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The supplementary document is organized as follows.

1. The supplementary document begins with a discussion of different choices of stochastic differential equation (SDE)
representations for SGD (Section A).

2. We then discuss the tail-index estimation in Section B.

3. In Section C, we provide the proofs of the main results in the main paper; and provide the supporting lemmas in
Section D.

A. A Note on Stochastic Differential Equation Representations for SGD
In recent years, a popular approach for analyzing the behavior of SGD has been viewing it as a discretization of a continuous-
time stochastic process that can be represented via a stochastic differential equation (SDE) (Mandt et al., 2016; Jastrzębski
et al., 2017; Li et al., 2017; Hu et al., 2019; Zhu et al., 2019; Chaudhari & Soatto, 2018; Şimşekli et al., 2019b). While these
SDEs have been useful for understanding different properties of SGD, their differences and functionalities have not been
clearly understood. In this section, in light of our theoretical results, we will discuss in which situation their choice would be
more appropriate. We will restrict ourselves to the case where f(x) is a quadratic function; however, the discussion can be
extended to more general f .

The SDE approximations are often motivated by first rewriting the SGD recursion as follows:

xk+1 = xk − η∇f̃k+1 (xk) = xk − η∇f (xk) + ηUk+1(xk), (A.1)

where Uk(x) := ∇f̃k(x)−∇f(x) is called the ‘stochastic gradient noise’. Then, based on certain statistical assumptions on
Uk, we can view (A.1) as a discretization of an SDE. For instance, if we assume that the gradient noise follows a Gaussian
distribution, whose covariance does not depend on the iterate xk, i.e., ηUk ≈

√
ηZk where Zk ∼ N (0, σzηI) for some

constant σz > 0, we can see (A.1) as the Euler-Maruyama discretization of the following SDE with stepsize η (Mandt et al.,
2016):

dxt = −∇f(xt)dt+
√
ησzdBt, (A.2)

where Bt denotes the d-dimensional standard Brownian motion. This process is called the Ornstein-Uhlenbeck (OU) process
(see e.g. Øksendal (2013)), whose invariant measure is a Gaussian distribution. We argue that this process can be a good
proxy to (3.5) only when α ≥ 2, since otherwise the SGD iterates will exhibit heavy-tails, whose behavior cannot be
captured by a Gaussian distribution. As we illustrated in Section 4, to obtain large α, the stepsize η needs to be small and/or
the batch-size b needs to be large. However, it is clear that this approximation will fall short when the system exhibits heavy
tails, i.e., α < 2. Therefore, for the large η/b regime, which appears to be more interesting since it often yields improved
test performance (Jastrzębski et al., 2017), this approximation would be inaccurate for understanding the behavior of SGD.
This problem mainly stems from the fact that the additive isotropic noise assumption results in a deterministic Mk matrix
for all k. Since there is no multiplicative noise term, this representation cannot capture a potential heavy-tailed behavior.

A natural extension of the state-independent Gaussian noise assumption is to incorporate the covariance structure of Uk. In
our linear regression problem, we can easily see that the covariance matrix of the gradient noise has the following form:

ΣU (x) = Cov(Uk|x) =
σ2

b
diag(x ◦ x), (A.3)
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where ◦ denotes element-wise multiplication and σ2 is the variance of the data points. Therefore, we can extend the previous
assumption by assuming Zk|x ∼ N (0, ηΣU (x)). It has been observed that this approximation yields a more accurate
representation (Cheng et al., 2020; Ali et al., 2020; Jastrzębski et al., 2017). Using this assumption in (A.1), the SGD
recursion coincides with the Euler-Maruyama discretization of the following SDE:

dxt = −∇f(xt)dt+
√
ηΣU (xt)dBt

d
= −

(
A>Axt −A>y

)
dt+

√
σ2η

b
diag(xt)dBt, (A.4)

where d
= denotes equality in distribution. The stochasticity in such SDEs is called often called multiplicative. Let us illustrate

this property by discretizing this process and by using the definition of the gradient and the covariance matrix, we observe
that (noting that Nk ∼ N (0, I))

xk+1 = xk − η
(
A>Axk −A>y

)
+

√
σ2η2

b
diag(xk)Nk+1

=
(
I − ηA>A+

√
σ2η2/b diag(Nk+1)

)
xk − ηA>y, (A.5)

where we can clearly see the multiplicative effect of the noise, as indicated by its name. On the other hand, we can observe
that, thanks to the multiplicative structure, this process would be able to capture the potential heavy-tailed structure of SGD.
However, there are two caveats. The first one is that, in the case of linear regression, the process is called a geometric
(or modified) Ornstein-Uhlenbeck process which is an extension of geometric Brownian motion. One can show that the
distribution of the process at any time t will have lognormal tails. Hence it will be accurate only when the tail-index α is
close to the one of the lognormal distribution. The second caveat is that, for a more general cost function f , the covariance
matrix is more complicated and hence the invariant measure of the process cannot be found analytically, hence analyzing
these processes for a general f can be as challenging as directly analyzing the behavior of SGD.

The third way of modeling the gradient noise is based on assuming that it is heavy-tailed. In particular, we can assume that
ηUk ≈ η1/αLk where [Lk]i ∼ SαS(σLη

(α−1)/α) for all i = 1, . . . , d. Under this assumption the SGD recursion coincides
with the Euler discretization of the following Lévy-driven SDE (Şimşekli et al., 2019b):

dxt = −∇f(xt)dt+ σLη
(α−1)/αdLαt , (A.6)

where Lαt denotes the α-stable Lévy process with independent components (see Section A.1 for technical background
on Lévy processes and in particular α-stable Lévy processes). In the case of linear regression, this processes is called
a fractional OU process (Fink & Klüppelberg, 2011), whose invariant measure is also an α-stable distribution with the
same tail-index α. Hence, even though it is based on an isotropic, state-independent noise assumption, in the case of large
η/b regime, this approach can mimic the heavy-tailed behavior of the system with the exact tail-index α. On the other
hand, Buraczewski et al. (2016) (Theorem 1.7 and 1.16) showed that if Uk is assumed to heavy tailed with index α (not
necessarily SαS) then the process xk will inherit the same tails and the ergodic averages will still converge to an SαS
random variable in distribution, hence generalizing the conclusions of the SαS assumption to the case where Uk follows an
arbitrary heavy-tailed distribution.

