
Crystallization Learning with the Delaunay Triangulation

Jiaqi Gu 1 Guosheng Yin 1

Abstract
Based on the Delaunay triangulation, we propose
the crystallization learning to estimate the con-
ditional expectation function in the framework
of nonparametric regression. By conducting the
crystallization search for the Delaunay simplices
closest to the target point in a hierarchical way, the
crystallization learning estimates the conditional
expectation of the response by fitting a local lin-
ear model to the data points of the constructed
Delaunay simplices. Instead of conducting the
Delaunay triangulation for the entire feature space
which would encounter enormous computational
difficulty, our approach focuses only on the neigh-
borhood of the target point and thus greatly expe-
dites the estimation for high-dimensional cases.
Because the volumes of Delaunay simplices are
adaptive to the density of feature data points, our
method selects neighbor data points uniformly in
all directions and thus is more robust to the lo-
cal geometric structure of the data than existing
nonparametric regression methods. We develop
the asymptotic properties of the crystallization
learning and conduct numerical experiments on
both synthetic and real data to demonstrate the
advantages of our method in estimation of the
conditional expectation function and prediction
of the response.

1. Introduction
Consider a regression model,

yi = µ(xi) + εi, i = 1, . . . , n, (1)

where xi is a d-dimensional feature point in the Euclidean
space Rd (n > d), yi is the observed response, µ(·) =
E(Y |·) is the conditional expectation function of the re-
sponse Y , and ε1, . . . , εn ∈ R are independent and iden-
tically distributed (i.i.d.) random errors with E(εi) = 0

1Department of Statistics and Actuarial Science, University
of Hong Kong, Hong Kong SAR. Correspondence to: Jiaqi Gu
<u3005743@hku.hk>, Guosheng Yin <gyin@hku.hk>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

and E(ε2i) <∞. Nonparametric regression is a collection
of methods for estimating the conditional expectation func-
tion µ(·) without rigid assumptions on its shape. Recent
decades have witnessed extensive research in the field of
nonparametric regression, including nearest-neighbor re-
gression (Nadaraya, 1964; Watson, 1964; Cover & Hart,
1967; Benedetti, 1977; Stone, 1977; Altman, 1992), kernel
regression (Priestley & Chao, 1972; Hardle & Gasser, 1984;
Hein, 2009) and local linear regression (Cleveland, 1979;
Cleveland & Devlin, 1988; Fan & Gijbels, 2018). Although
the consistency of these methods has been established under
mild conditions, their finite-sample performances are sen-
sitive to the local geometric structure of observed feature
points. As these methods only consider the distances from
the target point z to observed feature points x1, . . . , xn in
computing the neighbor data points or assigning weights,
it is possible that the directions from z to its neighbors are
not uniformly distributed, especially when z is close to the
boundary of the convex hull of feature points or jump points
of the feature data density. As a result, the (weighted) mean
of neighbor data points may be far from the target point z,
leading to large bias in estimating the conditional expecta-
tion µ(z).

By incorporating the Delaunay triangulation (Delaunay,
1934) into the framework of nonparametric regression, we
propose the crystallization learning which mimics the crys-
tallization process in thermodynamics and circumvents the
curse-of-dimensionality issue in the Delaunay triangulation.
Based on the DELAUNAYSPARSE algorithm (Chang et al.,
2020) which locally constructs the Delaunay simplex S(z)
containing the target point z, we develop the crystallization
search for the Delaunay simplices closest to S(z) and esti-
mate µ(z) by fitting a local linear model to the data points
of the obtained Delaunay simplices. Via experiments on
synthetic and real data, our method is shown to outperform
the existing ones in estimating the conditional expectation
function and predicting the response.

2. Methodology
2.1. Delaunay Interpolation

Let X be a set of n feature points x1, . . . , xn in the Euclidean
space Rd (n > d). A d-dimensional triangulation of X,
T (X), is a mesh of d-simplices {S1, . . . ,Sm} satisfying:

Crystallization Learning

(a) (b) (c)

Figure 1. (a) Graphical illustration of the empty-ball property of
the Delaunay triangulation; (b) the Delaunay triangulation; (c) a
random triangulation.

1. For j = 1, . . . ,m, the set of d+ 1 vertices of simplex
Sj , denoted as V(Sj), is a subset of X and does not lie
in any affine hyperplane of Rd.

2. For any j 6= k, simplices Sj and Sk are disjoint except
on their shared boundaries Sj ∩ Sk.

3. The union S1∪· · ·∪Sm is the convex hull of X,H(X).

As the d-simplices S1, . . . ,Sm of the triangulation T (X)
fully cover the convex hull H(X), for each internal point
z ∈ H(X), there exists a simplex S(z) ∈ T (X) such that
z ∈ S(z). Let i1(z), . . . , id+1(z) denote the indices corre-
sponding to the data points of S(z), and then there exist d+1

values γ1, . . . , γd+1 ∈ [0, 1] such that
∑d+1
k=1 γkxik(z) = z

and
∑d+1
k=1 γk = 1. Among all triangulations, the Delau-

nay triangulation has been widely used for multivariate in-
terpolation (de Berg et al., 2008) due to its smoothness
property. Let Bj be the open ball whose boundary is the
circumscribed (d − 1)-sphere of Sj . The Delaunay trian-
gulation of X, denoted as DT (X), is a triangulation of X
such that Bj ∩ X = ∅ for j = 1, . . . ,m. This is known as
the empty-ball property as shown in Figure 1 (a). As the
geometric dual of the Voronoi diagram under the L2 norm,
the Delaunay triangulation generates a mesh of simplices
that are most regularized in shape. In a 2-dimensional space,
X ⊂ R2, the Delaunay triangulationDT (X) maximizes the
minimum angle in all the triangles (2-simplices) S1, . . . ,Sm
over all possible triangulations (Sibson, 1978), as shown in
Figure 1 (b) and (c). The Delaunay triangulation DT (X) is
unique under the assumption that X is in general position
(Delaunay, 1934).

