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Nezihe Merve Gürel 1 * Xiangyu Qi 2 * Luka Rimanic 1 Ce Zhang 1 Bo Li 3

Abstract

Despite the great successes achieved by deep neu-
ral networks (DNNs), recent studies show that
they are vulnerable against adversarial examples,
which aim to mislead DNNs by adding small ad-
versarial perturbations. Several defenses have
been proposed against such attacks, while many of
them have been adaptively attacked. In this work,
we aim to enhance the ML robustness from a
different perspective by leveraging domain knowl-
edge: We propose a Knowledge Enhanced Ma-
chine Learning Pipeline (KEMLP) to integrate do-
main knowledge (i.e., logic relationships among
different predictions) into a probabilistic graphi-
cal model via first-order logic rules. In particular,
we develop KEMLP by integrating a diverse set
of weak auxiliary models based on their logical re-
lationships to the main DNN model that performs
the target task. Theoretically, we provide conver-
gence results and prove that, under mild condi-
tions, the prediction of KEMLP is more robust
than that of the main DNN model. Empirically,
we take road sign recognition as an example and
leverage the relationships between road signs and
their shapes and contents as domain knowledge.
We show that compared with adversarial train-
ing and other baselines, KEMLP achieves higher
robustness against physical attacks, Lp bounded
attacks, unforeseen attacks, and natural corrup-
tions under both whitebox and blackbox settings,
while still maintaining high clean accuracy.
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1. Introduction
Recent studies show that machine learning (ML) models are
vulnerable to different types of adversarial examples, which
are adversarially manipulated inputs aiming to mislead ML
models to make arbitrarily incorrect predictions (Szegedy
et al., 2013; Goodfellow et al., 2015; Bhattad et al., 2020;
Eykholt et al., 2018). Different defense strategies have
been proposed against such attacks, including adversarial
training (Shafahi et al., 2019; Madry et al., 2017), input
processing (Ross and Doshi-Velez, 2018), and approaches
with certified robustness against Lp bounded attacks (Cohen
et al., 2019; Yang et al., 2020a). However, these defenses
have either been adaptively attacked again (Carlini and Wag-
ner, 2017a; Athalye et al., 2018) or can only certify the
robustness within a small `p perturbation radius. In addition,
when models are trained to be robust against one type of
attack, their robustness is typically not preserved against
other attacks (Schott et al., 2018; Kang et al., 2019). Thus,
despite the rapid recent progress on robust learning, it is still
challenging to provide robust ML models against a diverse
set of adversarial attacks in practice.

In this paper, we take a different perspective towards train-
ing robust ML models against diverse adversarial attacks by
integrating domain knowledge during prediction, given the
observation that human with knowledge is quite resilient
against these attacks. We will first take stop sign recogni-
tion as a simple example to illustrate the potential role of
knowledge in ML prediction. In this example, the main
task is to predict whether a stop sign appears in the input
image. Training a DNN model for this task is known to be
vulnerable against a range of adversarial attacks (Eykholt
et al., 2018; Xiao et al., 2018a). However, upon such a
DNN model, if we could (1) build a detector for a different
auxiliary task, e.g., detecting whether an octagon appears
in the input by using other learning strategies such as tra-
ditional computer vision techniques, and (2) integrate the
domain knowledge such that “A stop sign should be of an
octagon shape”, it is possible that additional information
could enable the ML system to detect or defend against
attacks, which lead to conflicts between the DNN prediction
and domain knowledge. For instance, if a speed limit sign
with rectangle shape is misrecognized as a stop sign, the
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Figure 1. An overview of the KEMLP framework. KEMLP con-
structs a factor graph by modeling the output of ML models as
random input variables, and the KEMLP prediction as a random
output variable. It integrates domain knowledge via factors con-
necting different random variables.

ML system would identify this conflict and try to correct
the prediction.

Inspired by this intuition, we aim to understand how to
enhance the robustness of ML models via domain knowledge
integration. Despite the natural intuition in the previous
simple example, providing a technically rigorous treatment
to this problem is far from trivial, yielding the following
questions: How should we integrate domain knowledge in a
principled way? When will integrating domain knowledge
help with robustness and will there be a tradeoff between
robustness and clean accuracy? Can integration of domain
knowledge genuinely bring additional robustness benefits
against practical attacks when compared with state-of-the-
art defenses?

In this work, we propose KEMLP, a framework that fa-
cilitates the integration of domain knowledge in order to
improve the robustness of ML models. Figure 1 illustrates
the KEMLP framework. In KEMLP, the outputs of dif-
ferent ML models are modeled as random input variables,
whereas the output of KEMLP is modeled as another vari-
able. To integrate domain knowledge, KEMLP introduces
corresponding factors connecting these random variables.
For example, as illustrated in Figure 1, the knowledge rule
“A stop sign is of an octagon shape” introduces a factor
between the input variable (i.e., the output of the octagon
detector) and the output variable (i.e., output of the stop
sign detector) with a factor function that the former implies
the latter. To make predictions, KEMLP runs statistical in-
ference over the factor graph constructed by integrating all
such domain knowledge expressed as first-order logic rules,
and output the marginal probability of the output variable.

Based on KEMLP, our main goal is to understand two fun-
damental questions based on KEMLP: (1) What type of
knowledge is needed to improve the robustness of the joint
inference results from KEMLP, and can we prove it? (2) Can
we show that knowledge integration in the KEMLP frame-
work can provide significant robustness gain over powerful
state-of-the-art models?

We conduct theoretical analysis to understand the first ques-
tion, focusing on two specific types of knowledge rules:
(1) permissive knowledge of the form “B =⇒ A”, and
(2) preventive knowledge of the form “A =⇒ B”, where
A represents the main task, B an auxiliary task and =⇒
denotes logical implication. We focus on the weighted ro-
bust accuracy, which is a weighted average of accuracies
on benign and adversarial examples, respectively, and we
derive sufficient conditions under which KEMLP outper-
forms the main task model alone. Under mild conditions,
we show that integrating multiple weak auxiliary models,
both in their robustness and quality, together with the per-
missive and preventive rules, the weighted robust accuracy
of KEMLP can be guaranteed to improve over the single
main task model. To our best knowledge, this is the first
analysis of proposed form, focusing on the intersection of
knowledge integration, joint inference, and robustness.

We then conduct extensive empirical studies to understand
the second question. We focus on the road sign classi-
fication task and consider the state-of-the-art adversarial
training models based on both the Lp bounded perturba-
tion and occlusion perturbations (Wu et al., 2019) as our
baselines as well as the main task model. We show that by
training weak auxiliary models for recognizing the shapes
and contents of road signs, together with the corresponding
knowledge rules as illustrated in Figure 1, KEMLP achieves
significant improvements on their robustness compared with
baseline main task models against a diverse set of adversar-
ial attacks while maintaining similar or even higher clean
accuracy, given its improvement on the tradeoff between
clean accuracy and robustness. In particular, we consider
existing physical attacks (Eykholt et al., 2018), Lp bounded
attacks (Madry et al., 2017), unforeseen attacks (Kang et al.,
2019), and common corruptions (Hendrycks and Dietterich,
2019), under both whitebox and blackbox settings. To our
best knowledge, KEMLP is the first ML model robust to
diverse attacks in practice with high clean accuracy. Our
code is publicly available for reputability 1.

Technical Contributions. In this paper, we take the first
step towards integrating domain knowledge with ML to
improve its robustness against different attacks. We make
contributions on both theoretical and empirical fronts.

• We propose KEMLP, which integrates a main task ML
model with a set of weak auxiliary task models, together
with different knowledge rules connecting them.

• Theoretically, we provide the robustness guarantees for
KEMLP and prove that under mild conditions, the predic-
tion of KEMLP is more robust than that of a single main
task model.

• Empirically, we develop KEMLP based on different main

1https://github.com/AI-secure/
Knowledge-Enhanced-Machine-Learning-Pipeline

https://github.com/AI-secure/Knowledge-Enhanced-Machine-Learning-Pipeline
https://github.com/AI-secure/Knowledge-Enhanced-Machine-Learning-Pipeline
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task models, and evaluate them against a diverse set of
attacks, including physical attacks, Lp bounded attacks,
unforeseen attacks, and common corruptions. We show
that the robustness of KEMLP outperforms all baselines
by a wide margin, with comparable and often higher clean
accuracy.

2. Related Work
In the following, we review several bodies of literature that
are relevant to the objective of our paper.

Adversarial examples are carefully crafted inputs aiming
to mislead well-trained ML models (Goodfellow et al., 2015;
Szegedy et al., 2013). A variety of approaches to generate
such adversarial examples have also been proposed based
on different perturbation measurement metrics, including
Lp bounded, unrestricted, and physical attacks (Wong et al.,
2019; Bhattad et al., 2020; Xiao et al., 2018b;c; Eykholt
et al., 2018).

Defense methods against such attacks have been proposed.
Empirically, adversarial training (Madry et al., 2017) has
shown to be effective, together with feature quantization (Xu
et al., 2017) and reconstruction approaches (Samangouei
et al., 2018). Certified robustness has also been studied
by propagating the interval bound of a NN (Gowal et al.,
2018), or randomized smoothing of a given model (Cohen
et al., 2019). Several approaches have further improved
it: by choosing different smoothing distributions for differ-
ent Lp norms (Dvijotham et al., 2020; Zhang et al., 2020;
Yang et al., 2020a), or training more robust smoothed classi-
fiers via data augmentation (Cohen et al., 2019), unlabeled
data (Carmon et al., 2019), adversarial training (Salman
et al., 2019), and regularization (Li et al., 2019; Zhai et al.,
2019). While most prior defenses focus on leveraging statis-
tical properties of an ML model to improve its robustness,
they can only be robust towards a specific type of attack,
such as `p bounded attacks. This paper aims to explore how
to utilize knowledge inference information to improve the
robustness of a logically connected ML pipeline against a
diverse set of attacks.