A.1. Technical background: Lévy processes

Lévy motions (processes) are stochastic processes with independent and stationary increments, which include Brownian
motions as a special case, and in general may have heavy-tailed distributions (see e.g. Bertoin (1996) for a survey).
Symmetric α-stable Lévy motion is a Lévy motion whose time increments are symmetric α-stable distributed. We define
Lαt , a d-dimensional symmetric α-stable Lévy motion as follows. Each component of Lαt is an independent scalar α-stable
Lévy process defined as follows:

(i) Lα0 = 0 almost surely;

(ii) For any t0 < t1 < · · · < tN , the increments Lαtn − Lαtn−1
are independent, n = 1, 2, . . . , N ;

(iii) The difference Lαt − Lαs and Lαt−s have the same distribution: SαS((t− s)1/α) for s < t;

(iv) Lαt has stochastically continuous sample paths, i.e. for any δ > 0 and s ≥ 0, P(|Lαt − Lαs | > δ)→ 0 as t→ s.
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When α = 2, we obtain a scaled Brownian motion as a special case, i.e. Lαt =
√

2Bt, so that the difference Lαt −Lαs follows
a Gaussian distribution N (0, 2(t− s)).

B. Tail-Index Estimation
In this study, we follow Tzagkarakis et al. (2018); Şimşekli et al. (2019b), and make use of the recent estimator proposed by
Mohammadi et al. (2015).

Theorem 12 (Mohammadi et al. (2015) Corollary 2.4). Let {Xi}Ki=1 be a collection of strictly stable random variables in
Rd with tail-index α ∈ (0, 2] and K = K1 ×K2. Define Yi =

∑K1

j=1Xj+(i−1)K1
for i ∈ J1,K2K. Then, the estimator

1̂

α
,

1

logK1

( 1

K2

K2∑
i=1

log ‖Yi‖ −
1

K

K∑
i=1

log ‖Xi‖
)
, (B.1)

converges to 1/α almost surely, as K2 →∞.

As this estimator requires a hyperparameter K1, at each tail-index estimation, we used several values for K1 and we used the
median of the estimators obtained with different values of K1. We provide the codes in github.com/umutsimsekli/
sgd_ht, where the implementation details can be found. For the neural network experiments, we used the same setup as
provided in the repository of Şimşekli et al. (2019b).

C. Proofs of Main Results
C.1. Proof of Theorem 2

Proof of Theorem 2. The proof follows from Theorem 4.4.15 in Buraczewski et al. (2016) which goes back to Theorem 1.1
in Alsmeyer & Mentemeier (2012) and Theorem 6 in Kesten (1973). See also Goldie (1991); Buraczewski et al. (2015). We
recall that we have the stochastic recursion:

xk = Mkxk−1 + qk, (C.1)

where the sequence (Mk, qk) are i.i.d. distributed as (M, q) and for each k, (Mk, qk) is independent of xk−1. To apply
Theorem 4.4.15 in Buraczewski et al. (2016), it suffices to have the following conditions being satisfied:

1. M is invertible with probability 1.

2. The matrix M has a continuous Lebesgue density that is positive in a neighborhood of the identity matrix.

3. ρ < 0 and h(α) = 1.

4. P(Mx+ q = x) < 1 for every x.

5. E
[
‖M‖α(log+ ‖M‖+ log+ ‖M−1‖)

]
<∞.

6. 0 < E‖q‖α <∞.

All the conditions are satisfied under our assumptions. In particular, Condition 1 and Condition 5 are proved in Lemma 21,
and Condition 2 and Condition 4 follow from the fact that M and q have continuous distributions. Condition 3 is part of the
assumption of Theorem 2. Finally, Condition 6 is satisfied by the definition of q and by the Assumptions (A1)–(A2).

C.2. Proof of Theorem 3

Proof of Theorem 3. To prove (i), according to the proof of Theorem 2, it suffices to show that if ρ < 0, then there exists a
unique positive α such that h(α) = 1. Note that if ρ < 0, then by Lemma 17, we have h(0) = 1, h′(0) = ρ < 0 and h(s) is
convex in s, and moreover by Lemma 18, we have lim infs→∞ h(s) > 1. Therefore, there exists some α ∈ (0,∞) such that
h(α) = 1. Finally, (ii) follows from Lemma 16.

github.com/umutsimsekli/sgd_ht
github.com/umutsimsekli/sgd_ht
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C.3. Proof of Theorem 4

Proof of Theorem 4. We will split the proof of Theorem 4 into two parts:

(I) We will show that the tail-index α is strictly decreasing in stepsize η and variance σ2 provided that α ≥ 1.

(II) We will show that the tail-index α is strictly increasing in batch-size b provided that α ≥ 1.

(III) We will show that the tail-index α is strictly decreasing in dimension d.

First, let us prove (I). Let a := ησ2 > 0 be given. Consider the tail-index α as a function of a, i.e.

α(a) := min{s : h(a, s) = 1} ,

where h(a, s) = h(s) with emphasis on dependence on a.

By assumption, α(a) ≥ 1. The function h(a, s) is convex function of a (see Lemma 22 for s ≥ 1 and a strictly convex
function of s for s ≥ 0). Furthermore, it satisfies h(a, 0) = 1 for every a ≥ 0 and h(0, s) = 1 for every s ≥ 0. We consider
the curve

C := {(a, s) ∈ (0,∞)× [1,∞] : h(a, s) = 1} .
This is the set of the choice of a, which leads to a tail-index s where s ≥ 1. Since h is smooth in both a and s, we can
represent s as a smooth function of a, i.e. on the curve

h(a, s(a)) = 0 ,

where s(a) is a smooth function of a. We will show that s′(a) < 0; i.e. if we increase a; the tail-index s(a) will drop. Pick
any (a∗, s∗) ∈ C, it will satisfy h(a∗, s∗) = 1. We have the following facts:

(i) The function h(a, s) = 1 for either a = 0 or s = 0. This is illustrated in Figure 4 with a blue marker.

(ii) h(a∗, s) < 1 for s < s∗. This follows from the convexity of h(a∗, s) function and the fact that h(a∗, 0) = 1,
h(a∗, s∗) = 1. From here, we see that the function h(a∗, s) is increasing at s = s∗ and we have its derivative

∂h

∂s
(a∗, s∗) > 0.

(iii) The function h(a, s∗) is convex as a function of a by Lemma 22, it satisfies h(0, s∗) = h(a∗, s∗) = 1. Therefore,
by convexity h(a, s∗) < 1 for a ∈ (0, s∗); otherwise the function h(a, s∗) would be a constant function. We have
therefore necessarily.

∂h

∂a
(a∗, s∗) > 0.

By convexity of the function h(a, s∗), we have also h(a, s∗) ≥ h(a∗, s∗) + ∂h
∂a (a∗, s∗)(a − a∗) > h(a∗, s∗) = 1.