Considering the data {(xi, yi) : i = 1, . . . , n} from model
(1), the Delaunay interpolation aims to estimate the condi-
tional expectation µ(z) for all z ∈ H(X). Generally, there
are three steps in the Delaunay interpolation: (i) construct
the Delaunay triangulation DT (X); (ii) find the simplex
S(z) ∈ DT (X); and (iii) obtain the estimator µ̂(z) by opti-
mizing a target function. For most of Delaunay interpolation
methods, the first two steps are the same, while the differ-
ence mainly lies in the target function. For example, with
γ1, . . . , γd+1 ∈ [0, 1] such that

∑d+1
k=1 γkxik(z) = z and

Algorithm 1 DELAUNAYSPARSE (Chang et al., 2020)

1: Input: Feature points X, target point z ∈ H(X) and the
seed Delaunay simplex Sseed.

2: Let Scurrent = Sseed, AFrontier = {Sseed}, AExplored = ∅.
3: while z /∈ Scurrent do
4: Compute the set of facets of Scurrent which is visible

to z1, denoted as Fz(Scurrent).
5: for each facet F ∈ Fz(Scurrent) do
6: Grow a new Delaunay simplex Snew 6= Scurrent on

the facet F if it exists.
7: AFrontier ← AFrontier ∪ {Snew} if Snew exists and

Snew /∈ AExplored ∪ AFrontier.
8: end for
9: AExplored ← AExplored ∪ {Scurrent}.

10: AFrontier ← AFrontier \ {Scurrent}.
11: Scurrent ← the first simplex in AFrontier.
12: end while
13: Output: Simplex Scurrent.

∑d+1
k=1 γk = 1, the estimator of de Berg et al. (2008) is

µ̂(z) =
d+1∑
k=1

γkyik(z), (2)

which is the minimizer of the squared loss function∑n
i=1(yi − g(xi))2 among all continuous piecewise linear

functions, g(x) =
∑m
j=1 1{x∈Sj}(αj + βT

j x). Liu & Yin
(2020) introduce a regularization function to balance the
model fitting and smoothness of the estimator. However, all
the aforementioned methods require a complete construc-
tion of DT (X) for the entire feature space, whose size (i.e.,
m) grows exponentially with the dimension d. As a result,
no existing algorithm is feasible when d > 7 due to the
limitations of computation time/power and memory space
(Chang et al., 2020).

Alternatively, several methods have been proposed for
medium- to high-dimensional Delaunay interpolation
(Chang et al., 2018a;b; 2020). Instead of obtaining the
complete DT (X), these methods only construct the Delau-
nay simplex S(z) at each target point z locally and thus
µ(z) can be estimated at a polynomial cost. For any point
z ∈ H(X), the DELAUNAYSPARSE algorithm (Chang
et al., 2020) first obtains a seed Delaunay simplex Sseed
close to z. Based on Sseed, Chang et al. (2020) find S(z)
via the breadth first search as described in Algorithm 1 and
compute the estimator in (2). Although such an approach is
computationally efficient because γ1, . . . , γd+1 are simulta-
neously calculated, it only utilizes the information of d+ 1
data points {(xik(z), yik(z)) : k = 1, . . . , d+ 1} in the esti-

1A facet F of the simplex Scurrent is visible to z if there exists
an internal point z′ of Scurrent such that the linear segment from z
to z′ intersects F (Chang et al., 2020).

Crystallization Learning

Algorithm 2 Crystallization search

1: Input: Feature points X, target point z ∈ H(X) and
topological distance L.

2: Compute S(z) via Algorithm 1.
3: Let AFrontier = {(S(z), 0)} and NL(z) = ∅.
4: while AFrontier 6= ∅ do
5: (Scurrent, Lcurrent)← the first element in AFrontier.
6: if Lcurrent < L then
7: Compute all the facets of Scurrent, denoted as

F1, . . . ,Fd+1.
8: for j = 1, . . . , d+ 1 do
9: Grow a new Delaunay simplex Snew 6= Scurrent

on the facet Fj if it exists.
10: AFrontier ← AFrontier ∪ {(Snew, Lcurrent + 1)} if

Snew exists and Snew /∈ NL(z) ∪ AFrontier.
11: end for
12: end if
13: NL(z)← NL(z) ∪ {Scurrent}.
14: AFrontier ← AFrontier \ {(Scurrent, Lcurrent)}.
15: end while
16: Output: The set of Delaunay simplices NL(z).

mation. This may lead to overfitting and poor estimation
when the simplex S(z) has a small volume and a poorly
regularized shape.

