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Abstract

Self-attention mechanisms have been widely
adopted in many machine learning areas, in-
cluding Natural Language Processing (NLP) and
Graph Representation Learning (GRL), etc. How-
ever, existing works heavily rely on hand-crafted
design to obtain customized attention mecha-
nisms. In this paper, we automate Key, Query
and Value representation design, which is one
of the most important steps to obtain effec-
tive self-attentions. We propose an automated
self-attention representation model, AutoAttend,
which can automatically search powerful attention
representations for downstream tasks leveraging
Neural Architecture Search (NAS). In particular,
we design a tailored search space for attention
representation automation, which is flexible to
produce effective attention representation designs.
Based on the design prior obtained from atten-
tion representations in previous works, we further
regularize our search space to reduce the space
complexity without the loss of expressivity. More-
over, we propose a novel context-aware parameter
sharing mechanism considering special character-
istics of each sub-architecture to provide more
accurate architecture estimations when conduct-
ing parameter sharing in our tailored search space.
Experiments show the superiority of our proposed
AutoAttend model over previous state-of-the-arts
on eight text classification tasks in NLP and four
node classification tasks in GRL.

1. Introduction
Self-attention mechanisms have become more and more
popular in the design of Deep Neural Networks (DNNs)
to achieve good performance. With the ability to help
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Figure 1. An illustration of attention representation design in self-
attention. (a) Traditional hand-crafted attention representation,
where the computation paths are manually designed to derive Key,
Query, and Value. (b) Our automated attention representation,
where the computation paths from the input to Key, Query and
Value are automatically searched leveraging NAS.

deep models selectively focus on useful information, self-
attention has been proved powerful and widely used in all
kinds of research directions, including Natural Language
Processing (NLP) (Mittal et al., 2020; Zhou et al., 2020),
Graph Representation Learning (GRL) (Sankar et al., 2020;
Zhang et al., 2020), Computer Vision (CV) (Li et al., 2020;
Sun et al., 2020), etc.

Typical self-attention can be regarded as extracting useful in-
formation in Value according to Key and Query, where Key,
Query, and Value are different representations of the input
data. Proper self-attention representations (Key, Query, and
Value) can greatly boost the model performance (Daniluk
et al., 2017; Niu et al., 2019; Dai et al., 2019). However, as
shown in Figure 1(a), all previous works rely solely on man-
ual design to obtain self-attention representations, where
various functional components such as CNN, RNN, GAT,
and GCN are manually stacked or combined to derive Key,
Query, and Value from the input data (Lin et al., 2017;
Vaswani et al., 2017; Velickovic et al., 2018). These hand-
crafted representation designs cost huge trail-and-error hu-
man labors to derive and are sub-optimal because of human
bias, thus making them hard to fit in real-world applications.

To solve this problem, we propose to automate self-attention
representation through neural architecture search (NAS) in
this paper (Figure 1(b)). However, directly applying the
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existing NAS frameworks to automate the attention rep-
resentation design has the following two challenges: (1)
How to obtain the most suitable search space? A proper
search space for attention representation should i) support
jointly searching for both attention representations and other
functional components to achieve global optimal results, ii)
flexible enough to cover most state-of-the-art (SOTA) atten-
tion representations and iii) have low complexity to ease the
search. (2) How to consider the special characteristics
of each sub-architecture in parameter sharing? In the
search space mentioned above, even the same set of param-
eters can have different functionalities when processing or
outputting tensors with different meanings (e.g., Key, Query,
Value, etc.). Directly applying the widely used parameter
sharing (Pham et al., 2018) without considering these spe-
cial characteristics may fail to provide reliable architecture
evaluations.

To address these challenges, we propose an automated at-
tention search approach, AutoAttend, to search for models
with the best attention representations. We treat DNN as a
set of connected layers, then reformulate attention represen-
tation as a source layer selection and an operation selection
process to construct a flexible, expressive and unified search
space tailored for self-attention. By utilizing the design prior
from previous hand-crafted attentions, we further regularize
the search space in order to reduce the space complexity
without the loss of expressivity, where n is the number of
layers. We employ one-shot formulation (Bender et al.,
2018; Guo et al., 2020) to search for the best architectures
in the proposed search space, and develop a context-aware
parameter sharing mechanism to offer reliable architecture
evaluations. Such a mechanism can take characteristics of
each sub-architecture into account by sharing parameters
only when they have the same contexts. Particularly, we
define context to be the layer functionalities that one op-
eration connects with. We conduct extensive experiments
over several NLP and GRL tasks, which have been known
to benefit a lot from hand-crafted attention mechanisms
(Vaswani et al., 2017; Velickovic et al., 2018; Devlin et al.,
2019b). Specifically, we focus on text classification tasks
in NLP and transductive and inductive node classification
tasks in GRL. Experimental results show that our proposed
AutoAttend model outperforms or is on par with the pre-
vious SOTA models under the same experimental settings.
Ablation studies on our proposed attention layer and context-
aware parameter sharing mechanism also demonstrate their
effectiveness and necessity.