Therefore, h(a, s∗) > 1 for a > a∗. Then, it also follows that h(a, s) > 1 for a > a∗ and s > s∗ (otherwise if
h(a, s) ≤ 1, we get a contradiction because h(0, s) = 1, h(a∗, s) > 1 and h(a, s) ≤ 1 is impossible due to convexity).
This is illustrated in Figure 4 where we mark this region as a rectangular box where h > 1.

(iv) By similar arguments we can show that the function h(a, s) < 1 if (s, a) ∈ (0, a∗)× [1, s∗). Indeed, if h(a, s) ≥ 1 for
some (s, a) ∈ [1, s∗)× (0, a∗), this contradicts the fact that h(0, s) = 1 and h(a∗, s) < 1 proven in part (ii). This is
illustrated in Figure 4 where inside the rectangular box on the left-hand side, we have h < 1.

Geometrically, we see from Figure 4 that the curve s(a) as a function of a, is sandwiched between two rectangular boxes
and has necessarily s′(a) < 0. This can also be directly obtained rigorously from the implicit function theorem; if we
differentiate the implicit equation h(a, s(a)) = 0 with respect to a, we obtain

∂h

∂a
(a∗, s∗) +

∂h

∂s
(a∗, s∗)s

′(a∗) = 0 .

From parts (ii)− (iii), we have ∂h
∂a (a∗, s∗) and ∂h

∂s (a∗, s∗) > 0. Therefore, we have

s′(a∗) = −
∂h
∂a (a∗, s∗)
∂h
∂s (a∗, s∗)

< 0 , (C.2)
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Figure 4. The curve h(a, s) = 1 in the (a, s) plane

which completes the proof for s∗ ≥ 1.

Next, let us prove (II). With slight abuse of notation, we define the function h(b, s) = h(s) to emphasize the dependence on
b. We have

h(b, s) = E

∥∥∥∥∥
(
I − η

b

b∑
i=1

aia
T
i

)
e1

∥∥∥∥∥
s

. (C.3)

where we used Lemma 16. When s ≥ 1, the function x 7→ ‖x‖s is convex, and by Jensen’s inequality, we get for any b ≥ 2
and b ∈ N,

h(b, s) = E

∥∥∥∥∥∥1

b

b∑
i=1

I − η

b− 1

∑
j 6=i

aja
T
j

 e1

∥∥∥∥∥∥
s

≤ E

1

b

b∑
i=1

∥∥∥∥∥∥
I − η

b− 1

∑
j 6=i

aja
T
j

 e1

∥∥∥∥∥∥
s

=
1

b

b∑
i=1

E

∥∥∥∥∥∥
I − η

b− 1

∑
j 6=i

aja
T
j

 e1

∥∥∥∥∥∥
s = h(b− 1, s),

where we used the fact that ai are i.i.d. Indeed, from the condition for equality to hold in Jensen’s inequality, and the fact
that ai are i.i.d. random, the inequality above is a strict inequality. Hence when d ∈ N for any s ≥ 1, h(b, s) is strictly
decreasing in b. By following the same argument as in the proof of (I), we conclude that the tail-index α is strictly increasing
in batch-size b.

Finally, let us prove (III). Let us show the tail-index α is strictly decreasing in dimension d. Since ai are i.i.d. and
ai ∼ N (0, σ2Id), by Lemma 19,

h(s) = E

[(
1− 2a

b
X +

a2

b2
X2 +

a2

b2
XY

)s/2]
, (C.4)

where X,Y are independent chi-square random variables with degree of freedom b and d− 1 respectively. Notice that h(s)
is strictly increasing in d since the only dependence of h(s) on d is via Y , which is a chi-square distribution with degree of
freedom (d− 1). By writing Y = Z2

1 + · · ·+ Z2
d−1, where Zi ∼ N(0, 1) i.i.d., it follows that h(s) is strictly increasing in

d. Hence, by similar argument as in (I), we conclude that α is strictly decreasing in dimension d.

Remark 13. When d = 1 and ai are i.i.d. N(0, σ2), we can provide an alternative proof that the tail-index α is strictly
increasing in batch-size b. It suffices to show that for any s ≥ 1, h(s) is strictly decreasing in the batch-size b. By Lemma 19
when d = 1,

h(b, s) = E

[(
1− 2ησ2

b
X +

η2σ4

b2
X2 +

η2σ4

b2
XY

)s/2]
, (C.5)



The Heavy-Tail Phenomenon in SGD

where h(b, s) is as in (C.3) and X,Y are independent chi-square random variables with degree of freedom b and d − 1
respectively. When d = 1, we have Y ≡ 0, and

h(b, s) = E

[(
1− 2ησ2

b
X +

η2σ4

b2
X2

)s/2]
= E

[∣∣∣∣1− ησ2

b
X

∣∣∣∣s] . (C.6)

Since X is a chi-square random variable with degree of freedom b, we have

h(b, s) = E

[∣∣∣∣∣1− ησ2

b

b∑
i=1

Zi

∣∣∣∣∣
s]
, (C.7)

where Zi are i.i.d. N(0, 1) random variables. When s ≥ 1, the function x 7→ |x|s is convex, and by Jensen’s inequality, we
get for any b ≥ 2 and b ∈ N

h(b, s) = E

∣∣∣∣∣∣1b
b∑
i=1

1− ησ2

b− 1

∑
j 6=i

Zj

∣∣∣∣∣∣
s

≤ E

1

b

b∑
i=1

∣∣∣∣∣∣1− ησ2

b− 1

∑
j 6=i

Zj

∣∣∣∣∣∣
s =

1

b

b∑
i=1

E

∣∣∣∣∣∣1− ησ2

b− 1

∑
j 6=i

Zj

∣∣∣∣∣∣
s = h(b− 1, s),

where we used the fact that Zi are i.i.d. Indeed, from the condition for equality to hold in Jensen’s inequality, and the fact
that Zi are i.i.d. N(0, 1) distributed, the inequality above is a strict inequality. Hence when d = 1 for any s ≥ 1, h(b, s) is
strictly decreasing in b.