Joint inference has been studied to take multiple predic-
tions made by different models, together with the relations
among them, to make a final prediction (Xu et al., 2020;
Deng et al., 2014; Poon and Domingos, 2007; McCallum,
2009; Chen et al., 2014; Chakrabarti et al., 2014; Biba
et al., 2011). These approaches usually use different infer-
ence models, such as factor graphs (Wainwright and Jordan,
2008), Markov logic networks (Richardson and Domingos,
2006) and Bayesian networks (Neuberg, 2003), as a way
to characterize their relationships. The programmatic weak
supervision approaches (Ratner et al., 2016; 2017) also per-
form joint inference by employing labeling functions and

using generative modeling techniques, which aims to cre-
ate noisy training data. In this paper, we take a different
perspective on this problem — we explore the potential
of using joint inference with the objective of integrating
domain knowledge and to eventually improving the ML ro-
bustness. As we will see, by integrating domain knowledge,
it is possible to improve the learning robustness by a wide
margin.

3. KEMLP: Knowledge Enhanced Machine
Learning Pipeline

We first present the proposed framework KEMLP, which
aims to improve the robustness of an ML model by integrat-
ing a diverse set of domain knowledge. In this section, we
formally define the KEMLP framework.

We consider a classification problem under a supervised
learning setting, defined on a feature space X and a finite
label space Y . We refer to x ∈ X as an input and y ∈ Y as
the target variable. An input x can be a benign example or
an adversarial example. To model this, we use z ∈ {0, 1}, a
latent variable that is not exposed to KEMLP. That is, x is
an adversarial example with (x, y) ∼ Da whenever z = 1,
and (x, y) ∼ Db otherwise, where Da and Db represent the
adversarial and benign data distributions. We let πDa =
P(z = 1) and πDb

= P(z = 0), implying πDa
+ πDb

=
1. For convenience, we denote PDa

(x, y) = P(x, y|z =
1) and PDb

(x, y) = P(x, y|z = 0). In the following, to
ease the exposition, we slightly abuse the notation and use
probability densities for discrete distributions.

Given an input x whose corresponding z is unknown (be-
nign or adversarial), KEMLP aims to predict the target
variable y by employing a set of models. These predic-
tive models are constructed, say, using ML or some other
traditional rule-based methods (e.g., edge detector). For
simplicity, we describe the KEMLP framework as a binary
classification task, in which case Y = {0, 1}, noting that
the multi-class scenario is a simple extension of it. We
introduce the KEMLP framework as follows.

Models Models are a collection of predictive ML models,
each of which takes as input x and outputs some predictions.
In KEMLP, we distinguish three different type of models.

• Main task model: We call the (untrusted) ML model
whose robustness users want to enhance as the main task
model, denoting its predictions by s∗ ∈ Y .
• Permissive models: Let sI = {si : i ∈ I} be a set of
m permissive models, each of which corresponds to the
prediction of one ML model. Conceptually, permissive
models are usually designed for specific events which are
sufficient for inferring y = 1: si =⇒ y.
• Preventative models: Similarly, we have n preventative
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models: sJ = {sj : j ∈ J }, each of which corresponds to
the prediction of one ML model. Conceptually, preventative
models capture the events that are necessary for the event
y = 1: y =⇒ sj .

Knowledge Integration Given a data example (x, y) ∼
Db or (x, y) ∼ Da, y is unknown to KEMLP. We create
a factor graph to embed the domain knowledge as follows.
The outputs of each model over x become input variables:
s∗, sI = {si : i ∈ I}, sJ = {sj : j ∈ J }. KEMLP
also has an output variable o ∈ Y , which corresponds to
its prediction. Different models introduce different types of
factors connecting these variables:

• Main model: KEMLP introduces a factor between the
main model s∗ and the output variable o with factor function
f∗(o, s∗) = 1{o = s∗};
• Permissive model: KEMLP introduces a factor between
each permissive model si and the output variable o with
factor function fi(o, si) = 1{si =⇒ o}.
• Preventative model: KEMLP introduces a factor between
each preventative model sj and the output variable o with
factor function fj(o, sj) = 1{o=⇒ sj}.

Learning with KEMLP To make a prediction, KEMLP
outputs the probability of the output variable o. KEMLP
assigns a weight for each model and constructs the following
statistical model:

P[o|s∗, sI , sJ , w∗, wI , wJ , bo] ∝
exp{bo + w∗f∗(o, s∗)}×

exp
{∑
i∈I

wifi(o, si)
}
× exp

{∑
j∈J

wjfj(o, sj)
}

where w∗, wi, wj are the corresponding weights for models
s∗, si, sj , wI = {wi : i ∈ I}, wJ = {wj : j ∈ J }
and bo is some bias parameter that depends on o. For the
simplicity of exposition, we use an equivalent notation by
putting all the weights and outputs of factor functions into
vectors using an ordering of models. More precisely, we
define

w = [1;w∗; (wi)i∈I ; (wj)j∈J ],

fo(s∗, sI , sJ ) = [bo; f∗(o, s∗); (fi(o, si))i∈I ; (fj(o, sj))j∈J ],

for o ∈ Y . All concatenated vectors from above are in
Rm+n+2. Given this, an equivalent form of KEMLP’s sta-
tistical model is

P[o|s∗, sI , sJ ,w] =
1

Zw
exp(〈w, fo(s∗, sI , sJ )〉) (1)

where Zw is the normalization constant over o ∈ Y . With
some abuse of notation, w is meant to govern all parameters
including weights and biases whenever used with probabili-
ties.

Weight Learning During the training phase of KEMLP,
we choose parameters w by performing standard maximum
likelihood estimation over a training dataset. Given a par-
ticular input instance x(n), respective model predictions
s(n)
∗ , s(n)

I , s(n)

J , and the ground truth label y(n), we minimize
the negative log-likelihood function in view of

ŵ = arg min
w

{
−
∑
n

log
(
P[o(n) = y(n)|s(n)

∗ , s(n)

I , s(n)

J ,w]
)}
.

Inference During the inference phase of KEMLP, given
an input example x̂, we predict ŷ that has the largest prob-
ability given the respective model predictions ŝ∗, ŝI , ŝJ ,
namely, ŷ = arg maxỹ∈Y P[o = ỹ|ŝ∗, ŝI , ŝJ , ŵ].

4. Theoretical Analysis
How does knowledge integration impact the robustness of
KEMLP? In this section, we provide theoretical analysis
about the impact of domain knowledge integration on the ro-
bustness of KEMLP. We hope to (1) depict the regime under
which knowledge integration can help with robustness; (2)
explain how a collection of “weak” (in terms of prediction
accuracy) but “robust” auxiliary models, on tasks different
from the main one, can be used to boost overall robustness.
Here we state the main results, whereas we refer interested
readers to Appendix A where we provide all relevant details.

Weighted Robust Accuracy Previous theoretical analy-
sis on ML robustness (Javanmard et al., 2020; Xu et al.,
2009; Raghunathan et al., 2020) have identified two natural
dimensions of model quality: clean accuracy and robust
accuracy, which are the accuracy of a given ML model on
inputs x drawn from either the benign distribution Db or
adversarial distribution Da. In this paper, to balance their
tradeoff, we use their weighted average as our main metric
of interest. That is, given a classifier h : X → Y we define
its Weighted Robust Accuracy as

Ah = πDa
PDa

[h(x) = y] + πDb
PDb

[h(x) = y].

We use AKEMLP and Amain to denote the weighted robust
accuracies of KEMLP and main task model, respectively.

4.1. AKEMLP: Weighted Robust Accuracy of KEMLP

The goal of our analysis is to identify the regime under
which AKEMLP > Amain is guaranteed. The main analy-
sis to achieve this hinges on deriving the weighted robust
accuracy AKEMLP for KEMLP. We first describe the model-
ing assumptions of our analysis, and then describe two key
characteristics of models, culminating in a lower bound of
AKEMLP.

Modeling Assumptions We assume that for a fixed z, that
is, for a fixed D ∈ {Db,Da}, the models make independent
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errors given the target variable. Thus, for all D ∈ {Db,Da},
the class conditional distribution can be decomposed as

PD[s∗, sI , sJ |y] = PD[s∗|y]
∏
i∈I

PD[si|y]
∏
j∈J

PD[sj |y].

We also assume for simplicity that the main task model
makes symmetric errors given the class of target variable,
that is, PD[s∗ 6= y|y] is fixed with respect to y for all D ∈
{Db,Da}.

Characterizing Models: Truth Rate (α) and False Rate
(ε) Each auxiliary model k ∈ I ∪ J is characterized by
two values, their truth rate (α) and false rate (ε) over benign
and adversarial distributions. These values measure the
consistency of the model with the ground truth:

Permissive Models:
αi,D := PD[si = y|y = 1], εi,D := PD[si 6= y|y = 0]

Preventative Models:
αj,D := PD[sj = y|y = 0], εj,D := PD[sj 6= y|y = 1]

Note that, given the asymmetric nature of these auxiliary
models, we do not necessarily have εk,D = 1 − αk,D. In
addition, for a high quality permissive model (k ∈ I), or a
high quality preventative model (k ∈ J ) for which the logic
rules mostly hold, we expect αk,D to be large and εk,D to
be small.

We define the truth rate of main model over data examples
drawn from D ∈ {Db,Da} as α∗,D := PD(s∗ = y), and its
false rate as ε∗,D := PD(s∗ 6= y) = 1− α∗,D.

