The null
hypothesis Hj states that X is a T-long episodic signal
with expectations gg € RT and invertible covariance ma-
trix Yo € RTXT. Our first alternative hypothesis (H4) —
uniform degradation — states that X is a T-long episodic
signal with the same covariance ¥, but smaller expecta-
tions: Je > €, V1 < ¢t < T : (fio): = (mo): — €. Note
that this hypothesis is complex (¢ > €g), where €y can be
tuned according to the minimal degradation magnitude of
interest. In fact, Theorem@] shows that the optimal corre-
sponding test is independent of the choice of €.

Theorem 4.1 (Optimal test for uniform degradation). De-
fine the uniform-degradation weighted-mean syn;¢(X) =
WX, whereW =17 .51 e R (and 1 is the all-1 vec-
tor). If the distribution of X is multivariate normal, then a
threshold-test on s,y is optimal.

Proof Sketch (see full proof in Appendix|[E). According to

Neyman-Pearson lemma (Neyman et al), [1933), a
threshold-test on the likelihood-ratio (LR) between H and
H 4 is optimal. Since H 4 is complex, the LR is a mini-
mum over € € [€g, 00). Lemmal[I|shows that Jso : synif >
S0 = € = € and Sypif < So = € = €(Syns). The rest
of the proof substitutes € in both domains of s,,,,; s to prove
monotony of the LR in s, 7, from which we can conclude
monotony in Sy,; ¢ over all R. O

Following Theorem 4.1 we define the Uniform Degrada-
tion Test (UDT) to be a threshold-test on Sypu;¢, i.e., "de-
clare a degradation if s,,,,;; < " for a pre-defined «. If the
weights are calculated in advance, s,y can be calculated
in O(n) time, and updated in O(1) with every new sample.

Recall that test optimality is defined in Section 2]as having
maximal power per significance level. To achieve the sig-
nificance « required in Setup[T} we apply a bootstrap mech-
anism that randomly samples episodes from the reference
data and calculates the corresponding statistic (€.g., Synif)-
This yields a bootstrap-estimate of the statistic’s distribu-
tion under Hy, and the a-quantile of the estimated distribu-
tion is chosen as the test-threshold (k = ¢ (Sunif|Ho))-

H 4 is intended for degradation in a temporal signal, and
derives a different optimal statistic than standard mean-
change tests in multivariate variables (e.g., Hotelling). In
Section[6] this is indeed demonstrated to be more powerful
for rewards degradation. Also note that by explicitly refer-
ring to the temporal dimension, we allow detections even
before the first episode is completed.

Theorem [4.1| relies on multivariate normality assumption,
which is often too strong for real-world applications. The-
orem [{.2] guarantees that if we remove the normality as-
sumption, it is still beneficial to look into the episodes in-
stead of considering them as atomic blocks; that is, UDT is
still asymptotically better than a test on the simple mean
Ssimp = Z?zl X;/n. Note that “asymptotic” refers to
the signal length n — oo (while 7' remains constant),
and is translated in the sequential setup into a “very long
lookback-horizon h” (rather than very long running time).

Theorem 4.2 (Asymptotic power of UDT). Denote the
length of the signal n = K - T, assume a uniform degrada-
tion of size LK, and let two threshold-tests Tgimp ON Ssimp
and UDT on syn; s be tuned to have significance o. Then

lim P (Tsimp rejects ‘HA) = (qg + 6T>

K—oo /].TE()].
<o (qfi + e\/1T2011> = lim P (UDT rejects |Hz)
K—o0
(2)

where ® is the CDF of the standard normal distribution,
and qY, is its a-quantile.
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Figure 2: Rewards degradation of a fixed agent in HalfCheetah
following changes in gravity, mass, and control-cost, over N =
5000 episodes per scenario.

Proof Sketch (see full proof in Appendix[E). Since the
episodes of the signal are i.i.d, both sy, and sy, ¢ are
asymptotically normal according to the Central Limit
Theorem. The means and variances of both statistics
are calculated in Lemma 2l Calculation of the variance
of Syn;y relies on writing Syp,;f as a sum of linear
transformations of X (Suniy = .5 q(X71);X), and
using the relation between X and ¥j. The inequality
between the resulted powers is shown to be equivalent to a
matrix-form of the means-inequality, and is proved using

Cauchy-Schwarz inequality for ¥ /21 and Z(l)/ 1. O

we define G? =

to be the asymptotic power gain of
UDT, quantify it, and show that it increases with the
heterogeneity of the spectrum of Y. In particular, if the
rewards are heterogeneous, the suggested test is guaranteed
to detect uniform degradation with much higher probability
than the standard mean-test.