C.4. Proof of Proposition 5

Proof of Proposition 5. We first prove (i). When η = ηcrit = 2b
σ2(d+b+1) , that is ησ2(d+ b+ 1) = 2b, we can compute that

ρ ≤ 1

2
logE

1− 2ησ2

b

b∑
i=1

z2
i1 +

η2σ4

b2

b∑
i=1

b∑
j=1

(zi1zj1 + · · ·+ zidzjd)zi1zj1

 = 0, (C.8)

where zij are i.i.d. N(0, 1) random variables. Note that since 1 − 2ησ2

b

∑b
i=1 z

2
i1 + η2σ4

b2

∑b
i=1

∑b
j=1(zi1zj1 + · · · +

zidzjd)zi1zj1 is random, the inequality above is a strict inequality from Jensen’s inequality. Thus, when η = ηcrit, i.e.
ησ2(d+ b+ 1) = 2b, ρ < 0. By continuity, there exists some δ > 0 such that for any 2b < ησ2(d+ b+ 1) < 2b+ δ, i.e.
ηcrit < η < ηmax, where ηmax := ηcrit + δ

σ2(d+b+1) , we have ρ < 0. Moreover, when ησ2(d+ b+ 1) > 2b, i.e. η > ηcrit,
we have

h(2) = E

(1− 2ησ2

b

b∑
i=1

z2
i1 +

η2σ4

b2

b∑
i=1

b∑
j=1

(zi1zj1 + · · ·+ zidzjd)zi1zj1

) = 1− 2ησ2 +
η2σ4

b
(d+ b+ 1) ≥ 1,

which implies that there exists some 0 < α < 2 such that h(α) = 1.

Finally, let us prove (ii) and (iii). When ησ2(d+ b+ 1) ≤ 2b, i.e. η ≤ ηcrit, we have h(2) ≤ 1, which implies that α > 2.
In particular, when ησ2(d+ b+ 1) = 2b, i.e. η = ηcrit, the tail-index α = 2.

C.5. Proof of Theorem 6 and Corollary 7

Proof of Theorem 6. We recall that
xk = Mkxk−1 + qk, (C.9)

which implies that
‖xk‖ ≤ ‖Mkxk−1‖+ ‖qk‖. (C.10)
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(i) If the tail-index α ≤ 1, then for any 0 < p < α, we have h(p) = E‖Mke1‖p < 1 and moreover by Lemma 23,

‖xk‖p ≤ ‖Mkxk−1‖p + ‖qk‖p. (C.11)

Due to spherical symmetry of the isotropic Gaussian distribution, the distribution of ‖Mkx‖
‖x‖ does not depend on the choice

of x ∈ Rd\{0}. Therefore, ‖Mkxk−1‖
‖xk−1‖ and ‖xk−1‖ are independent, and ‖Mkxk−1‖

‖xk−1‖ has the same distribution as ‖Mke1‖,
where e1 is the first basis vector. It follows that

E‖xk‖p ≤ E‖Mke1‖pE‖xk−1‖p + E‖qk‖p, (C.12)

so that
E‖xk‖p ≤ h(p)E‖xk−1‖p + E‖q1‖p, (C.13)

where h(p) ∈ (0, 1). By iterating over k, we get

E‖xk‖p ≤ (h(p))kE‖x0‖p +
1− (h(p))k

1− h(p)
E‖q1‖p. (C.14)

(ii) If the tail-index α > 1, then for any 1 < p < α, by Lemma 23, for any ε > 0, we have

‖xk‖p ≤ (1 + ε)‖Mkxk−1‖p +
(1 + ε)

p
p−1 − (1 + ε)(

(1 + ε)
1
p−1 − 1

)p ‖qk‖p, (C.15)

which (similar as in (i)) implies that

E‖xk‖p ≤ (1 + ε)E‖Mke1‖pE‖xk−1‖p +
(1 + ε)

p
p−1 − (1 + ε)(

(1 + ε)
1
p−1 − 1

)p E‖qk‖p, (C.16)

so that

E‖xk‖p ≤ (1 + ε)h(p)E‖xk−1‖p +
(1 + ε)

p
p−1 − (1 + ε)(

(1 + ε)
1
p−1 − 1

)p E‖q1‖p. (C.17)

We choose ε > 0 so that (1 + ε)h(p) < 1. By iterating over k, we get

E‖xk‖p ≤ ((1 + ε)h(p))kE‖x0‖p +
1− ((1 + ε)h(p))k

1− (1 + ε)h(p)

(1 + ε)
p
p−1 − (1 + ε)(

(1 + ε)
1
p−1 − 1

)p E‖q1‖p. (C.18)

The proof is complete.

Remark 14. In general, there is no closed-form expression for E‖q1‖p in Theorem 6. We provide an upper bound as follows.
When p > 1, by Jensen’s inequality, we can compute that

E‖q1‖p = ηpE

∥∥∥∥∥1

b

b∑
i=1

aiyi

∥∥∥∥∥
p

≤ ηp

b

b∑
i=1

E ‖aiyi‖p = ηpE [|y1|p ‖a1‖p] , (C.19)

and when p ≤ 1, by Lemma 23, we can compute that

E‖q1‖p =
ηp

bp
E

∥∥∥∥∥
b∑
i=1

aiyi

∥∥∥∥∥
p

≤ ηp

bp
E

[(
b∑
i=1

‖aiyi‖

)p]
≤ ηp

bp

b∑
i=1

E ‖aiyi‖p = ηpE [|y1|p ‖a1‖p] . (C.20)

Proof of Corollary 7. It follows from Theorem 6 by letting k →∞ and applying Fatou’s lemma.
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C.6. Proof of Theorem 8, Corollary 9, Proposition 10 and Corollary 11

Proof of Theorem 8. For any ν0, ν̃0 ∈ Pp(Rd), there exists a couple x0 ∼ ν0 and x̃0 ∼ ν̃0 independent of (Mk, qk)k∈N and
Wp
p (ν0, ν̃0) = E‖x0 − x̃0‖p. We define xk and x̃k starting from x0 and x̃0 respectively, via the iterates

xk = Mkxk−1 + qk, (C.21)
x̃k = Mkx̃k−1 + qk, (C.22)

and let νk and ν̃k denote the probability laws of xk and x̃k respectively. For any p < α, since E‖Mk‖α = 1 and
E‖qk‖α <∞, we have νk, ν̃k ∈ Pp(Rd) for any k. Moreover, we have

xk − x̃k = Mk(xk−1 − x̃k−1), (C.23)

Due to spherical symmetry of the isotropic Gaussian distribution, the distribution of ‖Mkx‖
‖x‖ does not depend on the choice

of x ∈ Rd\{0}. Therefore, ‖Mk(xk−1−x̃k−1)‖
‖xk−1−x̃k−1‖ and ‖xk−1 − x̃k−1‖ are independent, and ‖Mk(xk−1−x̃k−1)‖

‖xk−1−x̃k−1‖ has the same
distribution as ‖Mke1‖, where e1 is the first basis vector. It follows from (C.23) that

E‖xk − x̃k‖p ≤ E [‖Mk(xk−1 − x̃k−1)‖p] = E [‖Mke1‖p]E [‖xk−1 − x̃k−1‖p] = h(p)E [‖xk−1 − x̃k−1‖p] ,

which by iterating implies that

Wp
p (νk, ν̃k) ≤ E‖xk − x̃k‖p ≤ (h(p))kE‖x0 − x̃0‖p = (h(p))kWp

p (ν0, ν̃0). (C.24)

By letting ν̃0 = ν∞, the probability law of the stationary distribution x∞, we conclude that

Wp(νk, ν∞) ≤
(

(h(p))1/q
)k
Wp(ν0, ν∞). (C.25)

Finally, notice that 1 ≤ p < α, and therefore h(p) < 1. The proof is complete.