In summary, we make the following contributions:

• We propose an automated attention representation
model, AutoAttend, to search for the best self-
attention representation design, to the best of our

knowledge, for the first time1.
• We propose a tailored search space that supports jointly

searching for attention representations as well as other
functional components to achieve global optimal re-
sults with a low space complexity.

• We propose a context-aware parameter sharing mecha-
nism capable of providing reliable architecture evalua-
tions for parameter sharing in our tailored search space,
by taking special characteristics of each architecture
into consideration.

• Extensive experiments demonstrate the advantages of
our AutoAttend approach against state-of-the-art NAS
approaches over eight text classification tasks in NLP
and four node classification tasks on GRL.

We organize our paper as follows. We first review the related
work in Section 2. Then, we give the definition of attention
mechanism and neural architecture search, and formulate the
attention representation search problem definition in Section
3. The detailed AutoAttend framework, including attention
representation search space and algorithm design, is given in
Section 4. We present extensive comparisons with previous
state-of-the-art hand-crafted and searched architectures, and
ablate the AutoAttend framework in Section 5, and discuss
the conclusion and future work in Section 6.

2. Related Work
In this section, we review the related works on attention
representation design and neural architecture search.

2.1. Representation Design for Self-Attention

There are two main components in self-attention: attention
representation and attention computation. While the lat-
ter component receives heavier research interests recently
(Shaw et al., 2018; Dai et al., 2019; Kitaev et al., 2020),
the former is neglected in recent researches, which is as
important as the latter and is the main focus of this paper.

The concept of attention is firstly proposed in neural ma-
chine translation (Bahdanau et al., 2015) to align target and
source sentences when translating. Then, it is adopted and
widely applied as self-attention to model the intra-modal
relation of data (Lin et al., 2017; Vaswani et al., 2017; Dai
et al., 2019). Lin et al. (2017) propose to leverage a shared
LSTM layer to derive the attention representations. Daniluk
et al. (2017) further separate the Key and Value layer to
solve the optimization problems, which is then adopted by
Mino et al. (2017) for machine translation. Vaswani et al.
(2017) abandon the traditional recurrent structure and use
only the intra-layer self-attention as building blocks, which
is then widely used as a simple and portable attention repre-

1Code will be published at https://github.com/
THUMNLab/AutoAttend

https://github.com/THUMNLab/AutoAttend
https://github.com/THUMNLab/AutoAttend
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sentation design style in many areas (Velickovic et al., 2018;
Devlin et al., 2019a; Brown et al., 2020; Carion et al., 2020).
Niu et al. (2019) propose to use self-attention to fuse local
and global information for better sentence representation,
where hidden states from local encoder are used as Query to
attend on Key, Value from global encoder. Ma et al. (2019)
further propose to deeply fuse local and global information
by attending in both directions, where global hidden states
can also act as Query to attend on Key and Value from local
encoder.

Unlike previous methods that depend on human expert
knowledge, we propose the first automatic framework to
design self-attention representation leveraging NAS.

2.2. Neural Architecture Search

Neural architecture search (NAS) aims at searching for the
best architectures for given tasks and becomes more and
more popular in recent years (Zoph & Le, 2017; Pham et al.,
2018; Liu et al., 2019b; Mei et al., 2020). Various search
algorithms like Reinforcement Learning (Zoph & Le, 2017;
Pham et al., 2018), Evolutionary Algorithm (Zoph et al.,
2018; So et al., 2019; Guo et al., 2020), Gradient-based (Liu
et al., 2019b; Mei et al., 2020) and Bayesian Optimization
(Shi et al., 2020; Ru et al., 2020) are developed to tackle
the NAS problem. Together with various kinds of space
designs to search for a wide range of application domains
like CV (Liu et al., 2019a; Mei et al., 2020), NLP (So et al.,
2019; Wang et al., 2020b), GRL (Gao et al., 2020; Zhou
et al., 2019), etc. In this paper, we aim to automate the
self-attention representation using NAS.