These characteristics are of integral importance to weighted
robust accuracy of KEMLP. To combine all the models
together, we define upper and lower bounds to truth rates and
false rates. For the main model, we have ∧α∗ := minD α∗,D
and ∨α∗ := maxD α∗,D. For the auxiliary models, on the
other hand, for each model index k ∈ I ∪ J , we have

∧αk := min
D

αk,D, ∧εk := min
D

εk,D

∨αk := max
D

αk,D, ∨εk := max
D

εk,D.

Intuitively, the difference between ∧α and ∨α (resp. ∧ε and
∨ε) indicates the “robustness” of each individual model. If a
model performs very similarly when it is given a benign and
an adversarial example, we have that ∧α should be similar
to ∨α (resp. ∧ε to ∨ε).

The truth and false rates of models directly influence the
factor weights which govern the influence of models in
the main task. In Appendix A.2 we prove that the opti-
mal weight of an auxiliary model is bounded by wk ≥
log ∧αk(1 − ∨εk)/(1 − ∧αk)∨εk, for all k ∈ I ∪ J . That

is, the lowest truth rate and highest false rate of an auxiliary
model (resp. ∧αk and ∨εk) are indicative of its influence
in the main task. By taking partial derivatives, this lower
bound can be shown to be increasing in ∧αk and decreasing
in ∨εk. That is, as the lowest truth rate of a model gets higher,
KEMLP increases its influence in the weighted majority vot-
ing accordingly – in the above nonlinear fashion. The lowest
truth rate is often determined by the robust accuracy. As a
result, the more “robust” an auxiliary model is, the larger
the influence on KEMLP, which naturally contributes to its
robustness.

Weighted Robust Accuracy of KEMLP We now pro-
vide a lower bound on the weighted robust accuracy of
KEMLP, which can be written as

AKEMLP = ED∼{Da,Db}Ey∼Y
[
PD[o = y|y,w]

]
. (2)

We first provide one key technical lemma followed by the
general theorem.

We see that the key component in AKEMLP is PD[o =
y|y,w], the conditional probability that a KEMLP pipeline
outputs the correct prediction. Using knowledge aggregation
rules f∗, fi and fj , as well as (1), for each D ∈ {Db,Da}
we have

PD[o = y|y,w] = PD
[
P[o = y|s∗, sI , sJ ,w] > 1/2

∣∣y]
= PD

[
〈w, fy(s∗, sI , sJ )− f1−y(s∗, sI , sJ )〉 > 0|y

]
.

To bound the above value, we need to characterize the con-
centration behavior of the random variable

∆w(y, s∗, sI , sJ ) := 〈w, fy(s∗, sI , sJ )−f1−y(s∗, sI , sJ )〉.

That is, we need to bound its left tail below zero. For this
purpose, we reason about its expectation, leading to the
following lemma.

Lemma 1. Let ∆w be a random variable defined above.
Suppose that KEMLP uses optimal parameters w such that
P[y|s∗, sI , sJ ] = P[o|s∗, sI , sJ ,w]. Let also ry denote
the log-ratio of class imbalance log P[y=1]

P[y=0] . For a fixed
y ∈ Y and D ∈ {Db,Da}, one has

Es∗,sI ,sJ [∆w(y, s∗, sI , sJ )|y]

≥ µd∗,D+yµdI,D+(1− y)µdJ ,D+(2y − 1)ry := µy,D,

where

µd∗,D = α∗,D log
∧α∗

1− ∧α∗
+ (1− α∗,D) log

1− ∨α∗
∨α∗

,

µdI,D =
∑
i∈I

αi,D log
∧αi

∨εi
+ (1− αi,D) log

1− ∨αi

1− ∧εi

−
∑
j∈J

εj,D log
∨αj

∧εj
− (1− εj,D) log

1− ∧αj

1− ∨εj
,
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and

µdJ ,D =
∑
j∈J

αj,D log
∧αj

∨εj
+ (1− αj,D) log

1− ∨αj

1− ∧εj

−
∑
i∈I

εi,D log
∨αi

∧εi
− (1− εi,D) log

1− ∧αi

1− ∨εi
.

Proof Sketch. This lemma can be derived by first decompos-
ing ∆w into parts that are relevant for s∗, sI , sJ , namely
there exist d∗,D, dI,D, dJ ,D such that

∆w(y, s∗, sI , sJ )=d∗,D+ydI,D+(1− y)dJ ,D+(2y − 1)ry.

Then we prove that µ∗,D ≤ E[d∗,D] for the main model,
and µdK,D ≤ E[dK,D] for K ∈ {I,J }, the permissive
and preventative models. The full proof is presented in
Appendix A.3.

Discussion The above lemma illustrates the relationship
between the models andAKEMLP. Intuitively, the larger µy,D
is, the further away the expectation of ∆w(y, s∗, sI , sJ )
is from 0, and thus, the larger the probability that
∆w(y, s∗, sI , sJ ) > 0. We see that µy,D consists of three
terms: µd∗,D , µdI,D , µdJ ,D , measuring the contributions
from the main model for all y, permissive models and pre-
ventative models for y = 1 and y = 0, respectively. More
specifically, µy,D is increasing in terms of a weighted sum
of αi, and decreasing in terms of a weighted sum of εj .
When si =⇒ y holds (permissive models), it implies a
large αi for y = 1, whereas when y =⇒ sj holds (pre-
ventative model) it implies a small εj for y = 1. Thus,
this lemma connects the property of auxiliary models to the
weighted robust accuracy of KEMLP.

4.2. Convergence of AKEMLP

Now we are ready to present our convergence result.
Theorem 1 (Convergence ofAKEMLP). For y ∈ Y andD ∈
{Db,Da}, let µy,D be defined as in Lemma 1. Suppose that
the modeling assumption holds, and suppose that µdK,D >
0, for all K ∈ {I,J } and D ∈ {Db,Da}. Then

AKEMLP ≥ 1− Eµy,D [exp
(
−2µ2

y,D/v
2
)
], (3)

where v2 is the variance upper bound to P[o = y|y,w] with

v2= 4
(

log
∨α∗

1− ∧α∗

)2
+
∑

k∈I∪J

(
log

∨αk(1− ∧εk)

∧εk(1− ∨αk)

)2
.

Proof Sketch. We begin by subtracting the term µy,D from
PD(o = y|y,w), and then decomposing the result into in-
dividual summands, where each summand is induced by a
single model. We then treat each summand as a bounded
increment whose sum is a submartingale. Followed by
an application of generalized bounded difference inequal-
ity (van de Geer, 2002), we arrive at the proof, whose full
details can be found in Appendix A.4.

Discussion In the following, we attempt to understand the
scaling of the weighted robust accuracy of KEMLP in terms
of models’ characteristics.

Impact of truth rates and false rates: We note that µdK,D

for K ∈ {I,J }, which is an additive component of µy,D,
poses importance to understand the factors contributing
to the performance of KEMLP. Generally, larger µdK,D

(hence µy,D) would increase the right tail probability of
∆w(y, s∗, sI , sJ ) leading to a larger weighted accuracy for
KEMLP. Although exceptions exist in cases where the vari-
ance increases disproportionally, here in our discussion we
first focus on parameters that increase µdK,D . Towards that,
we simplify our exposition and let each auxiliary model
have the same truth and false rate over both benign and
adversarial examples, and within each type, where the exact
parameters are given by αk := αk,D = ∧αk,D = ∨αk,D
and εk := εk,D = ∧εk,D = ∨εk,D, for k ∈ I ∪ J . In
this simplified setting where the expected performance im-
provement by the auxiliary models is given by µdK,D for
K ∈ {I,J } and fixed with respect to D, one can observe
through partial derivatives that µdK,D is increasing over αk
and decreasing over εk. This explains why the two types
of knowledge rules would help: high-quality permissive
models would have high truth rate and low false rate (αi
and εi), as well as the preventative models (αj and εj), yet
with different coverages for y ∈ Y .

Auxiliary models in KEMLP - the more the merrier? Next,
we investigate the effect of the number of auxiliary models.
To simplify, let |I| = |J |, and let µ̂y,D be a random variable
with µ̂y,D = µy,D/(n+ 1), and v̂2 = v2/(n+ 1). The
exponent thus becomes −µ2

y,D/v
2 = −(n + 1)µ̂2

y,D/v̂
2.

One can show that µ̂2
y,D/v̂

2 ≥ c for some positive constant
c, implying that AKEMLP ≥ 1 − exp(−2(n + 1)c). That
is, increasing the number of models generally improves the
weighted robust accuracy of KEMLP. To demonstrate this,
we now focus on understanding the scaling of weighted
robust accuracy on a simplified setting. We assume that the
auxiliary models are homogeneous for each type: permissive
or preventative. For example, αk is fixed with respect to
k ∈ I ∪ J , hence we drop the subscripts, i.e., αk,D = α
and εk,D = ε. We assume that the same number of auxiliary
models are used, namely |I| = |J | = n, and that the
classes are balanced with PD(y = 1) = PD(y = 0), for all
D ∈ {Db,Da}. Finally, we let α∗,Db

= 1 and α∗,Da = 0,
and α− ε > 0. Then, the following holds.

Corollary 1 (Homogenous models). The weighted robust
accuracy of KEMLP in the homogeneous setting satisfies

AKEMLP ≥ 1− exp
(
− 2n(α− ε)2

)
.

In particular, one has limn→∞AKEMLP = 1.

For this particular case, the predicted class for the target
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variable y is based upon an (unweighted) majority voting de-
cision. The above result suggests that for a setting where the
auxiliary models are homogeneous with different coverage,
the performance of KEMLP to predict the output variable
y robustly is determined by: (a) the difference between the
probability of predicting the output variable correctly and
that of making an erroneous prediction, that is, α− ε, and
(b) the number of auxiliary models. Consequently, AKEMLP

converges to 1 exponentially fast in the number of auxiliary
models as long as α − ε > 0, which is naturally satisfied
by the principle KEMLP employs while constructing the
logical relations between the output variable and different
knowledge.