2.2. Crystallization Search for Delaunay Simplices

As one component of DT (X), S(z) has d + 1 facets
F1, . . . ,Fd+1, each of which is either a facet of H(X) or
the shared boundary of S(z) and one neighbor Delaunay
simplex.

Definition 1. Neighbor Delaunay simplices: Given a set
of points X and the Delaunay triangulation DT (X) =
{S1, . . . ,Sm}, simplices Sj and Sk are neighbors if and
only if the intersection Sj ∩ Sk is a shared facet of Sj and
Sk.

Inspired by Algorithm 1 (Chang et al., 2020) which searches
S(z) by growing neighbor Delaunay simplices on the facets
of the explored ones recursively, we develop the crystal-
lization search (Algorithm 2) to construct all the Delaunay
simplices within the topological distance L to S(z), de-
noted as NL(z). Figures 2 and 3 display the crystallization
search ofNL(z) with respect to a target point z ∈ H(X) for
L = 0, 1, . . . , 5 in R2 and R3, respectively. When L = 0,
only the simplex S(z) is constructed. As L increases, De-
launay simplices are constructed in a hierarchical way, such
that new simplices would grow on the facets of the explored
ones sequentially. The whole process of crystallization
search is analogous to the crystallization process in thermo-
dynamics, where the search of S(z) indexed by line 2 in
Algorithm 2 plays the role of nucleation and the remaining

Figure 2. Crystallization search ofNL(z) with respect to a target
point z ∈ H(X) for L = 0, 1, 2 (top row) and L = 3, 4, 5 (bottom
row) in R2.

Figure 3. Crystallization search ofNL(z) with respect to a target
point z ∈ H(X) for L = 0, 1, 2 (top row) and L = 3, 4, 5 (bottom
row) in R3.

steps correspond to crystal growth.

2.3. Crystallization Learning

Without loss of generality, let Vz,L = ∪S∈NL(z)V(S) de-
note the set of all the data points of the simplices in NL(z).
Based on the setNL(z) of Delaunay simplices topologically
closest to the target point z, we propose the crystallization
learning to estimate µ(z) by fitting a local linear model,
µ(z) = α + βTz, to all the data points in Vz,L instead of
only the d + 1 data points of S(z). In DT (X), a vertex
shared by more simplices typically has a larger degree in
the network formed by Delaunay edges and thus is more in-
formative in the geometric structure of NL(z). We estimate
α and β via the weighted least squares approach,

(α̂, β̂) = argmin
α,β

∑
xi∈Vz,L

wz,L(xi)(yi − α− βTxi)2, (3)

Crystallization Learning

where the weight function is

wz,L(xi) =

(∑
S∈NL(z)

1{xi∈V(S)}

)
exp

(
− ‖xi − z‖22

mL(z)

)
,

with mL(z) =

(∑
xi∈Vz,L

‖xi − z‖22

)/(
n∑
i=1

1{xi∈Vz,L}

)
.

Given the estimators α̂ and β̂, we have µ̂(z) = α̂ + β̂
T

z.
Similar to the work of Nadaraya (1964) and Watson (1964),
our weight function places more weights on the data points
closer to z as well as those shared by more simplices in
NL(z). For all xi /∈ Vz,L, the weights are set to be zero. In
addition, our weight function is scale-invariant due to the
existence of the normalization term mL(z), i.e., multiplying
any constant to features would not change the weights. As a
result, the estimated conditional expectation function, µ̂(·),
is only piecewise smooth but not piecewise linear inH(X),
as demonstrated by Theorem 1 with the proof given in the
supplementary materials.

Theorem 1. Let X be a set of n feature points x1, . . . , xn
in general position and responses y1, . . . , yn are generated
from model (1). The estimated conditional expectation func-
tion under crystallization learning, µ̂(·), is smooth in Sk,
for k = 1, . . . ,m.

2.4. Selection of L

Similar to many other machine learning methods, the statis-
tical complexity and estimation performance of the crystal-
lization learning is controlled by the hyperparameter L, the
maximal topological distance from the generated neighbor
Delaunay simplices to S(z). Because a small L leads to
overfitting and a large L makes µ̂(·) overly smooth, we pro-
pose adopting the leave-one-out cross validation (LOO-CV)
to select L with respect to the target point z as follows.

1. Compute the Delaunay simplex S(z) containing z
and the values of γ1, . . . , γd+1 ∈ [0, 1] such that∑d+1
k=1 γkxik(z) = z and

∑d+1
k=1 γk = 1 via Algorithm

1, where xi1(z), . . . , xid+1(z) are the d + 1 data points
of S(z).

2. For each xik(z) ∈ S(z), apply the crystallization
learning with different candidate values of L on the
leave-one-out data excluding (xik(z), yik(z)) to estimate
µ(xik(z)). Let µ̂(xik(z);L) be the estimator correspond-
ing to the observation (xik(z), yik(z)) and candidate
value L.

3. Select the optimal L̃ as

L̃ = argmin
L

d+1∑
k=1

γk log{µ̂(xik(z);L)− yik(z)}2.

