
AutoAttend: Automated Attention Representation Search

Chaoyu Guan 1 Xin Wang 1 Wenwu Zhu 1

A. Datasets and Baselines
This section describes in detail the datasets we use and
baselines we compare.

A.1. Natural Language Processing

A.1.1. DATASETS

Standford Sentiment Treebank (SST) This is a dataset
published by Standford NLP library for sentiment analysis.
All sentences are movie reviews from rottentomatoes.
com together with its sentence structure and fine-grained
sentiment label on each sub-structure. However, in this
paper, we do not use sentence structure in our model
to stay consistent with other datasets we use. There
are two version of SST dataset: full version and bi-
nary version. The full version includes 5 level senti-
ments, while the binary verion has only positive and nega-
tive sentiments. See https://nlp.stanford.edu/
sentiment/index.html for the detailed information.

AG News (AG) AG news corpus are collected by
a news dataset collected by an academic news
search engine ComeToMyHead. The corpus web-
site is http://www.di.unipi.it/˜gulli/
AG_corpus_of_news_articles.html. Then,
Zhang et al. (2015) construct a four-class news
topic classification dataset from it for the use of text
classification by choosing the four largest topics in
the original dataset. The dataset can be found at
https://github.com/mhjabreel/CharCnn_
Keras/tree/master/data/ag_news_csv.

DBPedia Ontology (DBP) This dataset is collected by
Zhang et al. (2015) from the structural database DB-
Pedia constructed on Wikipedia, among which, 14 non-
overlapping ontology classes are chosen to form the docu-
ment classification DBPedia dataset.

Yelp Reviews (YELP) This dataset is collected by Zhang
et al. (2015) from Yelp Dataset Challenge in 2015. The full

1Tsinghua University. Correspondence to: Xin
Wang <xin wang@tsinghua.edu.cn>, Wenwu Zhu
<wwzhu@tsinghua.edu.cn>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

version aims at predicting the origin stars the user has given.
The binary version (YELP-B) is constructed by setting 1,2
as negative and 3,4 as positive.

Yahoo! Answers (YAHOO) This dataset is collected by
Zhang et al. (2015) from Yahoo! Answers Comprehensive
Questions and Answers version 1.0 dataset. The data from
the top-10 largest topics are selected to construct the Yahoo!
Answers dataset.

Amazon Reviews Binary (AMZ-B) This dataset is the bi-
nary version of Amazon Reviews dataset in Zhang et al.
(2015), which is collected from Stanford Network Analysis
Project, and is the largest text classification dataset used in
this paper.

In this paper, the SST dataset is obtained and proposed
through the same procedure in TextNAS (Wang et al.,
2020)1. The max length is set to 64 and all the sentence
spans are used to train the model. For the rest of datasets
we use, we utilize torchtext2 to obtain the datasets, and man-
ually keep a vocabulary 50000 and set the rest of words to
unk token.

A.1.2. BASELINES

For text classification baselines, we only compare with those
who are 1) word-level model 2) do not rely on structure
information and 3) do not use extra external data except
GloVe (Pennington et al., 2014) for a fair comparison.

For hand-crafted baselines, we select current state-of-the-art
hand-crafted baselines Gumbel-LSTM (Choi et al., 2018),
CAS-LSTM (Choi et al., 2019) for SST dataset, and DNC
(Le et al., 2019), DAGRN (Liu et al., 2020), Global-local
encoders (Niu et al., 2019) for the rest of datasets. We report
their scores borrowing from the corresponding papers, and
leave the unreported scores as - in the Table 4.