4.3. Comparing AKEMLP and Amain

Theorem 1 guarantees that the addition of models allows
the weighted robust accuracy of KEMLP to converge to 1
exponentially fast. We now introduce a sufficient condition
under which AKEMLP is strictly better than Amain.

Theorem 2 (Sufficient condition forAKEMLP > Amain). Let
the number of permissive and preventative models be the
same and denoted by n such that n := |I| = |J |. Note that
the weighted accuracy of the main model in terms of its truth
rate is simply α∗ :=

∑
D∈{Db,Da} πDα∗,D. Moreover, let

K,K′ ∈ {I,J } with K 6= K′ and for any D ∈ {Db,Da},
let

γD :=
1

n+ 1
min
K

{
α∗,D − 1/2 +

∑
k∈K

αk,D −
∑
k′∈K′

εk′,D

}
.

If γD >
√

4
n+1 log 1

1−α∗ for all D ∈ {Db,Da}, then

AKEMLP > Amain.

Proof Sketch. We first approximate ∆w(y, s∗, sI , sJ ) with
a Poisson Binomial random variable and apply the rele-
vant Chernoff bound. Imposing a strict bound between the
Chernoff result and the true and false rates of main model
concludes the proof. We note that this bound is slightly
simplified, and our full proof in the Appendix A.5 is tighter.

Discussion We start by noting that γD is a combined truth
rate of all models normalized over the number of models.
That is, for a fixed distribution D, α∗,D − 1/2 indicates the
truth rate of main task model over a random classifier and∑
k∈K αk,D −

∑
k′∈K′ εk′,D refers to the improvement by

the auxiliary models on top of the main task model. More
specifically, in cases where the true class of output variable
is positive with y = 1,

∑
i∈I αi,D−

∑
j∈J εj,D account for

the total (and unnormalized) success of permissive models
in identifying y = 1 interfered by the failure of preventative
model in identifying y = 1 (resp. For y = 0, K = J ).
Hence, γD is the ”worst-case” combined truth rate of all

models, where the worst-case refers to minimization over
all possible labels of target variable.

Theorem 2 therefore forms a relationship between the im-
provement of KEMLP over the main task model and the
combined truth rate of models, and theoretically justifies our
intuition – larger truth rates and lower false rates of individ-
ual auxiliary models result in larger combined truth rate γD,
hence making the sufficient condition more likely to hold.
Additionally, employing a large number of auxiliary models
is found to be beneficial for better KEMLP performance, as
we conclude in Corollary 1 as well. Our finding here also
confirms that in the extreme scenarios where the main task
model has a perfect clean and robust truth rate (α∗ = 1), it
is not possible to improve upon the main task model. Con-
versely, when α∗ = 0, any improvement by KEMLP would
result in absolute improvement over the main model.

5. Experimental Evaluation
In this section, we evaluate KEMLP based on the traffic sign
recognition task against different adversarial attacks and
corruptions, including the physical attacks (Eykholt et al.,
2018), L∞ bounded attacks, unforeseen attacks (Kang et al.,
2019), and common corruptions (Hendrycks and Dietterich,
2019). We show that under both whitebox and blackbox
settings against a diverse set of attacks, 1) KEMLP achieves
significantly higher robustness than baselines, 2) KEMLP
maintains similar clean accuracy with a strong main task
model whose clean accuracy is originally high (e.g., vanil-
lar CNN), 3) KEMLP even achieves higher clean accuracy
than a relatively weak main task model whose clean accu-
racy is originally low as a tradeoff for its robustness (e.g.,
adversarially trained models).

5.1. Experimental Setup

Dataset Following existing work (Eykholt et al., 2018;
Wu et al., 2019) that evaluate ML robustness on traffic sign
data, we adopt LISA (Mogelmose et al., 2012) and GT-
SRB (Stallkamp et al., 2012) for training and evaluation. All
data are processed by standard crop-and-resize to 32×32 as
described in (Sermanet and LeCun, 2011). In this paper, we
conduct the evaluation on two dataset settings: 1) Setting-A:
a subset of GTSRB, which contains 12 types of German
traffic signs. In total, there are 14880 samples in the training
set, 972 samples in the validation set, and 3888 samples in
the test set; 2) Setting-B: a modified version of Setting-A,
where the German stop signs are replaced with the U.S. stop
signs from LISA, following (Eykholt et al., 2018).

Models We adopt the GTSRB-CNN architecture (Eykholt
et al., 2018) as the main task model. KEMLP is constructed
based on the main task model together with a set of auxiliary
task models (e.g., color, shape, and content detectors). To
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Figure 2. (a) Clean accuracy and (b) (c) robust accuracy improvement of KEMLP (β = 0.5) over baselines against different attacks under
both whitebox and blackbox settings. The represented attack list and results of other baselines are in Appendix B.2.

Table 1. Model performance (%) under physical attacks (β = 0.4). Performance gain and loss of KEMLP over baselines are highlighted.
Main KEMLP

Clean Acc Robust Acc W-Robust Acc Clean Acc Robust Acc W-Robust Acc
GTSRB-CNN 100 5 52.5 100(±0) 87.5(+82.5) 93.75(+41.25)

AdvTrain (ε = 4) 100 12.5 56.25 100(±0) 90(+77.5) 95(+38.75)
AdvTrain (ε = 8) 97.5 37.5 67.5 100(+2.5) 90(+52.5) 95(+27.5)
AdvTrain (ε = 16) 87.5 50 68.75 100(+12.5) 90(+40) 95(+26.25)
AdvTrain (ε = 32) 62.5 32.5 47.5 100(+37.5) 90(+57.5) 95(+47.5)

DOA (5x5) 95 90 92.5 100(+5) 100(+10) 100(+7.5)
DOA (7x7) 57.5 32.5 45 100(+42.5) 100(+67.5) 100(+55)

train the weights of factors in KEMLP, we use β to denote
the prior belief on balance between benign and adversarial
distributions. More details on implementation are provided
in Appendix B.3.

Baselines To demonstrate the superiority of KEMLP, we
compare it with two state-of-the-art baselines: adversarial
training (Madry et al., 2017) and DOA (Wu et al., 2019),
which are strong defenses against Lp bounded attacks and
physically attacks respectively. Detailed setup for baselines
is given in Appendix B.1.

Evaluated Attacks and Corruptions We consider four
types of attacks for thorough evaluation: 1) physical at-
tacks on stop signs (Eykholt et al., 2018); 2) L∞ bounded
attacks (Madry et al., 2017) with ε ∈ {4, 8, 16, 32}; 3) Un-
foreseen attacks, which produce a diverse set of unforeseen
test distributions (e.g. Elastic, JPEG, Fog) distinct from Lp
bounded perturbation (Kang et al., 2019); 4) common cor-
ruptions (Hendrycks and Dietterich, 2019). We present ex-
amples of these adversarial instances in Appendix B.4. For
each attack, we consider both the whitebox attack against
the main task model and blackbox attack by distilling either
the main task model or the whole KEMLP pipeline. More
details can be found in Appendix B.2.

5.2. Evaluation Results

Here we compare the clean accuracy, robust accuracy, and
weighted robustness (W-Robust Accuracy) for baselines and
KEMLP under different attacks and settings.

Clean accuracy of KEMLP First, we present the clean
accuracy of KEMLP and baselines in Figure 2 (a) and Ta-
bles 1–4. As demonstrated, the clean accuracy of KEMLP
is generally high (over 90%), by either maintaining the high
clean accuracy of strong main task models (e.g., vanilla
DNN) or improving upon the weak main task models with
relatively low clean accuracy (e.g., adversarially trained
models). It is clear that KEMLP can relax the tradeoff be-
tween benign and robust accuracy and maintain the high
performance for both via knowledge integration.

Robustness against diverse attacks We then present the
robustness of KEMLP based on different main task models
against the physical attacks, which is very challenging to
defend currently ( Table 1), `p bounded attacks ( Table 2),
unseen attacks (Table 3), and common corruptions (Table 4)
under whitebox attack setting. The corresponding results
for blackbox setting can be found in Appendix B.5. From
the tables, we observe that KEMLP achieves significant
robustness gain over baselines. Note that although adver-
sarial training improves the robustness against L∞ attacks
and DOA helps to defend against physical attacks, they are
not robust to other types of attacks or corruptions. In con-
trast, KEMLP presents general robustness against a range
of attacks and corruptions without further adaptation.