Motivated by Theorem [4.2]
172;'1)(A7 8e1)
T2

Proposition 4.1 (Asymptotic power gain). G?> = 1 +
Z?jzl wi; (N — \j)% where {\;}1_, are the eigenvalues
of £o and {w;; }ijl are positive weights.

Proof Sketch (see full proof in Appendix[E). The result can
be calculated after diagonalization of ¥, and the weights
{w;; } are derived from the diagonalizing matrix. O

So far we assumed uniform degradation. In the context
of RL, such a model may refer to changes in constant
costs or action costs, as well as certain dynamics whose
change influences various states in a similar way. Fig.
demonstrates the empiric degradation in the rewards of a
fixed agent in HalfCheetah, following changes in gravity,
mass and control-cost. It seems that some modifications in-
deed cause a quite uniform degradation, while in others the
degradation is mostly restricted to certain ranges of time.

To model effects that are less uniform in time we suggest a
partial degradation hypothesis, where some (unknown) en-
tries of pgp are reduced by € > 0, and others do not change.
The number m = p - T' of the reduced entries is defined by
a parameter p € (0, 1).

This time, calculation of the optimal test-statistic through
the LR yields a minimum over (;L) possible subsets of de-
creased entries, which is computationally heavy. However,
Theorem[d.3]shows that if we optimize for small values of €
(where optimality is indeed most valuable), a near-optimal
statistic iS Sjq,¢, Which is the sum of the m = p - T' small-
est time-steps of (X — p) after a ¥~ !-transformation (see
formal definition in Definition [D.I1). The resulted time-
complexity is O(nT'). We define the Partial Degradation
Test (PDT) as a threshold-test on s,,,+ with a parameter p.

Theorem 4.3 (Near-optimal test for uniform degradation).
Assume that X is multivariate normal, and let P, be the
maximal power of a hypothesis test with significance 1 — a.
The power of a threshold-test on spqry With significance

1—ais P, — O(e).

Proof Sketch. The expression to be minimized is shown to
be the sum of two terms. One term is the sum of a subset of
entries of ¥~ (X — u), which is minimized by simply tak-
ing the lowest entries (up to the constraint of consistency
across episodes, which requires us to sum the rewards per
time-step in advance). In Appendix [E] we bound the sec-
ond term and its effects on the modified statistic and on the
modified test-threshold. We show that the resulted decrease
of rejection probability is O(e). O

5. Bootstrap for False Alarm Rate Control
(BFAR)

For Setup[2] we suggest a sequential testing procedure: run
an individual test every d steps (i.e., F' = T'/d test-points
per episode), and return once any individual test declares
a degradation. The tests can run according to Section
applied on the / recent episodes. Multiple tests may be ap-
plied every test-point, e.g., with varying test-statistics {s}
or lookback-horizons { h}. This procedure, as implemented
for the experiments of Section[f] is described in Fig. [3]

Setup [2| limits the probability of a false alarm to o in a
run of h episodes. To satisfy this condition, we set a uni-
form threshold x on the p-values of the individual tests (i.e.,
declare once a test returns p-val < k). The threshold is
determined using a Bootstrap mechanism for False Alarm
control (BFAR, Algorithm ).

While bootstrap methods for false alarm control are
quite popular, they often rely on the data samples being
1.1.d (Kharitonov et al., [2015; |Abhishek & Mannor, [2017)),
which is crucial for the re-sampling to reliably mimic the
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source of the signal. To address the non-i.i.d signal, we take
advantage of the episodic framework and sample whole
episodes. We then use the re-sampled sequence to simulate
tests on sub-sequences where the first and last episodes may
be incomplete, as described below. This allows simula-
tion of sequences of various lengths (including non-integer
number of episodes) without assuming independence, nor-
mality, or identical distributions within the episodes.