Proof of Corollary 9. When ησ2 < 2b
d+b+1 , by Proposition 5, the tail-index α > 2, by taking p = 2, and using h(2) =

1− 2ησ2 + η2σ4

b (d+ b+ 1) < 1 (see Proposition 5), it follows from Theorem 8 that

W2(νk, ν∞) ≤
(

1− 2ησ2

(
1− ησ2

2b
(d+ b+ 1)

))k/2
W2(ν0, ν∞). (C.26)

Remark 15. Consider the case ai are i.i.d. N (0, σ2Id). In Theorem 6, Corollary 7 and Theorem 8, the key quantity is
h(p) ∈ (0, 1), where p < α. We recall that

h(p) = E

[(
1− 2a

b
X +

a2

b2
X2 +

a2

b2
XY

)p/2]
, (C.27)

where a = ησ2, X,Y are independent chi-square random variables with degree of freedom b and d− 1 respectively. The
first-order approximation of h(p) is given by

h(p) ∼ 1 +
p

2
E
[
−2a

b
X +

a2

b2
X2 +

a2

b2
XY

]
= 1 +

p

2

[
−2a+

a2

b
(b+ 2) +

a2

b
(d− 1)

]
< 1, (C.28)

provided that a = ησ2 < 2b
d+b+1 which occurs if and only if α > 2. In other words, when ησ2 < 2b

d+b+1 , α > 2 and

h(p) ∼ 1− pησ2

(
1− ησ2(b+ d+ 1)

2b

)
< 1. (C.29)
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On the other hand, when ησ2 ≥ 2b
d+b+1 , p < α ≤ 2, and the second-order approximation of h(p) is given by

h(p) ∼ 1 +
p

2
E
[
−2a

b
X +

a2

b2
X2 +

a2

b2
XY

]
+

p
2 (p2 − 1)

2
E

[(
−2a

b
X +

a2

b2
X2 +

a2

b2
XY

)2
]

= 1 + qa

(
a(b+ d+ 1)

2b
− 1

)
− 2− p

8
E

[(
−2a

b
X +

a2

b2
X2 +

a2

b2
XY

)2
]
,

and for small a = ησ2 and large d,

E

[(
−2a

b
X +

a2

b2
X2 +

a2

b2
XY

)2
]
∼ 4a2

b
(b+ 2) +

a4

b3
(b+ 2)d2 − 4a3

b2
(b+ 2)d, (C.30)

and therefore with a = ησ2,

h(p) ∼ 1− pa
(
−a(b+ d+ 1)

2b
+ 1 +

(2− p)a(b+ 2)

2qb

(
1 +

a2

4b2
d2 − a

b
d

))
< 1, (C.31)

provided that 1 ≤ a(b+d+1)
2b < 1 + (2−p)a(b+2)

2qb

(
1 + a2

4b2 d
2 − a

b d
)

.

Proof of Proposition 10. First, we notice that it follows from Theorem 2 that E‖x∞‖α = ∞. To see this, notice that
limt→∞ tαP(eT1 x∞ > t) = eα(e1), where e1 is the first basis vector in Rd, and P(‖x∞‖ ≥ t) ≥ P(eT1 x∞ ≥ t), and thus

E‖x∞‖α =

∫ ∞
0

tP(‖x∞‖α ≥ t)dt =

∫ ∞
0

tP(‖x∞‖ ≥ t1/α)dt =∞. (C.32)

By following the proof of Theorem 6 by letting q = α in the proof, one can show the following.

(i) If the tail-index α ≤ 1, then we have

E‖x∞‖α ≤ E‖x0‖α + kE‖q1‖α, (C.33)

which grows linearly in k.

(ii) If the tail-index α > 1, then for any ε > 0, we have

E‖xk‖α ≤ (1 + ε)kE‖x0‖α +
(1 + ε)k − 1

ε

(1 + ε)
α
α−1 − (1 + ε)(

(1 + ε)
1

α−1 − 1
)α E‖q1‖α = O(k), (C.34)

which grows exponentially in k for any fixed ε > 0. By letting ε→ 0, we have

E‖xk‖α = (1 + ε)kE‖x0‖α + (1 +O(ε))
(
(1 + ε)k − 1

) (α− 1)α−1

εα
E‖q1‖α.

Therefore, it holds for any sufficiently small ε > 0 that,

E‖xk‖α ≤
(1 + ε)k

εα
(
E‖x0‖α + (α− 1)α−1E‖q1‖α

)
.

We can optimize (1+ε)k

εα over the choice of ε > 0, and by choosing ε = α
k−α , which goes to zero as k goes to∞, we have

(1+ε)k

εα = (1 + α
k−α )k(k−αα )α = O(kα), and hence

E‖xk‖α = O(kα), (C.35)

which grows polynomially in k. The proof is complete.

Proof of Corollary 11. The result is obtained by a direct application of Theorem 1.15 in Mirek (2011) to the recursions (3.5)
where it can be checked in a straightforward manner that the conditions for this theorem hold.
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D. Supporting Lemmas
In this section, we present a few supporting lemmas that are used in the proofs of the main results of the paper as well as the
additional results in the Supplementary Document.

First, we recall that the iterates are given by xk = Mkxk−1 + qk, where (Mk, qk) are i.i.d. and Mk is distributed as
I − η

bH , where H =
∑b
i=1 aia

T
i and qk is distributed as η

b

∑b
i=1 aiyi, where ai ∼ N (0, σ2Id) and yi are i.i.d. satisfying

the Assumptions (A1)–(A3).

We can compute ρ and h(s) as follows where ρ and h(s) are defined by (3.7) and (3.6).

Lemma 16. Under Assumptions (A1)–(A3), ρ can be characterized as:

ρ = E
[
log
∥∥∥(I − η

b
H
)
e1

∥∥∥] , (D.1)

and h(s) can be characterized as:

h(s) = E
[∥∥∥(I − η

b
H
)
e1

∥∥∥s] , (D.2)

provided that ρ < 0. Furthermore, we have

ρ̂ = E log
∥∥∥(I − η

b
H
)
e1

∥∥∥ , ĥ(s) = E
[∥∥∥(I − η

b
H
)
e1

∥∥∥s] (D.3)

where ρ̂ and ĥ(s) are defined in (3.10).