Performance stability of KEMLP We conduct addi-
tional ablation studies on β, representing the prior belief
on the benign and adversarial distribution balance. We set
β = 0.5 for KEMLP indicating a balanced random guess
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Table 2. Accuracy (%) under whitebox L∞ attacks (β = 0.8)
Models ε = 0 ε = 4 ε = 8 ε = 16 ε = 32

GTSRB-CNN Main 99.38 67.31 43.13 13.50 3.63
KEMLP 98.28(−1.10) 85.39(+18.08) 71.76(+28.63) 48.89(+35.39) 26.13(+22.50)

AdvTrain (ε = 4) Main 97.94 87.94 68.85 38.66 8.77
KEMLP 97.89(−0.05) 92.80(+4.86) 79.58(+10.73) 57.48(+18.82) 28.58(+19.81)

AdvTrain (ε = 8) Main 93.72 84.21 71.76 43.16 13.01
KEMLP 96.79(+3.07) 92.08(+7.87) 81.58(+9.82) 59.18(+16.02) 30.61(+17.60)

AdvTrain (ε = 16) Main 84.54 78.58 71.89 55.99 19.55
KEMLP 94.68(+10.14) 91.64(+13.06) 85.55(+13.66) 67.98(+11.99) 32.61(+13.06)

AdvTrain (ε = 32) Main 74.74 70.24 65.61 56.22 29.04
KEMLP 91.46(+16.72) 88.58(+18.34) 83.23(+17.62) 72.02(+15.80) 41.90(+12.86)

DOA (5x5) Main 97.43 57.46 28.76 5.81 0.85
KEMLP 97.45(+0.02) 83.85(+26.39) 67.98(+39.22) 45.27(+39.46) 24.28(+23.43)

DOA (7x7) Main 97.27 38.50 9.75 2.83 0.67
KEMLP 97.22(−0.05) 80.89(+42.39) 63.40(+53.65) 49.20(+46.37) 31.04(+30.37)

Table 3. Accuracy (%) under whitebox unforeseen attacks (β = 0.8)
Clean Fog-256 Fog-512 Snow-0.25 Snow-0.75 Jpeg-0.125 Jpeg-0.25 Gabor-20 Gabor-40 Elastic-1.5 Elastic-2.0

GTSRB-CNN Main 99.38 59.65 34.18 56.58 24.54 55.74 27.01 57.25 32.41 44.78 24.31
KEMLP 98.28(−1.10) 76.95(+17.30) 62.83(+28.65) 78.94(+22.36) 53.22(+28.68) 79.63(+23.89) 63.40(+36.39) 80.17(+22.92) 65.20(+32.79) 69.34(+24.56) 52.37(+28.06)

AdvTrain (ε = 4) Main 97.94 55.53 29.50 66.31 32.61 56.58 28.11 73.30 46.76 57.25 30.09
KEMLP 97.89(−0.05) 76.08(+20.55) 61.96(+32.46) 80.45(+14.14) 57.84(+25.23) 84.23(+27.65) 68.57(+40.46) 81.48(+8.18) 65.77(+19.01) 71.19(+13.94) 50.33(+20.24)

AdvTrain (ε = 8) Main 93.72 50.03 23.56 63.71 34.93 57.56 26.16 76.72 53.76 48.25 24.46
KEMLP 96.79(+3.07) 76.59(+26.56) 63.97(+40.41) 81.40(+17.69) 57.07(+22.14) 85.11(+27.55) 68.70(+42.54) 85.29(+8.57) 68.90(+15.14) 68.78(+20.53) 49.31(+24.85)

AdvTrain (ε = 16) Main 84.54 47.92 19.75 66.46 37.60 66.56 34.23 78.01 64.33 55.48 32.28
KEMLP 94.68(+10.14) 77.13(+29.21) 64.38(+44.63) 81.64(+15.18) 58.20(+20.60) 86.99(+20.43) 70.40(+36.17) 87.42(+9.41) 72.61(+8.28) 67.31(+11.83) 50.28(+18.00)

AdvTrain (ε = 32) Main 74.74 48.71 22.84 61.78 38.91 63.58 43.49 70.37 65.20 54.58 39.45
KEMLP 91.46(+16.72) 79.22(+30.51) 66.33(+43.49) 81.20(+19.42) 64.53(+25.62) 86.70(+23.12) 73.38(+29.89) 87.04(+16.67) 74.92(+9.72) 66.38(+11.80) 54.76(+15.31)

DOA (5x5) Main 97.43 58.00 32.69 61.19 28.34 41.13 11.29 55.43 29.55 58.02 32.74
KEMLP 97.45(+0.02) 76.85(+18.85) 63.07(+30.38) 78.78(+17.59) 56.76(+28.42) 78.60(+37.47) 61.78(+50.49) 80.25(+24.82) 63.89(+34.34) 72.69(+14.67) 57.51(+24.77)

DOA (7x7) Main 97.27 59.88 38.01 62.47 30.17 23.46 3.65 54.58 27.29 56.33 30.97
KEMLP 97.22(−0.05) 78.09(+18.21) 62.76(+24.75) 79.68(+17.21) 58.26(+28.09) 74.25(+50.79) 61.39(+57.74) 79.06(+24.48) 62.29(+35.00) 71.27(+14.94) 55.09(+24.12)

Table 4. Accuracy (%) under common corruptions (β = 0.2)
Clean Fog Contrast Brightness

GTSRB-CNN Main 99.38 76.23 57.61 85.52
KEMLP 98.28(−1.10) 78.14(+1.91) 72.43(+14.82) 89.58(+4.06)

AdvTrain (ε = 4) Main 97.94 63.81 42.31 78.47
KEMLP 97.89(−0.05) 70.29(+6.48) 67.46(+25.16) 86.70(+8.23)

AdvTrain (ε = 8) Main 93.72 59.05 31.97 78.47
KEMLP 96.79(+3.07) 67.41(+8.36) 66.69(+34.72) 85.91(+7.44)

AdvTrain (ε = 16) Main 84.54 56.58 34.31 78.01
KEMLP 94.68(+10.14) 66.80(+10.22) 68.39(+34.08) 86.14(+8.13)

AdvTrain (ε = 32) Main 74.74 50.87 30.45 71.30
KEMLP 91.46(+16.72) 64.94(+14.07) 68.31(+37.86) 83.20(+11.90)

DOA (5x5) Main 97.43 73.95 62.24 83.92
KEMLP 97.45(+0.02) 76.08(+2.13) 74.38(+12.14) 87.60(+3.68)

DOA (7x7) Main 97.27 73.41 57.54 83.56
KEMLP 97.22(−0.05) 76.00(+2.59) 72.40(+14.86) 87.78(+4.22)

for the distribution tradeoff. We show the clean accuracy
and robustness of KEMLP and baselines under diverse 46 at-
tacks in Figure 2. We can see that KEMLP consistently and
significantly outperforms the baselines, which indicates the
performance stability of KEMLP regarding different distri-
bution ratio β. More results can be found in Appendix B.5,
with additional discussions in Appendix B.6.

6. Discussions and Future Work
In this paper, we propose KEMLP, which integrates domain
knowledge with a set of weak auxiliary models to enhance
the ML robustness against a diverse set of adversarial attacks
and corruptions. While our framework can be extended to
other applications, for any knowledge system, one naturally
needs domain experts to design the knowledge rules specific
to that application. Here we aim to introduce this framework
as a prototype, provide a rigorous analysis of it, and demon-

strate the benefit of such construction on an application.
Nevertheless, there is probably no universal strategy on how
to aggregate knowledge for any arbitrary application, and in-
stead, application-specific constructions are needed. We do
believe that, once the principled framework of knowledge
fusion is ready, application-specific developments of knowl-
edge rules will naturally follow, similar to what happened
previously for knowledge-enriched joint inference.

Acknowledgements
CZ and the DS3Lab gratefully acknowledge the support
from the Swiss National Science Foundation (Project Num-
ber 200021 184628), Innosuisse/SNF BRIDGE Discovery
(Project Number 40B2-0 187132), European Union Hori-
zon 2020 Research and Innovation Programme (DAPHNE,
957407), Botnar Research Centre for Child Health, Swiss
Data Science Center, Alibaba, Cisco, eBay, Google Focused
Research Awards, Oracle Labs, Swisscom, Zurich Insurance,
Chinese Scholarship Council, and the Department of Com-
puter Science at ETH Zurich. BL and the SLLab would like
to acknowledge the support from NSF grant No.1910100,
NSF CNS 20-46726 CAR, and Amazon Research Award.

References
Anish Athalye, Nicholas Carlini, and David Wagner. Ob-

fuscated gradients give a false sense of security: Circum-
venting defenses to adversarial examples. In Interna-



Knowledge Enhanced Machine Learning Pipeline against Diverse Adversarial Attacks

tional Conference on Machine Learning, pages 274–283.
PMLR, 2018.

Kazuoki Azuma. Weighted sums of certain dependent ran-
dom variables. Tohoku Mathematical Journal, Second
Series, 19(3):357–367, 1967.

Anand Bhattad, Min Jin Chong, Kaizhao Liang, Bo Li,
and David A Forsyth. Unrestricted adversarial exam-
ples via semantic manipulation. 2020. URL https:
//openreview.net/forum?id=Sye_OgHFwH.

Marenglen Biba, Stefano Ferilli, and Floriana Esposito. Pro-
tein fold recognition using markov logic networks. In
Mathematical Approaches to Polymer Sequence Analysis
and Related Problems, pages 69–85. Springer, 2011.
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A. Proofs
A.1. Preliminaries

For completeness, here we recall our setup and introduce further remarks.

Data model We begin by recalling our notation. We consider a classification problem under supervised learning setting,
defined on a feature space X and a finite label space Y . We refer to x ∈ X as an input, and y ∈ Y as the prediction. An
input x can be a benign example or an adversarial example. To model this, we use z ∈ {0, 1}, a latent variable which is not
exposed to KEMLP. That is, x is an adversarial example with (x, y) ∼ Da whenever z = 1, and (x, y) ∼ Db otherwise,
where Da and Db represent the adversarial and benign data distribution. We let πDa

= P(z = 1) and πDb
= P(z = 0),

implying πDa
+ πDb

= 1. For convenience, we denote PDa
(x, y) = P(x, y|z = 1) and PDb

(x, y) = P(x, y|z = 0).

For simplicity, we describe the KEMLP framework as a binary classification task, in which case Y = {0, 1}, noting that the
multi-class scenario is a simple extension of it. We introduce the KEMLP framework as follows.

Knowledge Integration Given a data example (x, y) ∼ Db or (x, y) ∼ Da, y is unknown to KEMLP. We create a
factor graph to embed the domain knowledge as follows. The outputs of each model over x become input variables:
s∗, sI = {si : i ∈ I}, sJ = {sj : j ∈ J }. KEMLP also has an output variable o ∈ Y , which corresponds to its prediction.
Different models introduce different types of factors connecting these variables:

• Main model: KEMLP introduces a factor between the main model s∗ and the output variable o with factor function
f∗(o, s∗) = 1{o = s∗};
• Permissive model: KEMLP introduces a factor between each permissive model si and the output variable o with factor
function fi(o, si) = 1{si =⇒ o}.
• Preventative model: KEMLP introduces a factor between each preventative model sj and the output variable o with factor
function fj(o, sj) = 1{o=⇒ sj}.