2.5. Computational Complexity

As shown by Chang et al. (2020), the average computa-
tional complexity of Algorithm 1 is O(d2n). However, as
Algorithm 1 is only implemented once, the dominant cost
of Algorithm 2 lies in growing simplices (lines 4–15). In
Algorithm 2, the number of generated Delaunay simplices is
O(dL) and the average computational complexity of grow-
ing a new Delaunay simplex on the facet of Scurrent is O(n)
with the rank-1 update suggested by Chang et al. (2020).
Thus, the average computational complexity of Algorithm 2
isO(dLn). Table 1 shows the average runtime in computing
NL(z) under different configurations.

Table 1. Average runtime (in seconds) in computingNL(z) under
different values of the maximal topological distance L, sample
size n, dimension d.

L
n = 500 n = 1000 n = 2000

d = 6 8 10 d = 6 8 10 d = 6 8 10

2 0.05 0.09 0.14 0.06 0.11 0.18 0.07 0.14 0.23
3 0.23 0.51 0.98 0.28 0.63 1.22 0.34 0.80 1.56
4 0.82 2.26 5.20 1.02 2.80 6.51 1.21 3.55 8.27

3. Connection with Other Nonparametric
Regression Methods

Similar to the two popular nonparametric regression meth-
ods, i.e., the nearest neighbor and the local linear regression,
our crystallization learning consists of three steps in estimat-
ing the conditional expectation µ(z) at the target point z: (i)
selecting data points from X as the neighbors of z according
to a specific criterion; (ii) assigning weights to the selected
neighbor data points; and (iii) fitting a local model to the se-
lected neighbor data points. As the crystallization learning
and existing methods mainly differ in the first two steps, we
compare our method with the k-nearest neighbor (k-NN)
regression and the local linear regression in selecting the
neighbor data points. Our crystallization search of neighbor
data points is based on the Delaunay triangulation, which
is the geometric dual of the Voronoi diagram under the L2

norm. As a result, we use the Euclidean distance in k-NN
and the Gaussian kernel in the local linear regression.

To find the k nearest neighbor data points, the k-NN regres-
sion computes and sorts the Euclidean distances from the
target point z to all the data points in X. This process can be
visualized by the left panel of Figure 4, where a circle with
center z is shown. The radius keeps increasing until there
are k observed data points falling inside or on the circle,
which are returned as the k nearest neighbor points. Be-
cause only the Euclidean distance is considered, it is likely
that the directions from z to the k nearest neighbor points
are not uniformly distributed, especially when z is close to
the boundary of H(X) or jump points of the feature data

Crystallization Learning

Figure 4. Neighbor data points of the target point z selected by
the k-NN regression with k = 5, 10, 15, 20 (left panel) and the
crystallization learning with L = 0, 1, 2, 3 (right panel).

(a) Crystallization (b) k-NN (c) Local linear

Figure 5. Kernel density estimates of distributions of the directions
from the target point z to its neighbor data points using different
methods with different hyperparameter values. The arrow indicates
the direction from the target point z to the sample mean of X.

Figure 6. Paths of the (weighted) means of neighbor data points
by different methods as the value of the hyperparameter increases
under feature data density (4).

density. The same is true for the local linear regression,
where more weights are assigned in the direction toward the
sample mean. In contrast, the crystallization search iden-
tifies neighbor data points Vz,L by constructing Delaunay
simplices, whose volumes are adaptive to the density of
observed feature data. As a result, the distances from z to
neighbor data points in Vz,L are different for high-density
and low-density directions. This can be seen from Figure
4, where we generate x1, . . . , x100 ∈ R2 from the density
function,

f(x) ∝
2∏
j=1

{1 + 0.6 · sign(xj)} exp(−x2j/2), (4)

and use different methods to select the neighbor data points
of z = (0, 1)T. The density function f(x) is discontinuous
at z with higher density at its right-hand side than its left-
hand side. From the left panel of Figure 4, we can see that
for all values of k, k-NN identifies more neighbor points
at the right-hand side of z than the left-hand side. How-
ever, this is not the case for the crystallization learning as
exhibited in the right panel of Figure 4. As L increases,
the crystallization learning searches neighbor data points
uniformly in all directions, implying its adaptation to the
local geometric structure of the data. This can also be ob-
served in Figure 5, where kernel density estimates (KDEs)
of distributions of the directions from the target point z
to its neighbor data points are plotted. The neighbor data
points selected by k-NN and the weights assigned by the
local linear regression concentrate in the direction toward

Crystallization Learning

the sample mean of X, while KDEs of the crystallization
search are much closer to the uniform distribution. As a
result, the (weighted) means of neighbor data points under
the crystallization search are closer to the target point z than
existing methods as shown in Figure 6.

4. Asymptotic Theory
We first study the asymptotic geometric properties of the
Delaunay triangulation DT (X) under general distribution
of feature points and then prove the consistency of the crys-
tallization learning in estimating µ(·). All proofs are given
in the supplementary materials.

4.1. Asymptotic Geometric Properties

Let X be a set of n i.i.d. feature data points x1, . . . , xn ∈ Rd

from a density f(x), which is bounded away from zero and
infinity on Rd.

Lemma 1. For any target point z ∈ Rd, we have that
P(z ∈ H(X))→ 1, as n→∞.

By Lemma 1, the target point z falls inside H(X) with
asymptotic probability one, and thus we only need to con-
sider the inside-hull case.