For searched baselines, we compare our AutoAttend frame-
work with previous state-of-the-art NAS models TextNAS
(Wang et al., 2020), where they construct a search space sim-
ilar to our baseline in Section 4.1.1 and leverage intra-layer
self-attention as a primitive operation. Various baseline

1https://github.com/microsoft/nni/tree/
master/examples/nas/textnas

2https://pytorch.org/text/stable/datasets.
html

rottentomatoes.com
rottentomatoes.com
https://nlp.stanford.edu/sentiment/index.html
https://nlp.stanford.edu/sentiment/index.html
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://github.com/mhjabreel/CharCnn_Keras/tree/master/data/ag_news_csv
https://github.com/mhjabreel/CharCnn_Keras/tree/master/data/ag_news_csv
https://github.com/microsoft/nni/tree/master/examples/nas/textnas
https://github.com/microsoft/nni/tree/master/examples/nas/textnas
https://pytorch.org/text/stable/datasets.html
https://pytorch.org/text/stable/datasets.html


AutoAttend: Automated Attention Representation Search

search algorithms are also performed in the TextNAS search
space, including DARTS (Liu et al., 2019), SMASH (Brock
et al., 2018), One-Shot (Bender et al., 2018), and random
search (Li & Talwalkar, 2019). The performance scores are
borrowed directly from TextNAS (Wang et al., 2020).

A.2. Graph Representation Learning

A.2.1. DATASETS

Citation Network Datasets The transductive datasets we
use are collected and splitted by Yang et al. (2016). There
are three datasets in total, namely Cora, Citeseer, and
Pubmed. Each node represents a document, and their bag-
of-words features are collected as their node features. When
two documents have citation relationship, the two nodes in
graph are connected together. The tasks are classifying the
documents on each nodes.

Protein-protein interaction networks (PPI) The induc-
tive dataset we use are collected by ZitNik et al. (2017). The
PPI dataset contains multiple graphs that represent different
human tissues. The Gene Ontology are used as labels for
each nodes for classification.

For the use of datasets above, we directly those provided
by PyTorch Geometric3. The data split is used following
the original settings in the corresponding datasets and is the
same for all baselines and our works.

A.2.2. BASELINES

For hand-crafted baselines, we select popular and state-
of-the-art models GCN (Kipf & Welling, 2017), (Velick-
ovic et al., 2018), arma (Bianchi et al., 2019), and appnp
(Klicpera et al., 2019). All the scores of baselines are re-
runed by ourselves using implementations provided by Py-
Torch Geometric4.

For searched baselines, we compare our AutoAttend to cur-
rent state-of-the-art NAS baselines GraphNAS (Gao et al.,
2020) and AGNN (Zhou et al., 2019). We notice that for the
codebase5 given officially by GraphNAS, there exists test
data leakage in their implementation of re-train. Thus, we
fix the leakage and rerun their re-train codes directly, and
report the revised scores in Table 5. For AGNN, there are
no publicly available codes. We directly adopt the scores
they report in their paper to the Table 5.

3https://pytorch-geometric.readthedocs.
io/en/latest/modules/datasets.html

4https://github.com/rusty1s/pytorch_
geometric/tree/master/examples

5https://github.com/GraphNAS/GraphNAS

B. Primitive Operation Pool
This section describes in detail the primitive operation pool
we use for NLP and GRL.

B.1. Natural Language Processing

Conv Convolution layers borrowed from Convolutional
Neural Network (LeCun et al., 1989). We only perform
convolution on sequence direction (known as 1-D Convolu-
tion6), with Layer Normalization (Ba et al., 2016) and ReLU
activations applied before and after convolutions. In this
paper, we adopt Conv1 and Conv3 as selectable operations.

Max Pooling Similar to convolution layers without the acti-
vation functions, but replace the convolutional kernel with a
max-pooling kernel, which only select the max value as out-
puts when ”convolution” on given receptive fields (known
as 1-D MaxPooling7). The kernel size is kept as 3 in our
search space.

Gated Recurrent Unit (GRU) (Cho et al., 2014) A vari-
ance of LSTM, but with fewer gates, which leads to higher
computation efficiency while mantaining the same effective-
ness. We adopt a bi-directional form of GRU. Same as Conv
and Max Pooling, we also add Layer Normalization before
GRU cell.

Note that we do not include more complicated operations
like Conv5, Conv7, Mean-Pooling, and Intra-layer Self-
Attention in TextNAS (Wang et al., 2020), since we find in
our priliminary experiments that, these operations are redun-
dant when searched under the space settings of AutoAttend.