Proof. It is known that the Lyapunov exponent defined in (3.7) admits the alternative representation

ρ := lim
k→∞

1

k
log ‖x̃k‖ , (D.4)

where x̃k := Πkx̃0 with Πk := MkMk−1 . . .M1 and x̃0 := x0 (see Equation (2) in Newman (1986)). We will compute the
limit on the right-hand side of (D.4). First, we observe that due to spherical symmetry of the isotropic Gaussian distribution,
the distribution of ‖Mkx‖

‖x‖ does not depend on the choice of x ∈ Rd\{0} and is i.i.d. over k with the same distribution as
‖Me1‖ where we chose x = e1. This observation would directly imply the equality (D.3). In addition,

1

k
log ‖x̃k‖ −

1

k
log ‖x̃0‖ =

1

k

k∑
i=1

log
‖x̃i‖
‖x̃i−1‖

=
1

k

k∑
i=1

log
‖Mix̃i−1‖
‖x̃i−1‖

is an average of i.i.d. random variables and by the law of large numbers we obtain

ρ = lim
k→∞

1

k
log ‖x̃k‖ = E

[
log
∥∥∥(I − η

b
H
)
e1

∥∥∥] .
From (D.4), we conclude that this proves (D.1).

It remains to prove (D.2). We consider the function

h̃(s) = lim
k→∞

(
E
‖x̃k‖s

‖x̃0‖s

)1/k

,

where the initial point x̃0 = x0 is deterministic. In the rest of the proof, we will show that for ρ < 0, h(s) = h̃(s) where
h(s) is given by (3.6) and h̃(s) is equal to the right-hand side of (D.2); our proof is inspired by the approach of Newman
(1986). We will first compute h̃(s) and show that it is equal to the right-hand side of (D.2). Note that we can write

‖x̃k‖s

‖x̃0‖s
=

k∏
i=1

‖Mix̃i−1‖s

‖x̃i−1‖s
.
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This is a product of i.i.d. random variables with the same distribution as that of ‖Me1‖s due to the spherical symmetry of
the input ai. Therefore, we can write

h̃(s) = lim
k→∞

(
E
‖x̃k‖s

‖x̃0‖s

)1/k

= lim
k→∞

(
E

k∏
i=1

‖Mie1‖s
)1/k

= E [‖Me1‖s] = E
[∥∥∥(I − η

b
H
)
e1

∥∥∥s] , (D.5)

where we used the fact that Mie1 are i.i.d. over i. It remains to show that h(s) = h̃(s) for ρ < 0. Note that ‖x̃k‖
s

‖x̃0‖s ≤ ‖Πk‖s,
and therefore from the definition of h(s) and h̃(s), we have immediately

h(s) ≥ h̃(s) (D.6)

for any s > 0. We will show that h(s) ≤ h̃(s) when ρ < 0. We assume ρ < 0. Then, Theorem 2 is applicable and there
exists a stationary distribution x∞ with a tail-index α such that h(α) = 1. We will show that h̃(α) = 1. First, the tail density
admits the characterization (3.8), and therefore x∞ ∈ Ls for s < α, i.e. the s-th moment of x∞ is finite. Similarly due to
(3.8), x∞ /∈ Ls for s > α. Since h(α) = 1, it follows from (D.6) that we have h̃(α) ≤ 1. However if h̃(α) < 1, then by the
continuity of the h̃ function there exists ε such that h(s) < 1 for every s ∈ (α− ε, α+ ε) ⊂ (0, 1). From the definition of
h̃(s) then this would imply that E(‖xk‖s) → 0 for every s ∈ (α − ε, α + ε). On the other hand, by following a similar
argument to the proof technique of Corollary 7, it can be shown that the s-th moment of x∞ has to be bounded,8 which
would be a contradiction with the fact that x∞ 6∈ Ls for s > α. Therefore, h̃(α) ≥ 1. Since h(α) = 1, (D.6) leads to

h(α) = h̃(α) = 1. (D.7)

We observe that the function h is homogeneous in the sense that if the iterations matrices Mi are replaced by cMi where
c > 0 is a real scalar, h(s) will be replaced by hc(s) := csh(s). In other words, the function

hc(s) := limk→∞ (E ‖(cMk)(cMk−1) . . . (cM1)‖s)1/k (D.8)

clearly satisfies hc(s) = csh(s) by definition. A similar homogeneity property holds for h̃(s): If the iterations matrices Mi

are replaced by cMi, then h̃(s) will be replaced by h̃c(s) := csh̃(s). We will show that this homogeneity property combined
with the fact that h(α) = h̃(α) = 1 will force h(s) = h̃(s) for any s > 0. For this purpose, given s > 0, we choose
c = 1/ s

√
h(s). Then, by considering input matrix cMi instead of Mi and by following a similar argument which led to the

identity (D.7), we can show that hc(s) = csh(s) = 1. Therefore, h̃c(s) = h̃c(s) = 1. This implies directly h̃(s) = h(s).

Next, we show the following property for the function h.

Lemma 17. We have h(0) = 1, h′(0) = ρ and h(s) is strictly convex in s.

Proof. By the expression of h(s) from Lemma 16, it is easy to check that h(0) = 1. Moreover, we can compute that

h′(s) = E
[
log
(∥∥∥(I − η

b
H
)
e1

∥∥∥)∥∥∥(I − η

b
H
)
e1

∥∥∥s] , (D.9)

and thus h′(0) = ρ. Moreover, we can compute that

h′′(s) = E
[(

log
(∥∥∥(I − η

b
H
)
e1

∥∥∥))2 ∥∥∥(I − η

b
H
)
e1

∥∥∥s] > 0, (D.10)

which implies that h(s) is strictly convex in s.

In the next result, we show that lim infs→∞ h(s) > 1. This property, together with Lemma 17 implies that if ρ < 0, then there
exists some α ∈ (0,∞) such that h(α) = 1. Indeed, in the proof of Lemma 18, we will show that lim infs→∞ h(s) =∞.

Lemma 18. We have lim infs→∞ h(s) > 1.
8Note that the proof of Corollary 7 establishes first that x∞ has a bounded s-th moment provided that h̃(s) = E [‖Me1‖s] < 1 and

then cites Lemma 16 regarding the equivalence h(s) = h̃(s).
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Proof. We recall from Lemma 16 that

h(s) = E
∥∥∥(I − η

b
H
)
e1

∥∥∥s , (D.11)

where e1 is the first basis vector in Rd and H =
∑b
i=1 aia

T
i , and ai = (ai1, . . . , aid) are i.i.d. distributed as N (0, σ2Id).