Recently, some works (So et al., 2019; Gao et al., 2020;
Zhou et al., 2019; Wang et al., 2020b; Yu et al., 2020) also
utilize self-attention in their space design to search for Trans-
former or GNN like architectures, which is merely an appli-
cation of current hand-crafted intra-layer self-attention and
do not consider the attention representation design when
searching. There are also some works (Wang et al., 2020a;
Ma et al., 2020) focusing on how to compute attention given
Key, Query, and Value, which can be seen as automating
attention computation in Figure 1, thus are orthogonal to
our work.

The search efficiency of NAS also receives huge boosts by
the introduction of supernet and parameter-sharing (Pham
et al., 2018; Liu et al., 2019b; Guo et al., 2020). These
kinds of techniques speed up the training process by shar-
ing parameters at the same places to avoid training each
sub-architecture from scratch. However, parameter-sharing
tends to eliminate the difference of operations (Chu et al.,
2019) thus hard to model the special characteristics of archi-
tectures in our attention representation search space. In this
paper, we propose context-aware parameter sharing to share
parameters only when their contexts are the same.

3. Problem Formulation and Preliminary
3.1. Self-Attention Formulation

As shown in Figure 1, given input data S with n elements,
the self-attention mechanism can be formulated as follows:

Q,K,V = NNQ(S), NNK(S), NNV (S), (1)
AttnQ→K = Sim(Q,K),

Out = AttnQ→KV, (2)

where NNQ, NNK , and NNV are sub neural networks
that derive the representation of Query, Key and Value
Q,K,V ∈ Rn×d from S. The normalized attention score
AttnQ→K ∈ Rn×n is calculated by some similarity met-
ric defined by Sim. Every column in AttnQ→K stands
for the normalized similarity between one query vector
qi , Q[i] ∈ Rd and the whole K. The output of attention
Out is derived by matrix production of AttnQ→K and V.

This paper aims to automate the attention representation in
Equation 1 (i.e., NNQ, NNK , NNV ), together with other
functional components of networks to reach the global opti-
mum.

3.2. NAS Preliminary

NAS aims at searching for the best architecture to model
the downstream tasks. It can be formulated as a bi-level
optimization problem (Liu et al., 2019b):

a∗ = argmina∈A Lval(a,w
∗(a)),

s.t. w∗(a) = argminw∈W(a) Ltrain(a,w),
(3)

where A stands for the search space, W(a) stands for the
parameter space given one fixed architecture a, w∗(a) is
the best parameters given architecture a, and a∗ is the best
architectures for the task and is the output of NAS.

There are two key components in the NAS framework:
search space A that defines the scope of possible archi-
tectures, and search algorithm that solves Equation 3.

4. Automated Attention Representation
Search

In this section, we will explain in detail our AutoAttend
framework that automates self-attention representation. The
tailored search space is introduced in Section 4.1. The
search algorithm is detailed in Section 4.2.

4.1. Attention Representation Search Space

To derive proper attention representation, one must search
for attention representation and other components of DNNs
altogether to reach the global optimum. Thus our search
space contains both the original search space of NAS and
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Figure 2. AutoAttend framework key components. (a) Two kinds of layers in our search space. The baseline addition layer simply
adds two connections, while the proposed attention layer perform attention aggregation, which is the key to automate the attention
representation search. (b) An example of architecture in our search space with three constraints. The bold arrow stands for the skeleton
connection in Constraint 1. 1©, 2© and 3© stands for Constraint 1, 2, 3 respectively. (c) Context-aware parameter sharing. Only the
layer 2,4, and 6 and part of connections in two different architectures are shown. Only the connections at the same place with the same
operation choice and the same context can share their weights (the connection from layer 2 to layer 6 in this example).

attention representation. We describe the original NAS
search space as a baseline in Section 4.1.1, then formulate
the attention layer in Section 4.1.2. Finally, prior constraints
are introduced in Section 4.1.3 to reduce the complexity and
redundancy without the loss of expressivity.

4.1.1. BASELINE

We first describe the baseline search space without auto-
mated attention representation. We focus on macro search
space design for its ability to capture global information
flow in architectures and fitness for NLP and GRL (Wang
et al., 2020b; Gao et al., 2020; Zhou et al., 2019).

As shown in Figure 2(b). A modern deep neural model
can be described as a set of layers with optional connec-
tions between any two layers. Here connection represents
the information flow. One connection stands for a unary
transform operation that can be chosen from a predefined
primitive operation pool, which takes the feature map of
the source layer as input and output another feature map for
the use of the target layer. A layer, acting as an information
aggregator, simply adds all the received outputs from the
connections pointing to it, as shown in the upper of Figure
2(a). Following previous works (Zoph et al., 2018; Pham
et al., 2018; Liu et al., 2019b), we bound the number of
connections one layer can receive to two.