Learning with KEMLP To make a prediction, KEMLP outputs the probability of the output variable o. KEMLP assigns
a weight for each model and constructs the following log-linear statistical model:

P[o|s∗, sI , sJ , w∗, wI , wJ ] ∝ exp{bo + w∗f∗(o, s∗)} × exp
{∑
i∈I

wifi(o, si)
}
× exp

{∑
j∈J

wjfj(o, sj)
}

where w∗, wi, wj are the corresponding weights for models s∗, si, sj , wI = {wi : i ∈ I}, wJ = {wj : j ∈ J } and bo is
some bias parameter that depends on o. For the simplicity of exposition, we use an equivalent notation by putting all the
weights and outputs of factor functions into vectors using an ordering of models. More precisely, we define

w = [1;w∗; (wi)i∈I ; (wj)j∈J ],

fo(s∗, sI , sJ ) = [bo; f∗(o, s∗); (fi(o, si))i∈I ; (fj(o, sj))j∈J ],

for o ∈ Y . All concatenated vectors from above are in Rm+n+2. Given this, an equivalent form of KEMLP’s statistical
model is

P[o|s∗, sI , sJ ,w] =
1

Zw
exp(〈w, fo(s∗, sI , sJ )〉) (4)

where Zw is the normalization constant over o ∈ Y such that

Zw = exp
(
〈w, f0(s∗, sI , sJ )〉

)
+ exp

(
〈w, f1(s∗, sI , sJ )〉

)
.

With some abuse of notation, w is meant to govern all parameters including weights and biases whenever used with
probabilities.

Weight Learning During the training phase of KEMLP, we choose parameters w by performing standard maximum like-
lihood estimation over a training dataset. Given a particular input instance x(n), respective model predictions s(n)

∗ , s(n)

I , s(n)

J ,
and the ground truth label y(n), we minimize the negative log-likelihood function in view of
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ŵ = arg min
w

{
−
∑
n

log
(
P[o(n) = y(n)|s(n)

∗ , s(n)

I , s(n)

J ,w]
)}
.

Inference During the inference phase of KEMLP, given an input example x̂, we predict ŷ that has the largest probability
given the respective model predictions ŝ∗, ŝI , ŝJ , namely, ŷ = arg maxỹ∈Y P[o = ỹ|ŝ∗, ŝI , ŝJ , ŵ].

Weighted Robust Accuracy Previous theoretical analysis on ML robustness (Javanmard et al., 2020; Xu et al., 2009;
Raghunathan et al., 2020) have identified two natural dimensions of model quality: clean accuracy and robust accuracy,
which are the accuracy of a given ML model on inputs x drawn from either the benign distribution Db or adversarial
distribution Da. In this paper, to balance their tradeoff, we use their weighted average as our main metric of interest. That is,
given a classifier h : X → Y we define its Weighted Robust Accuracy as

Ah = πDa
PDa

[h(x) = y] + πDb
PDb

[h(x) = y].

We use AKEMLP and Amain to denote the weighted robust accuracies of KEMLP and main task model, respectively.

Modeling Assumptions We assume that for a fixed z, that is, for a fixed D ∈ {Db,Da}, the models make independent
errors given the target variable y. Thus, for all D ∈ {Db,Da} the class conditional distribution can be decomposed as

PD[s∗, sI , sJ |y] = PD[s∗|y]
∏
i∈I

PD[si|y]
∏
j∈J

PD[sj |y].

We also assume for simplicity that the main task model makes symmetric errors given the class of target variable, that is,
PD[s∗ 6= y|y] is fixed with respect to y for all D ∈ {Db,Da}.

Characterizing Models: Truth Rate (α) and False Rate (ε) Each auxiliary model k ∈ I ∪ J is characterized by two
values, their truth rate (α) and false rate (ε) over benign and adversarial distributions. These values measure the consistency
of the model with the ground truth:

Permissive Models:
αi,D := PD[si = y|y = 1], εi,D := PD[si 6= y|y = 0]

Preventative Models:
αj,D := PD[sj = y|y = 0], εj,D := PD[sj 6= y|y = 1]

Note that, given the asymmetric nature of these auxiliary models, we do not necessarily have εk,D = 1− αk,D. In addition,
for a high quality permissive model (k ∈ I), or a high quality preventative model (k ∈ J ) for which the logic rules mostly
hold, we expect αk,D to be large and εk,D to be small.

We define the truth rate of main model over data examples drawn from D ∈ {Db,Da} as α∗,D := PD(s∗ = y), and its false
rate as ε∗,D := PD(s∗ 6= y) = 1− α∗,D.

These characteristics are of integral importance to weighted robust accuracy of KEMLP. To combine all the models together,
we define upper and lower bounds to truth rates and false rates. For the main model, we have ∧α∗ := minD α∗,D and
∨α∗ := maxD α∗,D. whereas for auxiliary models, for each model index k ∈ I ∪ J , we have

∧αk := min
D

αk,D, ∧εk := min
D

εk,D

∨αk := max
D

αk,D, ∨εk := max
D

εk,D.

A.2. Parameters

In this section we will derive the closed-form expressions for the parameters based on our generative model, namely, weights
and biases.
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To make a prediction, KEMLP outputs the marginal probability of the output variable o. KEMLP assigns a weight for each
model and constructs the following statistical model:

P[o|s∗, sI , sJ ,w] ∝ exp{bo + w∗f∗(o, s∗)} × exp
{∑
i∈I

wifi(o, si)
}
× exp

{∑
j∈J

wjfj(o, sj)
}
,

where w∗, wi, wj are the corresponding weights for models s∗, si, sj , and bo is some bias parameter that depends on o. For
the simplicity of exposition, we use an equivalent notation by putting all the weights and outputs of factor functions into
vectors using an ordering of models. More precisely, we define

w = [1;w∗; (wi)i∈I ; (wj)j∈J ],

fo(s∗, sI , sJ ) = [bo; f∗(o, s∗); (fi(o, si))i∈I ; (fj(o, sj))j∈J ],

for o ∈ Y . All concatenated vectors from above are in Rm+n+2. Given this, an equivalent form of KEMLP’s statistical
model is

P[o|s∗, sI , sJ ,w] =
1

Zw
exp(〈w, fo(s∗, sI , sJ )〉), (5)

where Zw is the normalization constant over o ∈ Y . We can further show that

P[o = ỹ|s∗, sI , sJ ,w] =
P[o = ỹ|s∗, sI , sJ ,w]

P[o = ỹ|s∗, sI , sJ ,w] + P[o = 1− ỹ|s∗, sI , sJ ,w]

=
exp(〈w, fy(s∗, sI , sJ )〉)

exp(〈w, fỹ(s∗, sI , sJ )〉) + exp(〈w, f1−ỹ(s∗, sI , sJ )〉)

=
1

1 + exp(−∆w(ỹ, s∗, sI , sJ ))

(6)

where ∆w(ỹ, s∗, sI , sJ ) is previously defined as

∆w(ỹ, s∗, sI , sJ ) := 〈w, fỹ(s∗, sI , sJ )− f1−ỹ(s∗, sI , sJ )〉.

Therefore, we have
P[o = ỹ|s∗, sI , sJ ,w] = σ(∆w(ỹ, s∗, sI , sJ )) (7)

where σ : R 7→ [0, 1] is the Sigmoid function.

Remark 1 (Closed form expression of ∆w(ỹ, s∗, sI , sJ )). Recalling our knowledge integration rules, it can be shown that

∆w(ỹ, s∗, sI , sJ ) = 〈w, fỹ(s∗, sI , sJ )− f1−ỹ(s∗, sI , sJ )〉

= b(ỹ) + w∗
(
f∗(ỹ, s∗)− f∗(1− ỹ, s∗)

)
+
∑
i∈I

wi
(
fi(ỹ, si)− fi(1− ỹ, si)

)
+
∑
j∈J

wi
(
fj(ỹ, sj)− fj(1− ỹ, sj)

)
where b(ỹ) = bỹ − b1−ỹ . Let b := b1 − b0. Then b(ỹ) = (2ỹ − 1)b.

Using the logical rules, we moreover have

f∗(ỹ, s∗)− f∗(1− ỹ, s∗) = 1{ỹ = s∗} − 1{1− ỹ = s∗} = (2ỹ − 1)(2s∗ − 1)

fi(ỹ, si)− fi(1− ỹ, si) = 1{si =⇒ ỹ} − 1{si =⇒ 1− ỹ} = (2ỹ − 1)si

fj(ỹ, sj)− fj(1− ỹ, sj) = 1{ỹ =⇒ sj} − 1{1− ỹ =⇒ sj} = (2ỹ − 1)(sj − 1) = −(2ỹ − 1)(1− sj).

Therefore, the closed form expression for ∆w(ỹ, s∗, sI , sJ ) is given by

∆w(ỹ, s∗, sI , sJ ) = (2ỹ − 1)
(
b+ w∗(2s∗ − 1) +

∑
i∈I

wisi −
∑
j∈J

wj(1− sj)
)
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Remark 2 (Optimal parameters). We now analyze the class conditional distribution P[y|s∗, sI , sJ ]. Optimal set of
parameters for our generative model must satisfy:

P[y = ỹ|s∗, sI , sJ ] =
P[y = ỹ, s∗, sI , sJ ]

P[s∗, sI , sJ ]
=

P[y = ỹ, s∗, sI , sJ ]

P[y = ỹ, s∗, sI , sJ ] + P[y = 1− ỹ, s∗, sI , sJ ]

=
1

1 + P[y=1−ỹ,s∗,sI ,sJ ]
P[y=ỹ,s∗,sI ,sJ ]

=
1

1 + exp
(

log P[y=1−ỹ,s∗,sI ,sJ ]
P[y=ỹ,s∗,sI ,sJ ]

) =
1

1 + exp
(
− log P[y=ỹ,s∗,sI ,sJ ]

P[y=1−ỹ,s∗,sI ,sJ ]

) . (8)

Note that, the optimal parameters satisfy

P[o = ỹ|s∗, sI , sJ ] = P[y = ỹ|s∗, sI , sJ ].