Algorithm 1: BFAR: Bootstrap for FAR control

Input: reference dataset x € RV *T'; statistic functions
{s}: lookback-horizons {1, ..., hynaz }; test length
h € N; bootstrap repetitions B € N; desired
significance ag € (0,1);
Output: test threshold for individual tests;
Initialize P = (1,...,1) € [0, 1]5;
for bin 1:B do
Initialize Y € R(hmas+h)T,
for k in 0:(hpqz+h-1) do
Sample j uniformly from (1, ..., N);
Y[k‘T +1: kT =+ T] <— (xjh ...,.1‘]"1");
for t in test-points do
for h in lookback-horizons and s in
statistic functions do
y« Y[t —hT :t];
p < individual test_pvalue(y vs. ;)
P[b] + min(P[b],p);
Return quantileqy, (P);

BFAR samples hy,q. +h episodes (where Ay, is the max-
imal lookback-horizon) from reference data of N episodes,
to simulate sequential data Y. Then individual tests are
simulated for any test-point along h episodes, starting after
hmaz episodes. The minimal p-value determines whether a
detection would occur in Y. The whole procedure repeats
B times, creating a bootstrap estimate of the distribution of
the minimal p-value along h episodes. We choose the tests
threshold to be the aig-quantile of this distribution, such that
ap of the bootstrap simulations would raise a false alarm.

Note that the statistic for the tests is given to BFAR as an
input, making its choice independent of BFAR. BFAR can
run in an offline manner (e.g., a single run before the de-
ployment of the agent). It takes O(BFhT) time, where T
is the time of a single update of all the test-statistics. Addi-
tional details are discussed in Appendices

6. Experiments
6.1. Methodology

We run experiments in standard RL environments as de-
scribed below. For each environment, we train an agent
using the PyTorch version (Kostrikov, [2018) of OpenAlI’s

baseline (Dhariwal et al., |2017) of A2C algorithm (Mnih
et al., [2016). We let the trained agent run in the environ-
ment for Ny episodes and record its rewards, considered the
trusted reference data. We then define several scenarios,
and let the agent run for M x N episodes in each scenario
(divided later into M = 100 blocks of NV episodes). One
scenario is named H{, and is identical to the reference up to
the random initial-states. The other scenarios are defined
per environment, and present environmental changes ex-
pected to harm the agent’s rewards. The agent is not trained
to adapt to these changes, and the goal is to test how long
it takes for a degradation-test to detect the degradation.

Individual degradation-tests of length n (Setup [I) are ap-
plied for every scenario over the first n time-steps of each
block. Sequential degradation-tests (Setup [2) are applied
sequentially over the episodes of each block. Since the
agent is assumed to run continuously as the environment
changes from Hj to an alternative scenario, each block is
preceded by a random sample of Hj episodes, as demon-
strated in Fig.

BFAR adjusts the tests thresholds to have a false alarm with
probability ag = 5% per h=N episodes (where N is the
data-block size). Two lookback-horizons h1, hy are chosen
for every environment. The rewards are downsampled by a
factor of d before applying the tests, intended to reduce the
parameters estimation error. Table [I| summarizes the setup
of the various environments.

The experimented degradation-tests are a threshold-
test on the simple Mean; CUSUM (Ryan, [2011);
Hotelling (Hotelling},|1931); UDT and PDT (with p = 0.9)
from Section and a Mixed Degradation Test (MDT) that
runs Mean, Hotelling and PDT in parallel — applying all
three in every test-point (as permitted in Algorithm[I]). All
the degradation-tests are tuned according to the same refer-
ence data. Further implementation details are discussed in

Appendix

6.2. Results

We run the tests in the environments of Pendulum (Ope-
nAll), where the goal is to keep a pendulum pointing up-
wards; HalfCheetah (Todorov et al.| 2012), where the goal

Table 1: Environments parameters

(episode length (7), reference episodes (INo), test blocks (M),
episodes per block (), sequential test length (), lookback hori-
zons (h1, h2), tests per episode (F' = T'/d))

’Environment‘ T ‘No ‘ M ‘N:h‘hm ‘ F‘

Pendulum 200 | 3e3 | 100 30 3,30 | 20

HalfCheetah | 1000 | le4 | 100 50 5,50 | 40

Humanoid 200 | 5e3 | 100 30 3,30 | 10
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Sequential test for a scenario H

Repeat for M=100 different data-blocks of H:

h,.ax €pisodes of a random block of H,

A block of N episodes of H
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Test start

Time d between A
indivi'c_iﬂ\al tests
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Figure 3: A summary of the sequential degradation-test procedure described in Section

is for a 2D cheetah to run as fast as possible; and Hu-
manoid, where the goal is for a person to walk without
falling. In each environment we define the scenario ccostx
of control cost increased to x% of its original value, as well
as changed-dynamics scenarios specified in Appendix [H]

In all the environments the rewards are clearly not indepen-
dent, identically-distributed or normal (see Fig.[I|for exam-
ple). Yet the false alarm rates are close to ag = 5% per h
episodes in all the tests, as demonstrated in Fig. ] (and in
more details in Fig. [6]in Appendix [[). These results under
Hj indicate that BFAR tunes the thresholds properly in
spite of the complexity of the data. Note that BFAR never
observed the data of scenario Hj — only the reference data.