4.1.2. ATTENTION LAYER

Under the layer and connection view of DNN stated in the
last section, attention can be regarded as interacting features

among the same or different layers. Thus we reformulate
Equation 1 as source layer and operation selection processes:

Q,K,V = OQ(SQ), OK(SK), OV (SV ), (4)

where SQ, SK and SV stand for the chosen source layers
of K,Q,V. OQ, OK and OV are the selected unary op-
erations from the primitive operation pool. Therefore, we
automate attention representation design by introducing a
new type of aggregation layer called the attention layer.

The attention layer receives three input connections. The
input layers of these connections correspond to the source
layer SQ,SK ,SV , the operation choices of connections are
OQ, OK , OV and the outputs are the Q, K, and V. Then,
the attention layer performs attention computation following
Equation 2.

Therefore, building architecture can be described as a bunch
of choices. For each layer, we need to choose the layer
type and determine the source layers and operations of its
connections. Given layer number n and primitive operation
pool size b, the total number of architectures included in the
defined search space is

∏n
k=1(k2b2 + k3b3) ∈ O(n!4b3n).

4.1.3. CONSTRAINTS

The search space defined above is difficult for searching
and contains redundant, meaningless, or isomorphic archi-
tectures. We propose three main constraints to lower the
complexity without hurting the expressivity. As shown in
Figure 2(b).

Constraint 1 We first constrain the architecture to a chain
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by forcing each layer to have at least one connection to
its last layer ( 1© in Figure 2(b). The bold connection is
forced to exist). We call these kinds of connections skele-
tons because they are the main information flow of the chain
networks. For the addition layer, we simply bind the first
input connection to the last layer without the loss of general-
ity. For the attention layer, we bind the Query connection to
the last layer since Query in attention acts as references to
reorganize information in Key and Value, which is also the
common design in hand-crafted attentions (Vaswani et al.,
2017; Yu et al., 2020). Despite aggressive, Constraint 1 still
allows expressing most SOTA attention models. Besides,
this chain-like macro search space is also widely used in
previous NAS works (Guo et al., 2020; Fu et al., 2020).

Constraint 2 The second constraint binds the source layer
of Key and Value connections for the attention layer to be the
same ( 2© in Figure 2(b). The source layer of blue and yellow
connections are forced to be the same), i.e., SK = SV . This
is because Key and Value always act as memory in previous
works and should have similar semantic meanings (Niu et al.,
2019; Ma et al., 2019).

Constraint 3 We further constrain the choice of operations
for skeleton operations to be non-zero since a zero skeleton
tends to make all the following layers meaningless. Simi-
larly, the connections to an attention layer are also constraint
to be non-zero to avoid meaningless attention ( 3© in Figure
2(b), bold connections and blue, yellow connections should
be non-zero operations).

With the three constraints above, the number of searchable
architectures is reduced to

∏n
k=1(b(b− 1)k+ (b− 1)3k) ∈

O(n!2b3n), which relieves the search difficulty while still
maintains high expressivity to generate powerful SOTA
models.

4.2. Search Algorithm

4.2.1. ONE-SHOT FORMULATION

Directly solving the bi-level optimization problem in Equa-
tion 3 is highly resource exhausted because an architecture
needs fully trained from scratch to solve the inner optimiza-
tion problem. To make the search procedure more efficient,
we separate the bi-level optimization problem into two in-
dependent optimization problems following previous works
(Bender et al., 2018; Guo et al., 2020):

a∗ = argmina∈A Lval(a,w
∗), (5)

s.t. w∗ = argminw∈W Ea∼Γ(A)Ltrain(a,w), (6)

where Γ(A) is a prior architecture distribution of a ∈ A,
w is the weight of the supernet that contains all the archi-
tectures in the search space A. Therefore, a becomes a
sub-architecture of the supernet. All architectures share the
same set of parameters with the supernet, which greatly

reduces the time cost since optimizing the supernet is quite
faster than optimizing all the architectures from scratch.

4.2.2. CONTEXT-AWARE PARAMETER SHARING

However, directly sharing the parameters of the same opera-
tion at the same place like previous works fails to model the
special characteristics of architectures, which is especially
important in our case.

In our search space, the parameters of connections are highly
correlated with its contexts: the layer choices that these
connections are connected with. The meaning and way of
optimization for parameters of connections that connect to
the addition layer and the attention layer are quite different.
Thus, we propose context-aware parameter sharing to also
take the contexts of parameters as special characteristics of
sub-architecture into consideration.