Theorem 2. For any target point z ∈ H(X) and any ρ ∈
(0, 1), we have

T (z) = Op(n
−ρ/d),

where T (z) = max{‖xi − z‖2; xi ∈ Vz,L} is the maximal
L2 norm between z and its neighbor feature data points.

Theorem 2 implies that all the feature points of Vz,L con-
verge to z in probability.

4.2. Consistency

Theorem 3. Assume the data {(xi, yi) : i = 1, . . . , n} are
generated from model (1), where the conditional expectation
function µ(·) is differentiable on Rd. The estimated condi-
tional expectation function under crystallization learning,
µ̂(·), satisfies

E
{
µ̂(z)− µ(z)

}2 → Rmin, as n→∞,

for all z ∈ H(X) where Rmin = infg E{Y − g(x)}2 is the
minimal value of the L2 risk over all continuous functions
g : Rd → R.

5. Numerical Experiments
We conduct experiments on synthetic data under two dif-
ferent scenarios: (i) to illustrate the effectiveness of the
crystallization learning in estimating the conditional expec-
tation function µ(·); (ii) to evaluate the estimation accuracy

of our approach in comparison with existing nonparametric
regression methods, including the k-NN regression using
the Euclidean distance, local linear regression using Gaus-
sian kernel, multivariate kernel regression using Gaussian
kernel (Hein, 2009) and Gaussian process models; and (iii)
to validate the proposed data-driven procedure for selection
of the hyperparameter L. We also apply our method to real
data to investigate its empirical performance.

5.1. Synthetic Data

In the experiments on synthetic data, we consider two sce-
narios to investigate the performance of our crystallization
learning: (1) general internal points ofH(X), and (2) jump
points of the feature data density. For each scenario, we
simulate 100 training datasets {(xi, yi) : i = 1, . . . , n} and
randomly generate the corresponding sets of target points
{z1, . . . , z100} under different values of n and d. We use
the mean squared error (MSE) under the methodM,

MSEM =
1

100

100∑
k=1

{µ̂M(zk)− µ(zk)}2,

to evaluate the accuracy of the estimator µ̂M(·) at the target
points z1, . . . , z100 ∈ H(X).

Scenario 1 (General internal points): For each dataset,
x1, . . . , xn are independently sampled from the multivariate
normal distribution MVN(0, Id) with an identity covariance
matrix Id. The responses y1, . . . , yn are generated from an
additive model,

Y |x ∼ N

(
d∑
j=1

cjgj(xj), 1

)
, (5)

where x = (x1, . . . , xd)
T, c1, . . . , cd ∼ N(0, 1), gj(·) =∑10

l=1 bjlφ(·; νjl, σ2
jl), bjl ∼ N(0, 1), νjl ∼ N(0, 1),

σ2
jl ∼ Gamma(1, 1), and φ(·; νjl, σ2

jl) is the density of
a normal distribution N(νjl, σ

2
jl), for j = 1, . . . , d; l =

1, . . . , 10. For k = 1, . . . , 100, the target point zk is
generated as zk =

∑n
i=1 ωikxi, with (ω1k, . . . , ωnk) ∼

Dirichlet(1, . . . , 1).

Scenario 2 (Jump points of the feature data density):
For each dataset, x1, . . . , xn are sampled from the density,

f(x) = 2−d
d∏
j=1

(1 + 0.4 · sign(xj)) exp(−|xj |),

which has jumps at the point set {x ∈ Rd :
∏d
j=1 xj =

0}. Responses y1, . . . , yn are generated from the same
additive model in (5). For k = 1, . . . , 100, the target
point zk is generated as zk =

∑n
i=1 ωikxi ⊗ sk, where

(ω1k, . . . , ωnk) ∼ Dirichlet(1, . . . , 1), ⊗ is the element-
wise multiplication operator, sk = (sk1, . . . , skj)

T and
sk1, . . . , skj ∼ Bernoulli(0.7).

Crystallization Learning

Table 2. Averaged values of log(MSE) and standard deviations in parentheses using crystallization learning (CL) in comparison with
k-NN (k = 5, 10, k∗, where k∗ equals the size of Vz,L), local linear (LL) regression, kernel regression (KR) and Gaussian process (GP)
in estimating µ(·) under two scenarios, different sample sizes (n) and different dimensions of the feature space (d).

d n log(MSECL) log
(MSE5-NN

MSECL

)
log
(MSE10-NN

MSECL

)
log
(MSEk∗ -NN

MSECL

)
log
(MSELL

MSECL

)
log
(MSEKR

MSECL

)
log
(MSEGP

MSECL

)
Scenario 1 (General internal points)

5

200 -1.11(0.21) 0.23(0.09) 0.12(0.09) 0.33(0.11) 0.56(0.11) 0.57(0.11) 0.24(0.18)
500 -2.13(0.18) 0.55(0.13) 0.37(0.11) 0.45(0.13) 0.91(0.17) 0.94(0.17) 0.76(0.18)

1000 -2.04(0.18) 0.53(0.13) 0.42(0.13) 0.62(0.12) 1.18(0.19) 1.22(0.19) 0.41(0.20)
2000 -2.21(0.20) 0.48(0.14) 0.38(0.14) 0.59(0.16) 1.06(0.22) 1.08(0.21) 0.81(0.17)