Hence, combining (6) and (8) as well as Remark 1 we further have

log
P[y = ỹ, s∗, sI , sJ ]

P[y = 1− ỹ, s∗, sI , sJ ]
= (2ỹ − 1)

(
b+ w∗(2s∗ − 1) +

∑
i∈I

wisi −
∑
j∈J

wj(1− sj)
)
. (9)

Above remark indicates the condition that the optimal parameters must satisfy.

A.3. Proof of Lemma 1

Recall that for each model index k ∈ I ∪ J we define upper and lower bounds to truth rates and false rates as

∧αk := min
D

αk,D, ∧εk := min
D

εk,D

∨αk := max
D

αk,D, ∨εk := max
D

εk,D.

Next, we revisit Lemma 1 towards its proof.

Lemma (Recall). Let ∆w be a random variable defined above. Suppose that KEMLP uses optimal parameters w such that
P[y|s∗, sI , sJ ] = P[o|s∗, sI , sJ ,w]. Let also ry denote the log-ratio of class imbalance log P[y=1]

P[y=0] . For a fixed y ∈ Y and
D ∈ {Db,Da}, one has

Es∗,sI ,sJ [∆w(y, s∗, sI , sJ )|y] ≥ µd∗,D + yµdI,D + (1− y)µdJ ,D + (2y − 1)ry := µy,D,

where
µd∗,D = α∗,D log

∧α∗
1− ∧α∗

+ (1− α∗,D) log
1− ∨α∗
∨α∗

,

µdI,D =
∑
i∈I

αi,D log
∧αi

∨εi
+ (1− αi,D) log

1− ∨αi
1− ∧εi

−
∑
j∈J

εj,D log
∨αj

∧εj
− (1− εj,D) log

1− ∧αj
1− ∨εj

,

and

µdJ ,D =
∑
j∈J

αj,D log
∧αj

∨εj
+ (1− αj,D) log

1− ∨αj
1− ∧εj

−
∑
i∈I

εi,D log
∨αi

∧εi
− (1− εi,D) log

1− ∧αi
1− ∨εi

.

Proof of Lemma 1. We show earlier that the optimal parameters satisfy (9). Note that the probabilities on the left hand side
of (9) are mixtures over both the benign and adversarial distributions. Namely,

P[y = ỹ, s∗, sI , sJ ] =
∑

D∈{Db,Da}

πDPD[y = ỹ, s∗, sI , sJ ].

Recall from our modeling assumptions that models are conditionally independent given y with PD[s∗, sI , sJ |y = ỹ] =
PD[s∗|y = ỹ]

∏
i∈I PD[si|y = ỹ]

∏
j∈J PD[sj |y = ỹ]. Therefore, without loss of generality, this holds not for P[y =

ỹ, s∗, sI , sJ ]. That is, each parameter is to encode this dependency structure and must be a function of some set of models.
Below we propose a strategy to choose optimal weights to satisfy (9).



Knowledge Enhanced Machine Learning Pipeline against Diverse Adversarial Attacks

We start by decomposing log P[y=ỹ,s∗,sI ,sJ ]
P[y=1−ỹ,s∗,sI ,sJ ] .

log
P[y = ỹ, s∗, sI , sJ ]

P[y = 1− ỹ, s∗, sI , sJ ]
= log

P[y = ỹ, s∗]

P[y = 1− ỹ, s∗]
+
∑
i∈I

log
P[si|y = ỹ, sIi ]

P[si|y = 1− ỹ, sIi ]
+
∑
j∈J

log
P[sj |y = ỹ, sI , sJj ]

P[sj |y = 1− ỹ, sI , sJj ]

where Ii is the set of i′ such that i′ ∈ I and i′ < i. Similarly, we let Jj be the set of j′ such that j′ ∈ J and j′ < j. Note
that there are multiple such constructions to satisfy (9) to have optimal set of weights.

We split our proof into three main steps as follows.

Step 1: Derivation of bounds for optimal set of parameters Given our strategy, we then derive the parameters in terms
of conditional probabilities of individual models. Towards that, let b be decomposed into its additive components such that
b = b∗ +

∑
i∈I bi −

∑
j∈J bj . Let also ry = log P[y=1]

P[y=0] . We derive bounds for each sensor using (9) as follows.

• Main task model: The parameters for the main model simply satisfies

(2ỹ − 1)
(
w∗(2s∗ − 1) + b∗

)
= log

P[y = ỹ, s∗]

P[y = 1− ỹ, s∗]
= log

∑
D∈{Db,Da} πDPD[y = ỹ, s∗]∑

D∈{Db,Da} πDPD[y = 1− ỹ, s∗]
.

With a simple algebraic manipulation where y = 1 and s∗ = 1 (resp. for y = 0, s∗ = 1), we have that

w∗ + b∗ = log
P[y = 1, s∗ = 1]

P[y = 0, s∗ = 1]
(10)

and for y = 0 and s∗ = 0 (resp. for y = 1, s∗ = 0)

w∗ − b∗ = log
P[y = 0, s∗ = 0]

P[y = 1, s∗ = 0]
. (11)

Combining (10) and (11) we have

w∗ =
1

2
log

P[y = 1, s∗ = 1]

P[y = 0, s∗ = 1]

P[y = 0, s∗ = 0]

P[y = 1, s∗ = 0]

(∗)
=

1

2
log

(∑
D∈{Db,Da} πDPD[y = 1]α∗,D

)(∑
D∈{Db,Da} πDPD[y = 0]α∗,D

)(∑
D∈{Db,Da} πDPD[y = 1](1− α∗,D)

)(∑
D∈{Db,Da} πDPD[y = 0](1− α∗,D)

) (12)

where (*) follows from that PD[y = s∗|y] = α∗,D and PD[y 6= s∗|y] = 1− α∗,D for D ∈ {Db,Da}.
Similarly, for b∗ we have

b∗ =
1

2
log

P[y = 1, s∗ = 1]

P[y = 0, s∗ = 1]

P[y = 1, s∗ = 0]

P[y = 0, s∗ = 0]

=
1

2
log

(∑
D∈{Db,Da} πDPD[y = 1]α∗,D

)(∑
D∈{Db,Da} πDPD[y = 1](1− α∗,D)

)(∑
D∈{Db,Da} πDPD[y = 0](1− α∗,D)

)(∑
D∈{Db,Da} πDPD[y = 0]α∗,D

) . (13)

Finally, noting that, for all ỹ ∈ Y , we have

∧α∗
∑

D∈{Db,Da}

πDPD[y = ỹ] = ∧α∗P[y = ỹ] ≤
∑

D∈{Db,Da}

πDPD[y = ỹ]α∗,D ≤ ∨α∗
∑

D∈{Db,Da}

πDPD[y = ỹ] = ∨α∗P[y = ỹ].

Using the above relation as well as (12) and (13), the weight and bias of the main task model, w∗ and b∗, can therefore be
bounded as

log
∧α∗

1− ∧α∗
≤ w∗ ≤ log

∨α∗
1− ∨α∗

(14)

and

ry + log
∧α∗(1− ∨α∗)
(1− ∧α∗)∨α∗

≤ b∗ ≤ ry + log
∨α∗(1− ∧α∗)
(1− ∨α∗)∧α∗

. (15)

To distinguish the effect of class imbalance in our analysis, we will define b∗∗ := b∗ − ry .
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• Permissive models: For permissive model, we have

log
P[si|y = ỹ, sIi ]

P[si|y = 1− ỹ, sIi ]
= (2ỹ − 1)(wisi + bi).

Therefore

log
P[si|y = ỹ, sIi ]

P[si|y = 1− ỹ, sIi ]
= log

P[si,y=ỹ,sIi ]

P[y=ỹ,sIi ]

P[si,y=1−ỹ,sIi ]

P[y=1−ỹ,sIi ]

(∗)
= log

∑
D∈{Db,Da} πDPD[y=ỹ,sIi ]PD[si|y=ỹ]∑

D∈{Db,Da} πDPD[y=ỹ,sIi ]∑
D∈{Db,Da} πDPD[y=1−ỹ,sIi ]PD[si|y=1−ỹ]∑

D∈{Db,Da} πDPD[y=1−ỹ,sIi ]

where (*) follows from the conditional independence assumption.

Let ỹ = 1. Therefore, for si = 1 we have

min
D

αi,D = ∧αi ≤
∑
D∈{Db,Da} πDPD[y = ỹ, sIi ]PD[si|y = ỹ]∑

D∈{Db,Da} πDPD[y = ỹ, sIi ]
≤ max

D
αi,D = ∨αi

and

min
D

εi,D = ∧εi ≤
∑
D∈{Db,Da} πDPD[y = 1− ỹ, sIi ]PD[si|y = 1− ỹ]∑

D∈{Db,Da} πDPD[y = 1− ỹ, sIi ]
≤ max

D
εi,D = ∨εi.