The key idea is that only the connections within the same
contexts can share their parameters. In our search space, for
one connection in the supernet, there are 4 kinds of source-
target layer pairs: add - add, add - attn, attn -
add, attn - attn. In addition, if the target layer is
attn, there are three kinds of connections to distinguish
(for Query, Key, and Value, respectively). Therefore, there
are 8 kinds of contexts in total. For each connection in super-
net, we assign each of its context an independent parameter
to optimize them separately considering their specialties.
Although this will increase the total parameters of the su-
pernet to 8x of its origin, only a single sub-architecture is
sampled and optimized for every single optimization step,
whose number of parameters remains the same as origin.

For the optimization of supernet parameters in Equation
6. We use Mont-Carlo to estimate the expectation and use
Gradient Descent to find the optimal solution.

4.2.3. ARCHITECTURE SEARCH

After obtaining the parameters of the supernet, we then use
them as an evaluator to quickly evaluate given architectures.
Following Guo et al. (2020), we adopt evolutionary search
to solve the architecture optimization in Equation 5.

5. Experiments
In this section, we conduct extensive experiments and ab-
lation studies on natural language tasks and graph tasks
to demonstrate the effectiveness of the proposed attention
representation search and context-aware parameter sharing.

The tasks and datasets used in this paper are introduced in
Section 5.1. The implementation details are described in
Section 5.2. Experimental results and analysis are shown
in Section 5.3. The ablation studies on attention layer and
context definition are presented in Section 5.4.
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Table 1. Detailed information of natural language processing
datasets used in this paper.

DATASET #CLASS #TRAIN #VALID #TEST

SST 5 8,544 1,101 2,210
SST-B 2 6,920 872 1,821
AG 4 120,000 - 7,600
DBP 14 560,000 - 70,000
YELP-B 2 560,000 - 38,000
YELP 5 650,000 - 50,000
YAHOO 10 1,400,000 - 60,000
AMZ-B 2 3,600,000 - 400,000

Table 2. Detailed information of graph representation learning
datasets used in this paper.

DATASET #CLASS #FEATURE #NODE #EDGE

Transductive

CORA 7 1,433 2,708 5,429
CITESEER 6 3,703 3,327 4,732
PUBMED 3 500 19,717 44,338

Inductive

PPI 121 50 56,944 818,716

5.1. Tasks and Datasets

5.1.1. NATURAL LANGUAGE PROCESSING

One of the most popular application domains of self-
attention is NLP. We test our AutoAttend framework on
various text classification tasks, including sentiment analy-
sis, document classification, question answering, etc.

We search for the best sentence encoder on the SST dataset
and transfer it to other tasks following the settings of (Wang
et al., 2020b). The detailed information of datasets we use
is shown in Table 1.

More information of datasets and baseline models we com-
pare is described in Appendix A.1.

5.1.2. GRAPH REPRESENTATION LEARNING

Graph representation learning also receives huge improve-
ment through the introduction of self-attention. We test our
AutoAttend framework under two learning settings: trans-
ductive setting and inductive setting. The detailed informa-
tion of datasets we use is shown in Table 2. More informa-
tion about datasets and baselines we compare is described
in Appendix A.2.

Table 3. Detailed primitive operations used in our experiments. For
a fair comparison, we borrow the primitive operations from (Wang
et al., 2020b) and (Gao et al., 2020). Common operation means
these operations appear in the search space of both domains. For
graph representation learning, we only show the definitions of
correlation coefficient calculations.

OPERATION DETAILED EXPLANATION

COMMON

ZERO Lambda x:0

NATURAL LANGUAGE PROCESSING

IDENTITY Lambda x:x

CONV 1 1D convolution with kernel size 1

CONV 3 1D convolution with kernel size 3

MAX POOL 3 1D max pooling with kernel size 3

GRU Gated Recurrent Unit (Cho et al., 2014)

GRAPH REPRESENTATION LEARNING
(CiteSeer and PubMed. Correlation coefficients only)

CONST econuv = 1

GCN egcnuv = 1/
√
dudv

GAT egatuv = leaky relu(Wlhu + Wrhv)

SYM-GAT esymuv = egatuv + egatvu

COS ecosuv =< Wlhu,Wrhv >

LINEAR elinuv = tanh(sum(Wlhu))

GENE-LINEAR egenuv = Watanh(sum(Wlhu + Wrhv))

5.2. Implementation Details

5.2.1. PRIMITIVE OPERATION POOL

In this section, we give the detailed implementation of the
primitive operation pool mentioned in Section 4.1.1. We
follow (Wang et al., 2020b) to construct pools for NLP
and (Gao et al., 2020) for GRL. We refer to Table 3 and
Appendix B for the detailed description of all the opera-
tions leveraged. Note that for performance reasons (Gao
et al., 2020), we use multi-head message passing models
for dataset CiteSeer and PubMed, and use simplified stand-
alone graph convolution operations for dataset Cora and
PPI.