10

200 -0.03(0.16) 0.28(0.09) 0.13(0.07) 0.14(0.08) 0.10(0.07) 0.12(0.07) -0.08(0.14)
500 0.01(0.21) 0.43(0.13) 0.31(0.10) 0.29(0.11) 0.47(0.12) 0.47(0.12) -0.01(0.17)

1000 -0.50(0.22) 0.37(0.14) 0.30(0.12) 0.43(0.10) 0.54(0.12) 0.53(0.12) -0.09(0.21)
2000 -0.67(0.20) 0.42(0.13) 0.33(0.12) 0.51(0.11) 0.59(0.16) 0.60(0.16) 0.10(0.14)

20

200 1.46(0.14) 0.14(0.08) -0.02(0.06) -0.01(0.06) -0.02(0.03) -0.04(0.06) 0.17(0.15)
500 1.09(0.15) 0.25(0.10) 0.11(0.07) -0.01(0.07) -0.07(0.06) -0.03(0.06) -0.18(0.16)

1000 0.92(0.18) 0.48(0.11) 0.36(0.10) 0.00(0.11) -0.10(0.08) -0.02(0.08) 0.22(0.18)
2000 0.73(0.22) 0.24(0.15) 0.24(0.12) 0.06(0.11) 0.18(0.11) 0.14(0.11) 0.15(0.19)

50
500 2.47(0.14) 0.08(0.09) -0.02(0.07) 0.02(0.05) -0.01(0.03) -0.08(0.11) 0.06(0.19)

1000 2.32(0.17) 0.08(0.12) -0.02(0.10) 0.04(0.06) -0.03(0.03) -0.13(0.12) -0.22(0.18)
2000 2.12(0.17) 0.17(0.13) 0.18(0.10) -0.01(0.06) 0.02(0.04) 0.00(0.11) -0.08(0.19)

Scenario 2 (Jump points of the feature data density)

5

200 -0.72(0.17) 0.34(0.05) 0.33(0.04) 0.51(0.06) 0.60(0.07) 0.70(0.07) 0.32(0.10)
500 -1.46(0.15) 0.42(0.05) 0.31(0.05) 0.44(0.06) 0.92(0.09) 1.03(0.09) 0.59(0.11)

1000 -1.94(0.13) 0.48(0.06) 0.21(0.05) 0.33(0.07) 0.99(0.10) 1.11(0.10) 0.92(0.11)
2000 -1.87(0.17) 0.46(0.05) 0.26(0.05) 0.33(0.06) 1.43(0.11) 1.53(0.11) 1.10(0.11)

10

200 0.59(0.12) 0.08(0.05) 0.03(0.04) 0.17(0.04) 0.09(0.03) 0.13(0.03) 0.14(0.09)
500 0.44(0.14) 0.18(0.04) 0.08(0.04) 0.05(0.04) 0.09(0.04) 0.15(0.04) -0.07(0.08)

1000 0.27(0.11) 0.18(0.05) 0.11(0.04) 0.18(0.04) 0.29(0.05) 0.38(0.05) -0.11(0.07)
2000 0.02(0.13) 0.23(0.04) 0.11(0.04) 0.17(0.04) 0.43(0.05) 0.49(0.05) -0.12(0.07)

20

200 1.92(0.12) 0.08(0.04) 0.03(0.03) 0.02(0.02) -0.01(0.01) -0.04(0.03) 0.04(0.07)
500 1.77(0.10) 0.14(0.05) 0.01(0.03) -0.02(0.03) -0.01(0.04) -0.02(0.02) -0.07(0.07)

1000 1.68(0.13) 0.08(0.05) 0.02(0.03) -0.05(0.03) -0.04(0.02) -0.03(0.03) -0.09(0.06)
2000 1.50(0.12) 0.11(0.05) 0.06(0.03) 0.08(0.03) 0.02(0.02) 0.09(0.03) -0.11(0.07)

50
500 2.85(0.09) 0.16(0.06) 0.05(0.04) -0.01(0.04) 0.09(0.03) 0.14(0.06) -0.04(0.08)

1000 2.90(0.09) 0.20(0.05) 0.08(0.04) -0.03(0.02) 0.03(0.02) 0.19(0.06) -0.10(0.07)
2000 2.82(0.10) 0.15(0.04) 0.08(0.03) -0.01(0.01) -0.01(0.01) 0.10(0.04) -0.12(0.07)

In both scenarios, we apply the crystallization learning and
existing methods to estimate µ(z) =

∑d
j=1 cjgj(zj) at the

target points z1, . . . , z100. We implement the crystallization
learning withL = 3 for d = 5, 10 andL = 2 for d = 20, 50,
and obtain µ̂(z1), . . . , µ̂(z100). We implement the k-NN
regression with k = 5, 10, k∗, where k∗ equals the size of
Vz,L, and the local linear regression and kernel regression
with bandwidth h = 1.

Table 2 presents the estimation results averaged over 100
simulations under two scenarios with different values of
n and d. For each d, the estimation accuracy of the crys-
tallization learning improves as the sample size increases,
indicating its consistency in estimating µ(·) in the convex
hull H(X). For lower dimensional cases (d = 5, 10), the

crystallization learning generally outperforms the existing
methods, demonstrating that our approach is more efficient.
For the higher dimensional cases (d = 20, 50), although
our method cannot completely dominate the existing ones,
the performances of different approaches are comparable.
The results under Scenario 2 suggest the robustness of our
method to the variation or sudden change in the feature data
density. Overall, the crystallization learning performs well
and is stable in estimating µ(·) at general internal points of
H(X) and jump points of the feature data density.