In most of the non-H scenarios, our tests prove to be
more powerful than the standard tests, often by extreme
margins. For example, increased control cost in all the
environments and additive noise in Pendulum are all 100%-
detected by the suggested tests, usually within few episodes
(Fig. @); whereas Mean, CUSUM and Hotelling have very

Pendulum

poor detection rates. Mean did not detect degradation in
Pendulum even after the control cost increased from 110%
to 300%(!), while keeping the significance level constant

(OZO = 5%)

Note that we run the tests with two lookback-horizons in
parallel, as allowed by BFAR. This proves useful: with
+30% control cost in HalfCheetah, for example, the short
lookback-horizon allows fast detection of degradation; but
with merely +10%, the long horizon is necessary to no-
tice the slight degradation over a large number of episodes.
This is demonstrated in Fig. [T1]in Appendix [}

Covariance-based tests reduce the weights of the highly-
varying (and presumably noisier) time-steps. In HalfChee-
tah they turn out to be in the later parts of the episode. As a
result, in certain scenarios, Mean, CUSUM and Hotelling
(which do not exploit the different variances optimally) do
better in individual tests of 100 samples (out of 7" = 1000)
than they do in one or even 10 full episodes (see Fig. [I0a]
in Appendix [[). This does not occur in UDT and PDT. Es-

HalfCheetah Humanoid

Mean
cusum
Hot
uDT
PDT
MDT

100

751

25 1

Detection rate [%] Time [episodes]

ccostll0 ccost300  len090 len120 noise05 HO

len090

ccostl30 gravity090 gravityl20 ccostl1l0 len120

Scenario

Figure 4: Bottom: percent of sequential tests that ended with degradation detection (high is good), over M = 100 runs with different
seeds, for 3 standard tests and 3 variants of our test (UDT, PDT and MDT), in a sample of scenarios in Pendulum, HalfCheetah and
Humanoid. Top: time until detection (low is good) — for the runs that ended with detection. The significance of the tests is shown for
HalfCheetah in Hj scenario (and for Pendulum and Humanoid as well in Fig. |§|in Appendixm).
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sentially, we see that ignoring the noise variability leads
to violation of the principle that more data are better.

In Pendulum, the ratio between variance of different steps
may reach 5 orders of magnitude. This phenomenon in-
creases the potential power of the covariance-based tests.
For example, when the pole is shortened, negative changes
in the highly-weighted time-steps are detected even when
the mean of the whole signal increases. This feature allows
us to detect slight changes in the environment before they
develop into larger changes and cause damage.

On the other hand, a challenging situation arises when cer-
tain rewards decrease but the highly-weighted ones slightly
increase (as in longer Pendulum’s pole), which strongly vi-
olates the assumptions of Section UDT is doomed to
falter in such scenarios. PDT proves somewhat robust to
this phenomenon since it is capable of focusing on a sub-
set of time-steps, as demonstrated in increased gravity in
HalfCheetah (Fig. E]) Howeyver, it cannot overcome the ex-
treme weights differences in Pendulum. The one test that
demonstrated robustness to all the experimented scenarios,
including modified Pendulum’s length and mass, is MDT.
MDT combines Mean, Hotelling and PDT and does not fall
far behind any of the three, in any of the scenarios. Hence,
it presents excellent results in some scenarios and reason-
able results in the others.

The tests were run on a single i9-10900X CPU core. BFAR
(which needs to run only once and in an offline manner —
before the deployment of the agent) took around 30 min-
utes per environment and test-statistic (several hours in to-
tal). Any parallelization should accelerate the bootstrap lin-
early with the number of cores. The sequential (online)
tests themselves ran for 10 minutes per scenario — for all
the 6 test-statistics together and for thousands of episodes.