For dataset CiteSeer and PubMed, all the operations have
the following multi-head message passing form:

hout
v = σ(Mergehm

i=1(
∑

u∈N(v)

euv,ihu)), (7)

where hu stands for the input hidden state of node u. hout
v

stands for the output hidden state of node v, N(v) is the
neighborhood node set of node v. euv,i is the correlation
coefficients of the ith head displaced in Table 3. hm is the
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head number and is set to 4 in all of our experiments. Merge
defines how to combine representations of hm heads, which
is Sum for the last layer and Concat otherwise. σ is the
activation function, which is set to tanh in our experiments.

For dataset Cora and PPI, we use the following stand-alone
operations as the primitive operation pool: zero, identity,
GCNConv (Kipf & Welling, 2017), SageConv (Hamilton
et al., 2017), GATConv (Velickovic et al., 2018) with head
number in {1, 2, 4, 8, 16}, Linear, ARMAConv (Bianchi
et al., 2019), ChebConv (Defferrard et al., 2016), SGConv
(Wu et al., 2019).

5.2.2. SELF-ATTENTION IMPLEMENTATION

For the calculation of self-attention in Equation 2, we use the
simple yet powerful multi-head scaled dot-product attention
proposed by Vaswani et al. (2017) for all the experiments.
The head number h is a hyper-parameter and is set to 8 and
4 for NLP and GRL. To be specific, we use the following
form of attention calculation:

T1, ...,Th = Row Split(T), for T = Q,K,V,

Oi = Softmax(
QiK

T
i√

d/h
)Vi, for i = 0, ..., h,

Out = Row Cat(O1, ...,Oh),

(8)

where Row Split() and Row Cat() stand for splitting and
concatenating given tensor(s) over row (the last) dimen-
sion. Note that in GRL, we only calculate attention between
connected nodes by masking the energy term QiK

T
i /
√

d/h

according to the adjacency matrix of graphs and setting the
unmasked value to −inf , so that the corresponding atten-
tion score between nodes with no edge becomes 0 after
Softmax. This can be seen as a variant of GAT (Velickovic
et al., 2018).

5.2.3. TRAINING DETAILS

For searching in NLP, we set the layer number to 24 to stay
consistent with previous works. The word embeddings are
initialized from pretrained GloVe (Pennington et al., 2014)
and are fine-tuned during training. When searching, we
use hidden size 64, batch size 128, learning rate 0.005 with
Adam (Kingma & Ba, 2015), dropout 0.1, and max input
sentence length 64.

After deriving the optimized supernet, we use evolution al-
gorithm to retrieve the top 10 architectures according to their
performances derived from supernet. We select the archi-
tecture with the highest validation score as the final output
architecture. We then retrain the architecture with learn-
ing rate 0.0005 to report the final performance. Following
(Wang et al., 2020b), we transfer the searched architecture
on other text classification datasets. For a fair comparison,
we basically follow (Wang et al., 2020b) to determine the

re-train hyper-parameters for each dataset. The detailed
re-train hyper-parameters are given in Appendix C.

For GRL, we set the layer number to 2 and 3 for transductive
and inductive tasks. For transductive tasks, the dimension
h is set to 64 for Cora and 256 for CiteSeer and PubMed,
with learning rate 0.005, dropout 0.6, and weight decay
0.0005. For inductive PPI dataset, we set dimension h to
1024, learning rate to 0.005, and remove the dropout and
weight decay following previous state-of-the-arts. Similar
to NLP, we adopt evolution algorithm to find the best ar-
chitectures. The only difference is that we fine-tune the
best architectures from the supernet instead of training from
scratch when searched from shared parameters, since we
find that the performance of supernet is already competitive
with previous state-of-the-arts.

For evolution settings for both NLP and GRL, we first ran-
domly sample 500 architectures from space prior Γ(A).
Then, the top 100 architectures are selected and mutated by
slightly changing the architectures through

• choosing a different operation
• choosing a different source layer
• choosing a different layer type

The newly mutated 100 architectures are added to the popu-
lation. We perform the mutation 5 times in sequential in our
experiment settings. Therefore, totally 1000 architectures
are evaluated.