5.2. Real Data Application

We apply the crystallization learning to several real datasets
from the UCI repository. The critical assessment of pro-

Crystallization Learning

(a) CASP dataset (b) Concrete dataset

(c) Parkinson’s motor UPDRS (d) Parkinson’s total UPDRS

Figure 7. Boxplots of log(MPSEM/MPSECL) corresponding to k-NN (k = 5, 10, k∗, where k∗ equals the size of Vz,L), local linear (LL)
regression, kernel regression (KR) and Gaussian process (GP) in estimating µ(·) under different datasets and sizes of the training set (n).

tein structure prediction (CASP) dataset2 (Betancourt &
Skolnick, 2001) contains experimental records on protein
structure prediction. The CASP dataset includes 45730
records of 9 features, where the response is the root mean
squared deviation (RMSD) of the residues. The Concrete
dataset3 (Yeh, 1998) consists of 1030 experimental records
of concrete compressive strength measurement. We use the
content of 7 concrete ingredients and the age of a concrete
sample to predict its compressive strength. Parkinson’s tele-
monitoring dataset4 (Tsanas et al., 2010) is composed of
5875 voice recordings of 16 biomedical voice measures
from 42 patients with early-stage Parkinson’s disease in a
six-month trial. We use these 16 biomedical voice measures

2https://archive.ics.uci.edu/ml/datasets/Physicochemical
+Properties+of+Protein+Tertiary+Structure

3https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive
+Strength

4https://archive.ics.uci.edu/ml/datasets/Parkinsons

to predict the motor and total UPDRS (unified Parkinson’s
disease rating scale) scores.

For each dataset, we take 100 bootstrap samples without
replacement of size n (n = 200, 500, 1000 or 2000) for
training and 100 bootstrap samples of size 100 for testing.
To eliminate the impact of feature correlations and scales,
we standardize the principal components of features in the
training set and take them as the feature points x1, . . . , xn.
The same transformation is applied to the features in the
testing set to obtain the target points z1, . . . , z100. We take
L = 3 for crystallization learning, and implement the k-NN
regression with k = 5, 10, k∗, where k∗ equals the size of
Vz,L, and the local linear regression and kernel regression
with bandwidth h = 1. Based on the testing set, we quantify
the performance of the methodM by the mean predictive

Crystallization Learning

squared error (MPSE),

MPSEM =
1

100

100∑
k=1

{µ̂M(zk)− yk}2,

where yk’s are responses corresponding to zk’s.

Figure 7 shows the comparison results averaged over 100
bootstrap samples between our method and existing ones
under different datasets and sizes of the training set (n). It is
clear that as n increases, the advantage of the crystallization
learning over the existing methods amplifies. Overall, the
crystallization learning dominates all the existing methods
in most of the cases.

5.3. Selection of L

To examine the data-driven selection procedure for L pro-
posed in Section 2.4, we conduct experiments under Sce-
nario 1 of Section 5.1. With candidate values L = 1, . . . , 8
and d = 5, we simulate 100 training datasets with sample
sizes n = 200, 500, 1000, 2000 respectively and generate
the corresponding sets of target points.

Figure 8 shows the estimation results of our method av-
eraged over 100 simulations under different sample sizes,
when using different candidate values of L and the selected
L̃. It is clear that as the sample size n increases, the optimal
value of L, which results in the smallest averaged value of
log(MSEL), increases. This is reasonable because a larger
n would lead to smaller volumes of simplices in NL(z) and
thus a larger L is needed for more accurate estimation. In
addition, the averaged value of log(MSEL̃) is closer to the
smallest averaged value of log(MSEL) when n is larger,
suggesting the effectiveness of our LOO-CV procedure in
improving the estimation accuracy.

6. Conclusions
The Delaunay triangulation is a powerful tool to partition the
feature space in a data-driven way, which has the least rough-
ness for smooth surface reconstruction. We incorporate the
Delaunay triangulation into the framework of nonparametric
regression and develop the crystallization learning proce-
dure. Without the need to triangulate the entire feature space
which becomes infeasible for high-dimensional cases, our
method conducts the Delaunay triangulation locally at each
specific target point like crystal growth. The conditional ex-
pectation µ(z) at the target point z ∈ H(X) is estimated by
fitting a local linear model to the data points of the Delaunay
simplices identified by the crystallization search. Compared
with existing nonparametric regression methods, our method
is more adaptive to the local geometric structure of the data,
which selects the neighbor data points uniformly in all di-
rections and their weighted mean is closer to the target point
z. Both theoretical studies and numerical experiments show

(a) n = 200 (b) n = 500

(c) n = 1000 (d) n = 2000

Figure 8. Averaged values of log(MSEL) − log(MSE) (L =
1, . . . , 8) and log(MSEL̃) − log(MSE) under different sample
sizes (n), where MSEL is the MSE using the hyperparameter L
and log(MSE) =

∑8
L=1 log(MSEL)/8.

that the crystallization learning is consistent in estimating
µ(·) and it generally outperforms the existing methods.