Detailed experiments results are available in Appendix [I}
The code of the experiments is available on GitHubl

7. Related Work

Training in non-stationary environments has been
widely researched, in particular in the frameworks of
Multi-Armed Bandits (Mukherjee & Maillard, 2019
Garivier & Moulines| [2011} Besbes et al., [2014} Lykouris
et al., 2020; |Alatur et al.l |2020; |Gupta et al., 2019} Jun
et al., 2018), model-based RL (Lecarpentier & Rachelson)
2019; [Lee et al., 2020) and general multi-agent environ-
ments (Hernandez-Leal et al.,[2019). [Banerjee et al.|(2016)
explicitly detect changes in the environment and modify
the policy accordingly, but assume that the environment
is Markov, fully-observable, and its transition model is
known — three assumptions that we avoid and that do not
hold in many real-world problems. Safe exploration dur-
ing training in RL was addressed by |Garcia & Fernandez

(2015)); |IChow et al.| (2018); Junges et al.| (2016); |(Cheng
et al.| (2019)); [Alshiekh| (2017). Note that our work refers
to changes beyond the scope of the training phase: it ad-
dresses the stage where the agent is fixed and required not
to train further, in particular not in an online manner. Ro-
bust algorithms may prevent degradation in the first place,
but when they fail — or when their assumptions are not met
— an external model-free monitor with minimal assump-
tions (as the one suggested in this work) is crucial.

Sequential tests were addressed by many over the years.
Common approaches rely on strong assumptions such as
samples independence (Pagel (1954} Ryan, [2011) and nor-
mality (Pocockl, [1977;|0’Brien & Fleming| [1979). Gener-
alizations exist for certain private cases (Lu & Jr., 2001} Xie
& Siegmund, [2011), sometimes at cost of alternative as-
sumptions such as known change-size (Lund et al.l 2007).
Samples independence is usually assumed also in recent
works with numeric approaches (Kharitonov et al. 2015}
Abhishek & Mannor, [2017; |Harel et al.| 2014]), and is often
justified by consolidating many samples (e.g., an episode)
together as a single sample (Colas et al., 2019). |Ditzler
et al.| (2015) wrote that “change detection is typically car-
ried out by inspecting i.i.d features extracted from the in-
coming data stream, e.g., the sample mean”. Certain works
address cyclic signals monitoring (Zhou et al., 2005), but to
the best of our knowledge, we are the first to devise an opti-
mal test for mean change in temporal non-i.i.d signals, and
a false alarm control mechanism for such non-i.i.d signals.

Our work can be seen in part as converting a univariate
temporal episodic signal into a 7T-dimensional multivari-
ate signal. Many works addressed the problem of change-
point detection in multivariate variables, e.g., using
histograms comparison (Boracchi et al., [2018), Hotelling
statistic (Hotelling, [1931)), and K-L distance (Kuncheval
2013). Hotelling in particular also looks for changed mean
under unchanged covariance. However, unlike existing
tests, we derive optimal tests for two different negative
mean-change hypotheses, intended to detect degradation in
temporal signals. Indeed, Section [6] demonstrates the ad-
vantage over Hotelling in such a context. In addition, by
considering the temporal nature of the signal, we are able
to handle “incomplete observations” and in particular ob-
tain detections even within the middle of the first episode.

8. Summary

We introduced a novel approach that is optimal (under cer-
tain conditions) for detection of changes in episodic sig-
nals, exploiting the correlations structure as measured in a
reference dataset. In environments of classic control (Pen-
dulum) and MuJoCo (HalfCheetah, Humanoid), the sug-
gested statistical tests detected degradation faster than al-
ternatives, often by orders of magnitude. Certain condi-


https://github.com/ido90/Rewards-Deterioration-Detection

Detecting Rewards Deterioration in Episodic Reinforcement Learning

tions, such as combination of positive and negative changes
in very heterogeneous signals, may cause instability in
some of the suggested tests; however, this is shown to be
solved by running the new test in parallel to standard tests
— with only a small loss of test power.

We also introduced BFAR, a bootstrap mechanism that ad-
justs tests thresholds according to the desired false alarm
rate in sequential tests. The mechanism empirically suc-
ceeded in providing valid thresholds for various tests in all
the environments, in spite of the non-i.i.d data.

The suggested approach may contribute to development of
reliable RL-based systems. Future research may consider
different hypotheses, such as a permitted small degradation
(instead of Hp) or a mix of degradation and improvement
(instead of H 4); suggest additional stabilizing mechanisms
for covariance-based tests; exploit other metrics than re-
wards for tests on model-based RL systems; and apply
comparative tests of episodic signals beyond the scope of
sequential change detection.
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