5.3. Experiment Results

5.3.1. NATURAL LANGUAGE PROCESSING

Table 4 shows the searched and transferred results of ours
compared to previous SOTA hand-craft and searched word-
level models without extra knowledges except for GloVe
on NLP datasets. We report the average accuracy over 5
independent runs.

We observe that our searched architecture surpasses previ-
ous NAS results on the target SST dataset by a large margin
(1.20% increase on accuracy), which demonstrate the ex-
pressivity and powerfulness of our AutoAttend framework
for finding the most suitable self-attention architectures on
the target dataset.

When transferred to other text classification datasets, the
searched architecture also surpasses the previous best NAS
results and further decreases the gap between searched and
hand-crafted SOTA models, which shows that even searched
in smaller datasets like the SST, the searched attention rep-
resentation together with the whole sentence encoder still
has the ability to generalize to similar tasks.

We also notice that the improvements on transferred datasets
are not so strong (less than 1.00%) compared to the improve-
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Table 4. AutoAttend text classification accuracy [%]. The best value of each section is shown in bold. The scores are averaged over 5
independent runs and accurate to 2 decimal places to compare with previous works.

MODEL
Search Transfer

SST SST-B AG DBP YELP-B YELP YAHOO AMZB

GUMBEL-LSTM (CHOI ET AL., 2018) 53.70 90.70 - - - - - -
CAS-LSTM (CHOI ET AL., 2019) 53.60 91.30 - - - - - -
DNC+CUW (LE ET AL., 2019) - - 93.90 99.00 96.40 65.60 74.30 -
DAGRN (LIU ET AL., 2020) - - 94.93 99.16 97.34 70.14 - -
DRNN (WANG, 2018) - - 92.90 98.90 96.30 66.40 74.30 95.60
GELE (NIU ET AL., 2019) - - 93.20 99.00 96.70 67.00 75.00 96.00
24-LAYER TRANSFORMER 49.37 86.66 92.17 98.77 94.07 61.22 72.67 95.59

ENAS (PHAM ET AL., 2018) 51.55 88.90 92.39 99.01 96.07 64.60 73.16 95.80
DARTS (LIU ET AL., 2019B) 51.65 87.12 92.24 98.90 95.84 65.12 73.12 95.48
SMASH (BROCK ET AL., 2018) 46.65 85.94 90.88 98.86 95.62 65.26 73.63 95.58
ONE-SHOT (BENDER ET AL., 2018) 50.37 87.08 92.06 98.89 95.78 64.78 73.20 95.20
RANDOM (LI & TALWALKAR, 2019) 49.20 87.15 92.54 98.98 96.00 65.23 72.47 94.87
TEXTNAS (WANG ET AL., 2020B) 52.51 90.33 93.14 99.01 96.41 66.56 73.97 95.94

OURS 53.71 90.50 93.53 99.08 96.62 66.82 74.48 96.04

Table 5. AutoAttend graph representation learning results [%].
We report accuracy for Cora, CiteSeer, and PubMed, and F1 score
for PPI. The best values of each section are shown in bold. The
scores are averaged over 100 independent runs and accurate to 1
decimal place to compare with previous works. † means rerun by
us without the leak of the test dataset.

MODEL
Transductive Inductive

CORA CITESEER PUBMED PPI

GCN 81.5 70.3 79.5 97.7
GAT 83.1 72.5 79.0 97.5
ARMA 83.4 72.5 78.9 98.5
APPNP 83.3 71.8 80.2 97.8

GRAPHNAS† 80.4 73.0 80.0 98.5
AGNN 83.6 73.8 79.7 99.2

OURS-PS 83.9 72.7 79.6 98.9
OURS 83.9 73.0 80.6 99.3

ment on SST, meaning that a highly flexible and customized
search space (like ours) may result in finding “overfit” ar-
chitectures on the searched dataset. Such kinds of search
spaces can find architectures with superior performances
on the searched dataset, but may not be suitable for finding
general architectures across different datasets or tasks when
only focusing on searching for one certain dataset.

5.3.2. GRAPH REPRESENTATION LEARNING

We further test our frameworks on GRL tasks. Table 5
shows the comparison of results between AutoAttend and
previous state-of-the-art hand-crafted and NAS algorithms.
We report accuracy score on Cora, CiteSeer, and PubMed

Table 6. Ablation study on attention layer. Results are the accu-
racy [%] on the validation dataset of the best models searched in
baseline search space (w/o attention layer) and full search space
(w/ attention layer).