Given that the crystallization learning is a local approach,
it is possible to combine it with the uniform design and
develop a global version of crystallization learning in a hier-
archical way. As our method searches Nz,L in a determinis-
tic way, we can also develop the stochastic crystallization
search to reduce the boundary effect on the estimated condi-
tional expectation function µ̂(·). Other possible extensions
include extrapolation of µ(z) at z /∈ H(X) with the Möbius
transformation (Zhou et al., 2019), regression problems in
other metric spaces (e.g., manifold regression and structured
output) as discussed in Hein (2009) and online regression
problems (Kuzborskij & Cesa-Bianchi, 2017).

Acknowledgement
We thank the four anonymous reviewers for insightful sug-
gestions that have significantly improved the paper. This re-
search was supported by funding from the Research Grants
Council of Hong Kong (17308420) and TCL Corporate
Research (Hong Kong).

Crystallization Learning

References
Altman, N. S. An introduction to kernel and nearest-

neighbor nonparametric regression. The American Statis-
tician, 46(3):175–185, 1992.

Benedetti, J. K. On the nonparametric estimation of regres-
sion functions. Journal of the Royal Statistical Society:
Series B (Methodological), 39(2):248–253, 1977.

Betancourt, M. R. and Skolnick, J. Universal similarity
measure for comparing protein structures. Biopolymers,
59(5):305–309, 2001.

Chang, T. H., Watson, L. T., Lux, T. C. H., Bernard, J., Li, B.,
Xu, L., Back, G., Butt, A. R., Cameron, K. W., and Hong,
Y. Predicting system performance by interpolation using a
high-dimensional Delaunay triangulation. In Proceedings
of the High Performance Computing Symposium, HPC
’18, San Diego, CA, USA, 2018a. Society for Computer
Simulation International.

Chang, T. H., Watson, L. T., Lux, T. C. H., Li, B., Xu, L.,
Butt, A. R., Cameron, K. W., and Hong, Y. A polynomial
time algorithm for multivariate interpolation in arbitrary
dimension via the Delaunay triangulation. In Proceedings
of the ACMSE 2018 Conference on - ACMSE 18. ACM
Press, 2018b.

Chang, T. H., Watson, L. T., Lux, T. C. H., Butt, A. R.,
Cameron, K. W., and Hong, Y. Algorithm 1012: DE-
LAUNAYSPARSE: Interpolation via a sparse subset of
the Delaunay triangulation in medium to high dimen-
sions. ACM Transactions on Mathematical Software, 46
(4):1–20, 2020.

Cleveland, W. S. Robust locally weighted regression and
smoothing scatterplots. Journal of the American Statisti-
cal Association, 74(368):829–836, 1979.

Cleveland, W. S. and Devlin, S. J. Locally weighted regres-
sion: an approach to regression analysis by local fitting.
Journal of the American Statistical Association, 83(403):
596–610, 1988.

Cover, T. and Hart, P. Nearest neighbor pattern classification.
IEEE Transactions on Information Theory, 13(1):21–27,
1967.

de Berg, M., Cheong, O., van Kreveld, M., and Overmars,
M. Delaunay triangulations. In Computational Geometry,
pp. 191–218. Springer Berlin Heidelberg, 2008.

Delaunay, B. Sur la sphère vide. Bulletin de l’Académie des
Sciences de l’URSS. Classe des sciences mathématiques
et na, 6:793–800, 1934.

Fan, J. and Gijbels, I. Local Polynomial Modelling and Its
Applications. Routledge, 2018.

Hardle, W. and Gasser, T. Robust non-parametric function
fitting. Journal of the Royal Statistical Society. Series B
(Methodological), 46(1):42–51, 1984.

Hein, M. Robust nonparametric regression with metric-
space valued output. In Advances in Neural Information
Processing Systems, volume 22. Curran Associates, Inc.,
2009.

Kuzborskij, I. and Cesa-Bianchi, N. Nonparametric online
regression while learning the metric. In Advances in Neu-
ral Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

Liu, Y. and Yin, G. The Delaunay triangulation learner and
its ensembles. Computational Statistics & Data Analysis,
152:107030, 2020.

Nadaraya, E. A. On estimating regression. Theory of Prob-
ability & Its Applications, 9(1):141–142, 1964.

Priestley, M. B. and Chao, M. T. Non-parametric function
fitting. Journal of the Royal Statistical Society. Series B
(Methodological), 34(3):385–392, 1972.

Sibson, R. Locally equiangular triangulations. The Com-
puter Journal, 21(3):243–245, 1978.

Stone, C. J. Consistent nonparametric regression. The
Annals of Statistics, 5(4):595–620, 1977.

Tsanas, A., Little, M., McSharry, P., and Ramig, L. Accurate
telemonitoring of Parkinson’s disease progression by non-
invasive speech tests. IEEE Transactions on Biomedical
Engineering, 57(4):884–893, 2010.

Watson, G. S. Smooth regression analysis. Sankhyā: The
Indian Journal of Statistics, Series A (1961-2002), 26(4):
359–372, 1964.

Yeh, I.-C. Modeling of strength of high-performance con-
crete using artificial neural networks. Cement and Con-
crete Research, 28(12):1797–1808, 1998.

Zhou, Z., Tan, S., Xu, Z., and Li, P. Möbius transformation
for fast inner product search on graph. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.,
2019.