B.2. Graph Representation Learning

The description of operations are already detailed in the
Section 5.2.1 and we only add some complementary infor-
mation here. For dataset Cora and PPI, we find that the
space settings described in Section 5.2.1 are not very suit-
able. Therefore, we borrow the primitive operation pool of
micro search space given in GraphNAS (Gao et al., 2020)
as building blocks directly in our macro search space.

Specifically, we use the following operations as our macro
search space primitive operation pool:

GCN The Graph Convolutional Network layer borrowed
from Kipf & Welling (2017).

SAGE-MEAN The Graph Sage network layer borrowed
from Hamilton et al. (2017).

6https://pytorch.org/docs/stable/
generated/torch.nn.Conv1d.html?highlight=
conv1d#torch.nn.Conv1d

7https://pytorch.org/docs/stable/
generated/torch.nn.MaxPool1d.html?
highlight=maxpool1d#torch.nn.MaxPool1d

https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
https://github.com/rusty1s/pytorch_geometric/tree/master/examples
https://github.com/rusty1s/pytorch_geometric/tree/master/examples
https://github.com/GraphNAS/GraphNAS
https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html?highlight=conv1d#torch.nn.Conv1d
https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html?highlight=conv1d#torch.nn.Conv1d
https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html?highlight=conv1d#torch.nn.Conv1d
https://pytorch.org/docs/stable/generated/torch.nn.MaxPool1d.html?highlight=maxpool1d#torch.nn.MaxPool1d
https://pytorch.org/docs/stable/generated/torch.nn.MaxPool1d.html?highlight=maxpool1d#torch.nn.MaxPool1d
https://pytorch.org/docs/stable/generated/torch.nn.MaxPool1d.html?highlight=maxpool1d#torch.nn.MaxPool1d


AutoAttend: Automated Attention Representation Search

Table A1. AutoAttend text classification transfer setting

DATASET BATCH SIZE MAX LENGTH LR WINDOW SIZE STRIDE HIDDEN SIZE DROPOUT

AG 128 256 0.0005 - - 256 0.1
DBP 128 256 0.0005 - - 256 0.1
YELP-B 128 512 0.0005 - - 64 0.1
YELP 128 512 0.0005 - - 64 0.1
YAHOO 128 1024 0.0005 64 32 32 0.1
AMZ-B 128 256 0.0005 - - 128 0.1

GAT The Graph Attention Network layer borrowed from
Velickovic et al. (2018). We choose head number 16, 8, 4,
2, 1 to give five different primitive operations.

Linear Linear tranform layer performed on node features.

ARMA The ARMA graph convolutional layer borrowed
from Bianchi et al. (Bianchi et al., 2019).

CHEB The chebyshev spectral graph convolutional layer
borrowed from Defferrard et al. (2016).

SGC The simple graph convolutional layer borrowed from
Wu et al. (2019).

For the implementations of all layers above, we directly use
the one provided by PyTorch Geometric8.

C. Transfer Settings
For a fair comparison, we basically follow the settings pro-
vided by TextNAS (Wang et al., 2020) to transfer our text
encoder architecture on other text classification datasets. For
all datasets, we only keep 50000 max vocabularies to reduce
the space complexity. We also use slide window tricks to
solve optimization problems in long sentences: a window
of fixed size is slided over sentences with fixed strides, with
each window outputting a sentence vector through our sen-
tence encoder. Then, global max pooling is performed to
derive the final sentence representation. All the detailed
transfer information are given in Table A1.

References
Ba, L. J., Kiros, J. R., and Hinton, G. E. Layer normalization.

CoRR, abs/1607.06450, 2016.

Bender, G., Kindermans, P., Zoph, B., Vasudevan, V., and
Le, Q. V. Understanding and simplifying one-shot archi-
tecture search. In ICML, volume 80 of Proceedings of
Machine Learning Research, pp. 549–558, 2018.