SPACE SST CORA CITESEER PUBMED

BASELINE 81.15 81.80 72.18 81.04
FULL 81.68 82.96 72.90 81.04

dataset, and F1 score on PPI dataset following previous
works. All the scores are averaged over 100 independent
runs.

Similar to the findings on NLP, the searched architectures
(w/ or w/o parameter sharing) outperform or are on par
with previous SOTA results, which demonstrates that the
automated attention representation is also effective for data
in the graph structure.

5.4. Ablation Study

In this section, we aim to verify the effectiveness of the
proposed attention layer in Section 4.1.2 and context-aware
parameter sharing in Section 4.2.2. All the results of abla-
tion studies are reported on the validation datasets of SST
in NLP and Cora, CiteSeer, and PubMed in GRL.

5.4.1. ATTENTION LAYER

To test whether the attention layer and attention represen-
tation search are necessary, we carry out experiments that
only search in the baseline search space described in Sec-
tion 4.1.1. To be fair, we add the intra-layer self-attention
operation to the primitive operation pool as in (Wang et al.,
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Table 7. Ablation study on different definitions of contexts. Results
are the average accuracy [%] on validation datasets of 100 architec-
tures randomly sampled from space prior Γ(A) with parameters
from trained supernet.

CONTEXT SST CORA CITESEER PUBMED

NC 68.68 77.09 63.68 72.72
SC 68.96 77.81 63.62 73.31
TC 69.38 78.50 64.22 77.54
FC 69.40 78.61 64.23 77.72

2020b) so that the search space contains hand-crafted self-
attention representation designs. The comparison results are
shown in Table 6.

We observe a clear performance drop on all validation
datasets in both domains except PubMed, which shows
that attention representation search is necessary to derive
powerful architectures on modeling relation in data in most
cases.

For PubMed, we find that the optimal solutions w/ or w/o
attention layer point to the same architecture w/o attention
layer. The reason may be that the feature of PubMed is
not so informative (only 500) compared to large data vol-
umes, which is hard to formulate meaningful representations
through a complicated attention layer.

5.4.2. CONTEXT-AWARE PARAMETER SHARING

To verify the effectiveness of context-aware parameter shar-
ing, we test several context variants and compare their per-
formances. Namely, we test four context variants:

• (NC) No Context This is the common parameter shar-
ing method used in the previous NAS. The connections
at the same place will share their parameters regardless
of the layer functionalities connected with them.

• (SC) Source Context This kind of context only share
parameters within the same kind of source layer.

• (TC) Target Context Similar to source context, but it
only considers target layer functionalities.

• (FC) Full Context This is the context described in
Section 4.2.2, which considers functionalities of both
source and target layers.

We train the supernet under the same experiment settings us-
ing the contexts defined above. Then, we randomly sample
100 architectures from architecture prior Γ(A) and report
the mean validation score of the optimized parameters. The
results are shown in Table 7.

We observe that on all datasets, FC and TC gives similar
validation scores, both gain large comparatively improve-
ments over other two kinds of contexts. TC is slightly

worse than FC. SC is slightly better than NC. This may
be because in our search space, the connections are more
related to functionalities of the target layer since it deter-
mines the meaning of the chosen connections. The SC is a
bit better compared to NC because it considers the special
characteristics of different source layer functionalities when
optimizing parameters.

Discussion on context In fact, the context of connections
can be generalized beyond the connected layer functionali-
ties. One can further consider other connections connected
to the source/target layer of one connection as its context,
which is similar to the second rank of neighbors consider-
ing the whole architecture as a computation graph. When
we consider all ranks of neighbors for one connection, the
context becomes the whole architecture, and there will be
no shared parameters, which is identical to the architec-
ture search methods without parameter sharing (Zoph & Le,
2017; So et al., 2019).

Therefore, context-aware parameter sharing can be regarded
as a trade-off between efficiency and effectiveness, as the
goal of the parameter sharing is to reduce the time of training
architectures from scratch and is a biased approximation for
optimizing parameters of given architectures (Pham et al.,
2018).

6. Conclusion and Future Work
In this paper, we propose AutoAttend to automate the self-
attention representation leveraging NAS. We propose the
attention layer and define a unified, expressive search space
to jointly search for both attention representations and other
functional components. Context-aware parameter sharing
is proposed to consider the special characteristics of each
sub-architecture when training the supernet.

Future work includes automating more complicated atten-
tion representations for CV, encoder-decoder or multi-modal
models, and automating the attention representation and cal-
culation at the same time. How to search for generalized
attention representations mentioned in Section 5.3.1 is also
an interesting future work.
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