We can compute that

E
∥∥∥(I − η

b
H
)
e1

∥∥∥s = E
(∥∥∥(I − η

b
H
)
e1

∥∥∥2
)s/2

= E

(eT1
(
I − η

b

b∑
i=1

aia
T
i

)(
I − η

b

b∑
i=1

aia
T
i

)
e1

)s/2
= E

(1− 2η

b
eT1

b∑
i=1

aia
T
i e1 +

η2

b2
eT1

b∑
i=1

aia
T
i

b∑
i=1

aia
T
i e1

)s/2
= E


1− 2η

b

b∑
i=1

a2
i1 +

η2

b2

b∑
i=1

b∑
j=1

(ai1aj1 + · · ·+ aidajd)ai1aj1

s/2


= E


(1− η

b

b∑
i=1

a2
i1

)2

+
η2

b2

b∑
i=1

b∑
j=1

(ai2aj2 + · · ·+ aidajd)ai1aj1

s/2


≥ E
[
2s/21 η2

b2

∑b
i=1

∑b
j=1(ai2aj2+···+aidajd)ai1aj1≥2

]

= 2s/2P

η2

b2

b∑
i=1

b∑
j=1

(ai2aj2 + · · ·+ aidajd)ai1aj1 ≥ 2

→∞,
as s→∞.

Next, we provide alternative formulas for h(s) and ρ for the Gaussian data which is used for some technical proofs.

Lemma 19. For any s > 0,

h(s) = E

((1− ησ2

b
X

)2

+
η2σ4

b2
XY

)s/2 ,
and

ρ =
1

2
E

[
log

((
1− ησ2

b
X

)2

+
η2σ4

b2
XY

)]
,

where X,Y are independent and X is chi-square random variable with degree of freedom b and Y is a chi-square random
variable with degree of freedom (d− 1).



The Heavy-Tail Phenomenon in SGD

Proof. We can compute that

h(s) = E


1− 2ησ2

b

b∑
i=1

z2
i1 +

η2σ4

b2

b∑
i=1

b∑
j=1

(zi1zj1 + · · ·+ zidzjd)zi1zj1

s/2


= E


1− 2ησ2

b

b∑
i=1

z2
i1 +

η2σ4

b2

b∑
i=1

b∑
j=1

(
z2
i1z

2
j1 + zi1zj1

d∑
k=2

zikzjk

)s/2


= E


1− 2ησ2

b

b∑
i=1

z2
i1 +

η2σ4

b2

(
b∑
i=1

z2
i1

)2

+
η2σ4

b2

d∑
k=2

(
b∑
i=1

zi1zik

)2
s/2


= E


(1− ησ2

b

b∑
i=1

z2
i1

)2

+
η2σ4

b2

d∑
k=2

(
b∑
i=1

zi1zik

)2
s/2

 ,
where zij are i.i.d. N(0, 1) random variables. Note that conditional on zi1, 1 ≤ i ≤ b,

b∑
i=1

zi1zik ∼ N

(
0,

b∑
i=1

z2
i1

)
, (D.12)

are i.i.d. for k = 2, . . . , d. Therefore, we have

h(s) = E


(1− ησ2

b

b∑
i=1

z2
i1

)2

+
η2σ4

b2

d∑
k=2

(
b∑
i=1

zi1zik

)2
s/2


= E


(1− ησ2

b

b∑
i=1

z2
i1

)2

+
η2σ4

b2

b∑
i=1

z2
i1

d∑
k=2

x2
k

s/2
 ,

where xk are i.i.d. N(0, 1) independent of zi1, i = 1, . . . , b. Hence, we have

h(s) = E


(1− ησ2

b

b∑
i=1

z2
i1

)2

+
η2σ4

b2

b∑
i=1

z2
i1

d∑
k=2

x2
k

s/2


= E

((1− ησ2

b
X

)2

+
η2σ4

b2
XY

)s/2 ,
where X,Y are independent and X is chi-square random variable with degree of freedom b and Y is a chi-square random
variable with degree of freedom (d− 1).

Similarly, we can compute that

ρ =
1

2
E

log

(1− ησ2

b

b∑
i=1

z2
i1

)2

+
η2σ4

b2

b∑
i=1

b∑
j=1

zi1zj1

d∑
k=2

zikzjk


=

1

2
E

log

(1− ησ2

b

b∑
i=1

z2
i1

)2

+
η2σ4

b2

d∑
k=2

(
b∑
i=1

zi1zik

)2


=
1

2
E

[
log

((
1− ησ2

b
X

)2

+
η2σ4

b2
XY

)]
,
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where X,Y are independent and X is chi-square random variable with degree of freedom b and Y is a chi-square random
variable with degree of freedom (d− 1). The proof is complete.

In the next result, we show that the inverse of M exists with probability 1, and provide an upper bound result, which will be
used to prove Lemma 21.

Lemma 20. Let ai satisfy Assumption (A1). Then, M−1 exists with probability 1. Moreover, we have

E
[(

log+ ‖M−1‖
)2] ≤ 8.

Proof. Note that M is a continuous random matrix, by the assumption on the distribution of ai. Therefore,

P
(
M−1 does not exist

)
= P(detM = 0) = 0. (D.13)

Note that the singular values of M−1 are of the form |1− η
bσH |

−1 where σH is a singular value of H and we have

(
log+

∥∥M−1
∥∥)2 =

{
0 if η

bH � 2I ,(∥∥(I − η
bH)−1

∥∥)2 if 0 � η
bH � 2I .