Bianchi, F. M., Grattarola, D., Livi, L., and Alippi, C. Graph

8https://pytorch-geometric.readthedocs.
io/en/latest/modules/nn.html

neural networks with convolutional ARMA filters. CoRR,
abs/1901.01343, 2019.

Brock, A., Lim, T., Ritchie, J. M., and Weston, N. SMASH:
one-shot model architecture search through hypernet-
works. In ICLR, 2018.

Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y.
On the properties of neural machine translation: Encoder-
decoder approaches. In SSST@EMNLP, pp. 103–111,
2014.

Choi, J., Yoo, K. M., and Lee, S. Learning to compose
task-specific tree structures. In AAAI, pp. 5094–5101,
2018.

Choi, J., Kim, T., and Lee, S. Cell-aware stacked lstms
for modeling sentences. In ACML, volume 101 of Pro-
ceedings of Machine Learning Research, pp. 1172–1187,
2019.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. In NeurIPS, pp. 3837–3845, 2016.

Gao, Y., Yang, H., Zhang, P., Zhou, C., and Hu, Y. Graph
neural architecture search. In IJCAI, pp. 1403–1409,
2020.

Hamilton, W. L., Ying, Z., and Leskovec, J. Inductive
representation learning on large graphs. In NeurIPS, pp.
1024–1034, 2017.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR. OpenRe-
view.net, 2017.

Klicpera, J., Bojchevski, A., and Günnemann, S. Predict
then propagate: Graph neural networks meet personalized
pagerank. In ICLR. OpenReview.net, 2019.

Le, H., Tran, T., and Venkatesh, S. Learning to remember
more with less memorization. In ICLR, 2019.

LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D.,
Howard, R. E., Hubbard, W. E., and Jackel, L. D. Back-
propagation applied to handwritten zip code recognition.
Neural Comput., 1(4):541–551, 1989.

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html


AutoAttend: Automated Attention Representation Search

Li, L. and Talwalkar, A. Random search and reproducibility
for neural architecture search. In UAI, pp. 367–377, 2019.

Liu, H., Simonyan, K., and Yang, Y. DARTS: differentiable
architecture search. In ICLR. OpenReview.net, 2019.

Liu, Y., Meng, F., Chen, Y., Xu, J., and Zhou, J. Depth-
adaptive graph recurrent network for text classification.
CoRR, abs/2003.00166, 2020.

Niu, G., Xu, H., He, B., Xiao, X., Wu, H., and Gao, S.
Enhancing local feature extraction with global represen-
tation for neural text classification. In EMNLP, pp. 496–
506, 2019.

Pennington, J., Socher, R., and Manning, C. D. Glove:
Global vectors for word representation. In EMNLP, pp.
1532–1543, 2014.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph attention networks. In ICLR.
OpenReview.net, 2018.

Wang, Y., Yang, Y., Chen, Y., Bai, J., Zhang, C., Su, G., Kou,
X., Tong, Y., Yang, M., and Zhou, L. Textnas: A neural
architecture search space tailored for text representation.
In AAAI, pp. 9242–9249, 2020.

Wu, F., Jr., A. H. S., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Q. Simplifying graph convolutional networks.
In ICML, volume 97 of Proceedings of Machine Learning
Research, pp. 6861–6871. PMLR, 2019.

Yang, Z., Cohen, W. W., and Salakhutdinov, R. Revisiting
semi-supervised learning with graph embeddings. In
ICML, volume 48 of JMLR Workshop and Conference
Proceedings, pp. 40–48. JMLR.org, 2016.

Zhang, X., Zhao, J. J., and LeCun, Y. Character-level con-
volutional networks for text classification. In NeurIPS,
pp. 649–657, 2015.

Zhou, K., Song, Q., Huang, X., and Hu, X. Auto-gnn: Neu-
ral architecture search of graph neural networks. CoRR,
abs/1909.03184, 2019.

Zitnik, M. and Leskovec, J. Predicting multicellular function
through multi-layer tissue networks. Bioinform., 33(14):
i190–i198, 2017.


