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Appendix A: Illustrative Task

In our main paper, we conduct an illustrative experiment to
show that additive uniform noise is superior in learning an
expressive latent space for compression. Here we introduce
the detailed settings of this experiment.

The core of this experiment is an image compression task.
We build the compression model that first encodes the im-
age from MNIST dataset to latent variables. We then try
three quantization methods to discretize the latent variables
for end-to-end optimization. A decoder will correspond-
ingly generate the reconstruction from the quantized latent
variables. Since the image resolution in MNIST dataset is
28 x 28, the network architecture is designed as follows:

Table 1. Network architecture in this illustrative task.
Encoder Decoder
Conv: 5x5¢c32s2 | Deconv: 7x7 c32 sl
LeakyReLU LeakyReLU
Conv: 5x5¢32s2 | Deconv: 5x5 ¢325s2
LeakyReLU LeakyReLU
Conv: 7x7 c4 sl Deconv: 5x5 cl s2

This model will transform the image to a four-dimension
latent vector, i.e., the 28 x 28 x 1 image will be mapped to
the 1 x 1 x 4 latent variable. Ideally, one continuous real
number is able to represent any information if the transform
network is very powerful. However, the encoder network
here is not strong enough. We thereby design to restrict the
latent capacity to investigate the latent representation ability
that is learned with different quantization methods.

The model is optimized for the rate-distortion objective. The
distortion is measured by mean square error between the
original image x and the reconstructed image &. The rate
here is measured by the £, norm of the quantized latent
variables as the continuous log-likelihood logp(g). It is
equal to assume a zero-mean Gaussian distribution with
fixed scale on y. The overall loss function is:

L= »Crate + A ['distortion
=Lo(9) + N Lyse(®,x).

We set the Lagrange Multiplier A as 10 and use Adam opti-
mizer with learning rate 1e-3 for optimization. We visualize

(D

the results in our main paper by selecting the best model
during the total 80-epoch training process.

Appendix B: Train-Test Mismatch

This section provides evidences along with some analyses
to show that the mismatch between training and test phases
is more serious in complex compression model.

The train-test mismatch is measured by the performance gap
between soft quantization (additive uniform noise) and hard
rounding. Specifically, we can try to use additive uniform
noise to test the (estimated) compression performance on
Kodak dataset, although it is not a practical compression
process. In Table 2, we present the distortion gap between
training and test phases that is measured by the difference
between the estimated PSNR value and the true PSNR value:
Gap = PSNRgott — PSNRpard-

Table 2. Distortion mismatch between training and test phases.

A 192 | 512 | 768 | 1024 | 2048 | 4096
Baseline-1 Gap | 0.26 | 0.33 | 0.33 | 0.28 | 0.40 | 0.50
Baseline-2 Gap | 0.14 | 0.17 | 0.14 | 0.21 | 0.29 | 0.04

Baseline-1 is the model of (Cheng et al., 2020), more pow-
erful than Baseline-2 (Minnen et al., 2018). We can observe
that the distortion gap is more serious in the complex base
model (Baseline-1). We deduce that perhaps it is due to
the posterior collapse issue, since a sufficiently powerful
decoder will tend to ignore the posterior in VAEs.

In addition, we draw both the estimated and the true rate-
distortion (RD) curves upon these two base models as shown
in Figure 1, i.e., test with soft quantization (additive uniform
noise) and test with hard quantization. Here we directly com-
pute the mean square error to stand for distortion. When
baseline is a complex model (Cheng et al., 2020), the true
rate-distortion curve coincides with the estimated curves as
shown in Figure 1a. However, it would be surprising that
the true RD performance of Baseline-2 is better than the es-
timated performance that corresponds to the soft training ob-
jective. Actually, it is reasonable because the noise-relaxed
compression models are optimized to minimize the varia-
tional upper bound of actual rate. Therefore, the estimated
rate is larger than the true rate. From another view, in simple
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Figure 1. The rate-distortion performance mismatch between soft quantization (additive uniform noise) and hard rounding. (a) Base model
is (Cheng et al., 2020). (b) Base model is (Minnen et al., 2018). Evaluating on Kodak dataset.

compression models, the actual rate-distortion performance
is better than the estimated performance. But this perfor-
mance improvement (from training to test) is weakened in
complex models such as (Cheng et al., 2020), which also
implies that the mismatch between training and test phases
is more serious in complex compression model.

Appendix C: Ablation Settings

We conduct rigorous ablation study to verify the effective-
ness of our proposed techniques, as mentioned in our main
paper. We here complement some experimental settings of
our ablations and introduce some specific architectures.