(D.14)

We consider two cases 0 � η
bH � I and I � η

bH � 2I . We compute the conditional expectations for each case:

E
[(

log+
∥∥M−1

∥∥)2 ∣∣ 0 � η

b
H � I

]
= E

[(
log

∥∥∥∥(I − η

b
H
)−1

∥∥∥∥)2 ∣∣∣ 0 � η

b
H ≺ I

]
(D.15)

≤ E
[(

2
η

b
‖H‖

)2 ∣∣∣ 0 � η

b
H � I

]
(D.16)

≤ 4 , (D.17)

where in the first inequality we used the fact that

log(I −X)−1 � 2X (D.18)

for a symmetric positive semi-definite matrix X satisfying 0 � X ≺ I (the proof of this fact is analogous to the proof of the
scalar inequality log( 1

1−x ) ≤ 2x for 0 ≤ x < 1). By a similar computation,

E
[
(log+ ‖M−1‖)2

∣∣ I � η

b
H � 2I

]
= E

[
log

∥∥∥∥(I − η

b
H
)−1

∥∥∥∥ ∣∣ I � η

b
H ≺ 2I

]
= E

[
log2

∥∥∥∥∥(ηbH)−1
[
I −

(η
b
H
)−1

]−1
∥∥∥∥∥ ∣∣ I � η

b
H ≺ 2I

]

≤ E
[

log2

(∥∥∥∥(ηbH)−1
∥∥∥∥ ·
∥∥∥∥∥
[
I −

(η
b
H
)−1

]−1
∥∥∥∥∥
) ∣∣ I � η

b
H ≺ 2I

]

≤ E
[

log2

(∥∥∥∥∥
[
I −

(η
b
H
)−1

]−1
∥∥∥∥∥
) ∣∣ I � η

b
H ≺ 2I

]

= E
[

log2

(∥∥∥∥∥
[
I −

(η
b
H
)−1

]−1
∥∥∥∥∥
) ∣∣ 1

2
I �

(η
b
H
)−1

≺ I
]
,

where in the last inequality we used the fact that (ηbH)−1 � I for I � η
bH ≺ 2I . If we apply the inequality (D.18) to the

last inequality for the choice of X = (ηbH)−1, we obtain

E

[
log2

∥∥∥∥∥
[
I −

(η
b
H
)−1

]−1
∥∥∥∥∥ ∣∣∣ 1

2
I �

(η
b
H
)−1

≺ I

]
≤ E

[∥∥∥∥2
(η
b
H
)−1

∥∥∥∥2 ∣∣∣ 1

2
I �

(η
b
H
)−1

≺ I

]
≤ 4 . (D.19)

Combining (D.17) and (D.19), it follows from (D.14) that E log+ ‖M−1‖ ≤ 8.
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In the next result, we show that a certain expected value that involves the moments and logarithm of ‖M‖, and logarithm of
‖M−1‖ is finite, which is used in the proof of Theorem 2.

Lemma 21. Let ai satisfy Assumption (A1). Then,

E
[
‖M‖α

(
log+ ‖M‖+ log+ ‖M−1‖

)]
<∞ .

Proof. Note that M = I − η
bH , where H =

∑b
i aia

T
i in distribution. Therefore for any s > 0,

E[‖M‖s] = E

[∥∥∥∥∥I − η

b

b∑
i=1

aia
T
i

∥∥∥∥∥
s]
≤ E

[(
1 +

η

b

b∑
i=1

‖ai‖2
)s]

<∞ , (D.20)

since all the moments of ai are finite by the Assumption (A1). This implies that

E
[
‖M‖α

(
log+ ‖M‖

)]
<∞ .

By Cauchy-Schwarz inequality,

E
[
‖M‖α

(
log+ ‖M−1‖

)]
≤
(
E
[
‖M‖2α

]
E
[(

log+ ‖M−1‖
)2])1/2

<∞,

where we used Lemma 20.

In the next result, we show a convexity result, which is used in the proof of Theorem 4 to show that the tail-index α is strictly
decreasing in stepsize η and variance σ2.

Lemma 22. For any given positive semi-definite symmetric matrix H fixed, the function FH : [0,∞)→ R defined as

FH(a) := ‖(I − aH) e1‖s

is convex for s ≥ 1. It follows that for given b and d with H̃ := 1
b

∑b
i=1 aia

T
i , the function

h(a, s) := E [FH̃(a)] = E
∥∥∥(I − aH̃) e1

∥∥∥s (D.21)

is a convex function of a for a fixed s ≥ 1.

Proof. We consider the case s ≥ 1 and consider the function

GH(a) := ‖(I − aH) e1‖ ,

and show that it is convex for H � 0 and it is strongly convex for H � 0 over the interval [0,∞). Let a1, a2 ∈ [0,∞) be
different points, i.e. a1 6= a2. It follows from the subadditivity of the norm that

GH

(
a1 + a2

2

)
=

∥∥∥∥(I − a1 + a2

2
H

)
e1

∥∥∥∥ ≤ ∥∥∥∥(I2 − a1

2
H

)
e1

∥∥∥∥+

∥∥∥∥(I2 − a2

2
H

)
e1

∥∥∥∥ =
1

2
GH(a1) +

1

2
GH(a2) ,

which implies that GH(a) is a convex function. On the other hand, the function g(x) = xs is convex for s ≥ 1 on the
positive real axis, therefore the composition g(GH(a)) is also convex for any H fixed. Since the expectation of random
convex functions is also convex, we conclude that h(s) is also convex.

The next result is used in the proof of Theorem 6 to bound the moments of the iterates.

Lemma 23. (i) Given 0 < p ≤ 1, for any x, y ≥ 0,

(x+ y)p ≤ xp + yp. (D.22)

(ii) Given p > 1, for any x, y ≥ 0, and any ε > 0,

(x+ y)p ≤ (1 + ε)xp +
(1 + ε)

p
p−1 − (1 + ε)(

(1 + ε)
1
p−1 − 1

)p yp. (D.23)
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Proof. (i) If y = 0, then (x+ y)p ≤ xp + yp trivially holds. If y > 0, it is equivalent to show that(
x

y
+ 1

)p
≤
(
x

y

)p
+ 1, (D.24)

which is equivalent to show that
(x+ 1)p ≤ xp + 1, for any x ≥ 0. (D.25)

Let F (x) := (x + 1)p − xp − 1 and F (0) = 0 and F ′(x) = p(x + 1)p−1 − pxp−1 ≤ 0 since p ≤ 1, which shows that
F (x) ≤ 0 for every x ≥ 0.

(ii) If y = 0, then the inequality trivially holds. If y > 0, by doing the transform x 7→ x/y and y 7→ 1, it is equivalent to
show that for any x ≥ 0,

(1 + x)p ≤ (1 + ε)xp +
(1 + ε)

p
p−1 − (1 + ε)(

(1 + ε)
1
p−1 − 1

)p . (D.26)

To show this, we define
F (x) := (1 + x)p − (1 + ε)xp, x ≥ 0. (D.27)

Then F ′(x) = p(1 + x)p−1 − p(1 + ε)xp−1 so that F ′(x) ≥ 0 if x ≤ ((1 + ε)
1
p−1 − 1)−1, and F ′(x) ≤ 0 if x ≥

((1 + ε)
1
p−1 − 1)−1. Thus,

max
x≥0

F (x) = F

(
1

(1 + ε)
1
p−1 − 1

)
=

(1 + ε)
p
p−1 − (1 + ε)(

(1 + ε)
1
p−1 − 1

)p . (D.28)

The proof is complete.