Training Details

We train the compression models on the full ImageNet
dataset. Original images are cropped to 256 x 256 patches.
Minibatches of 8 of these patches are used to update net-
work parameters that is trained on single RTX 2080 Ti GPU.
We apply Adam optimizer with learning rate decay strategy.
At the soft training stage, the initial learning rate is 5e-5
and degrades to le-5 after 400,000 iterations. We obtain
the pre-trained model by selecting the best model during
2,000,000 iterations that is evaluated on Kodak dataset. Af-
ter accomplishing the soft training stage, we employ scaled
uniform noise in the pre-trained model by finetuning the
noise-generation branch with 500,000 iterations. Then we
conduct ex-post tuning with hard quantization. At this stage,
we finetune the decoder for 500,000 iterations as well. Dur-
ing the second and the third stage, the learning rate is Se-5
and degrades to le-5 after 200,000 iterations. The latent
channel number is increased at high bitrates to avoid bottle-
neck issue following (Ballé et al., 2018). Specifically, we
assign M=192 channels for low or intermediate bitrates, and
assign M=320 channels when A is 2048 or 4096.

Reproducing Details

We investigate the effects of our methods upon three base
models (Minnen et al., 2018; Cheng et al., 2020; Guo et al.,
2020). All of them are reproduced by us with Pytorch imple-
mentations. The network structures are reproduced as their
paper reported exactly. Our reproduced performance has a
gap to their reported statistics, which may be caused by the
difference of training data. Specifically, we use the full Ima-
geNet training set without extra selection. While (Minnen
et al., 2018) do not mentioned the training set, (Cheng et al.,
2020) adopt the subset of ImageNet for training with coarse
selection and (Guo et al., 2020) use some high-resolution
datasets for training. Therefore, there is a gap between our
reproduced results and their reported results.

Structures of the New Branch

Our proposed soft-then-hard strategy does not require addi-
tional network parameters. Our proposed another technique,
the scaled uniform noise, requires a new branch to generate
noise scales. Since the value of noise scale is positive, we
adopt an exponential layer to activate the final output of this
branch. The specific structure of this branch is shown in
Figure 2.

Appendix D: More Experimental Results

Here we first provide the zoom-in RD-curves about the
ablation study in base model (Cheng et al., 2020) for better
visualization. As shown in Figure 3, our proposed scaled
uniform noise (SUN) achieves considerable improvements
by around 0.1 dB at intermediate bitrates.

As shown in Figure 4, we also present the results of deploy-
ing our methods in base model (Guo et al., 2020), which
delivers the state-of-the-art image compression performance.
It even outperforms the H.266/VVC standard on Kodak
dataset (we use the VIMS.0 anchor (VTM, 2020) with
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Figure 2. The structure of our proposed branch that generates noise
scale A. The left several layers are shared with context model.
The input is Z for soft quantization and 2 for hard quantization.
The value of A is clamped to avoid extreme value.

YUV444 format and all intra mode). Here the statistics of
previous works of neural image compression are taken from
their report in papers including (Ballé et al., 2018), (Minnen
et al., 2018), (Cheng et al., 2020) and (Guo et al., 2020).

Another important comparison is about the MS-SSIM-
optimized case, the metric of which is more consistent with
human perceptual quality (Wang et al., 2004). The loss
function now is:

L= Lrate + A Edistm*tion

. )
= Lrate + A (1 = Lars—ssim (&, ).

We train models at four different bitrates with A =
16,40, 100, 180 (latent channel number M=320 when A =
100 or 180). Our methods also bring obvious gains in base
model (Cheng et al., 2020) as shown in Figure 5.

In summary, our proposed new methods are robust to bring
stable improvements of rate-distortion performance at any
bitrate in different base models.

Appendix E: More Visualizations

More reconstruction results are provided here for visual
comparisons (Figure 6 and Figure 7). The base model is
still (Cheng et al., 2020). And we show both the PSNR-
optimized and the MS-SSIM-optimized results.
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Figure 3. The zoom-in rate-distortion curve in base model (Cheng et al., 2020). Evaluating on Kodak dataset.
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Figure 4. Employing our proposed two techniques in base model (Guo et al., 2020). It helps us achieve the state-of-the-art image
compression performance, outperforming all previous neural image compression approaches and the latest image compression standard.
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Figure 5. Ablation results in base model (Cheng et al., 2020). Optimized for MS-SSIM.

(b) 0.179bpp / 28.17dB / 0.9269

Ground Truth (a) 0.179bpp / 27.98dB / 0.9227

Figure 6. Visual comparisons. (a) Base model (Cheng et al., 2020) optimized for PSNR. (b) Employing our methods in this base model
optimized for PSNR. The statistics are the values of bit-rate (bpp) / PSNR (dB) / MS-SSIM.
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Ground Truth (a) 0.187bpp / 28.24dB / 0.9614 (b) 0.184bpp / 28.29dB / 0.9623
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(a) 0.238bpp / 24.94dB / 0.9668 (b) 0.234bpp / 24.97dB / 0.9673

Figure 7. Visual comparisons. (a) Base model (Cheng et al., 2020) optimized for MS-SSIM. (b) Our methods optimized for MS-SSIM.