Above bounds finally lead to

log
∧αi

∨εi
≤ log

P[si|y = ỹ, sIi ]

P[si|y = 1− ỹ, sIi ]
= wi + bi ≤ log

∨αi

∧εi
. (16)

Next, we let si = 0. Repeating the same technique above, we have

min
D

1− αi,D = 1− ∨αi ≤
∑
D∈{Db,Da} πDPD[y = ỹ, sIi ]PD[si|y = ỹ]∑

D∈{Db,Da} πDPD[y = ỹ, sIi ]
≤ max

D
1− αi,D = 1− ∧αi

and

min
D

1− εi,D = 1− ∨εi ≤
∑
D∈{Db,Da} πDPD[y = 1− ỹ, sIi ]PD[si|y = 1− ỹ]∑

D∈{Db,Da} πDPD[y = 1− ỹ, sIi ]
≤ max

D
1− εi,D = 1− ∧εi.

Above bounds finally lead to

log
1− ∨αi
1− ∧εi

≤ log
P[si|y = ỹ, sIi ]

P[si|y = 1− ỹ, sIi ]
= bi ≤ log

1− ∧αi
1− ∨εi

. (17)

Note that the same conclusion can be drawn for ỹ = 0.

• Preventative models: For preventative model, we have

log
P[sj |y = ỹ, sI , sJj ]

P[sj |y = 1− ỹ, sI , sJj ]
= −(2ỹ − 1)(wj(1− sj) + bj).

Then

log
P[sj |y = ỹ, sI , sJj ]

P[sj |y = 1− ỹ, sI , sJj ]
= log

P[sj ,y=ỹ,sI ,sJj
]

P[y=ỹ,sI ,sJj
]

P[sj ,y=1−ỹ,sI ,sJj
]

P[y=1−ỹ,sI ,sJj
]

(∗)
= log

∑
D∈{Db,Da} πDPD[y=ỹ,sI ,sJj

]PD[sj |y=ỹ]∑
D∈{Db,Da} πDPD[y=ỹ,sI ,sJj

]∑
D∈{Db,Da} πDPD[y=1−ỹ,sI ,sJj

]PD[sj |y=1−ỹ]∑
D∈{Db,Da} πDPD[y=1−ỹ,sI ,sJj

]

where (*) follows from the conditional independence assumption.
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Let ỹ = 0. Therefore, for sj = 0 we have

min
D

αj,D = ∧αj ≤
∑
D∈{Db,Da} πDPD[y = ỹ, sI , sJj ]PD[sj |y = ỹ]∑

D∈{Db,Da} πDPD[y = ỹ, sI , sJj ]
≤ max

D
αj,D = ∨αj

and

min
D

εj,D = ∧εj ≤
∑
D∈{Db,Da} πDPD[y = 1− ỹ, sI , sJj ]PD[sj |y = 1− ỹ]∑

D∈{Db,Da} πDPD[y = 1− ỹ, sI , sJj ]
≤ max

D
εj,D = ∨εj .

Above bounds finally lead to

log
∧αj

∨εj
≤ log

P[sj |y = ỹ, sI , sJj ]

P[sj |y = 1− ỹ, sI , sJj ]
= wj + bj ≤ log

∨αj

∧εj
. (18)

Next, we let sj = 1. Repeating the same technique above, we have

min
D

1− αj,D = 1− ∨αj ≤
∑
D∈{Db,Da} πDPD[y = ỹ, sI , sJj ]PD[sj |y = ỹ]∑

D∈{Db,Da} πDPD[y = ỹ, sI , sJj ]
≤ max

D
1− αj,D = 1− ∧αj

and

min
D

1− εj,D = 1− ∨εj ≤
∑
D∈{Db,Da} πDPD[y = 1− ỹ, sI , sJj ]PD[sj |y = 1− ỹ]∑

D∈{Db,Da} πDPD[y = 1− ỹ, sI , sJj ]
≤ max

D
1− εj,D = 1− ∧εj .

Similarly as in permissive models, above bounds lead to

log
1− ∨αj
1− ∧εj

≤ log
P[sj |y = ỹ, sI , sJj ]

P[sj |y = 1− ỹ, sI , sJj ]
= bj ≤ log

1− ∧αj
1− ∨εj

. (19)

The same conclusion can be drawn for ỹ = 1.

Step 2: Decomposition of ∆w(y, s∗, sI , sJ ) Next, we recall Remark 1 and present a lower bound for ∆w(y, s∗, sI , sJ )
that decomposes ∆w(y, s∗, sI , sJ ) into its additive components such that

∆w(y, s∗, sI , sJ ) = (2ỹ − 1)
(
b+ w∗(2s∗ − 1) +

∑
i∈I

wisi −
∑
j∈J

wj(1− sj)
)

= (2ỹ − 1)
(
w∗(2s∗ − 1) +

∑
i∈I

(
wisi + bi

)
−
∑
j∈J

(
wj(1− sj) + bj

))
.

Next, we analyze
PD
[
〈w, fy(s∗, sI , sJ )− f1−y(s∗, sI , sJ )〉|y

]
= PD[∆w(y, s∗, sI , sJ )|y].

Note that PD[s∗|y] = α∗,D if s∗ = y. Therefore, PD[s∗ = 1|y = 1] = α∗,D and PD[s∗ = 0|y = 1] = 1− α∗,D. Similarly,
PD[s∗ = 0|y = 0] = α∗,D and PD[s∗ = 1|y = 0] = 1− α∗,D. Thus

PD[(2ỹ − 1)
(
w∗(2s∗ − 1) + b∗

)
|y]

(∗)
= PD[w∗(2s∗∗ − 1) + b∗∗ + (2ỹ − 1)ry|y]

where s∗∗ satisfies PD[s∗∗ = 1] = α∗,D and PD[s∗∗ = 0] = 1− α∗,D. Note that (*) stems from the symmetry of s∗ and
b∗∗ with respect to y. To reduce exposition, we will stick to s∗ notation and continue to refer to s∗∗ as s∗. Hence, we define
d∗,D as

d∗,D := w∗(2s∗ − 1) + b∗∗ (20)

where b∗∗ := b∗ − ry as defined earlier. Therefore, the contribution of the main task model in the majority voting random
variable ∆w(y, s∗, sI , sJ ) will be

d∗,D + (2y − 1)ry. (21)
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Next, we analyze the auxiliary model predictions. For y = 1,

PD
[
(2y − 1)

(∑
i∈I

(wisi + bi)−
∑
j∈J

(wj(1− sj) + bj)
)
|y
]

= PD
[∑
i∈I

(wisi + bi)−
∑
j∈J

(wj(1− sj) + bj)|y = 1
]

where, on the right hand side, we have PD[si = 1|y = ỹ] = αi,D and PD[1 − sj = 1|y = ỹ] = εj,D for ỹ = 1 over
distribution D ∈ {Db,Da}. Therefore, we define dI,D as(

∆w(y, s∗, sI , sJ )− d∗,D − ry|y = 1
)

=
∑
i∈I

(wisi + bi)−
∑
j∈J

(wj(1− sj) + bj) := dI,D. (22)

Using the same strategy for y = 0, we define dJ ,D as

(
∆w(y, s∗, sI , sJ )− d∗,D + ry|y = 0

)
=
∑
j∈J

(wj(1− sj) + bj)−
∑
i∈I

(wisi + bi) := dJ ,D (23)

where, on the right hand side, we have PD[1 − sj = 1|y = ỹ] = αj,D and PD[si = 1|y = ỹ] = εi,D for ỹ = 0 over
D ∈ {Db,Da}.

Combining (21), (22) and (23), we have(
∆w(y, s∗, sI , sJ )|y

)
= d∗D + ydI,D + (1− y)dJ ,D + (2y − 1)ry. (24)

Final step: Es∗,sI ,sJ [∆w(y, s∗, sI , sJ )|y] We express ∆w(y, s∗, sI , sJ )|y in terms of y and a function of model
predictions thus far. In this step, using the bounds on the optimal parameters in the first step as well as the decomposition
introduced in the second step, we derive a lower bound for the Es∗,sI ,sJ [∆w(y, s∗, sI , sJ )|y]. Towards that, we lower
bound the expected value of d∗,D, dI,D and dJ ,D individually.

• Es∗ [d∗,D]: For the main task model, we have

Es∗ [d∗,D] = Es∗ [w∗(2s∗ − 1) + b∗∗] (25)

over distribution D ∈ {Db,Da} and w∗. One can infer from (14) and (15) for b∗∗ = b∗ − ry that

Es∗ [d∗,D] = Es∗ [w∗(2s∗ − 1) + (2y − 1)b∗∗] ≥ α∗,D log
∧α∗

1− ∧α∗
+ (1− α∗,D) log

1− ∨α∗
∨α∗

:= µd∗,D . (26)

• EsI ,sJ [dI,D]: For the permissive models, we have

EsI ,sJ [dI,D] = EsI ,sJ
[∑
i∈I

(wisi+ bi)−
∑
j∈J

(wj(1−sj)+ bj)
]

= EsI
[∑
i∈I

(wisi+ bi)
]
−EsJ

[∑
j∈J

(wj(1−sj)+ bj)
]
.

Note that wisi + bi = wi + bi with probability αi,D and wisi + bi = bi otherwise. Therefore, using (16) and (17) we lower

bound EsI
[∑

i∈I(wisi + bi)
]

as

EsI
[∑
i∈I

(wisi + bi)
]
≥
∑
i∈I

αi,D log
∧αi

∨εi
+ (1− αi,D) log

1− ∨αi
1− ∧εi

.

Similarly, −EsJ
[∑

j∈J (wj(1− sj) + bj)
]

can be lower bounded as

−EsJ
[∑
j∈J

(wj(1− sj) + bj)
]
≥ −

∑
j∈J

εj,D log
∨αj

∧εj
+ (1− εj,D) log

1− ∧αj
1− ∨εj

.

Combining above result, we have

EsI ,sJ [dI,D] ≥
∑
i∈I

αi,D log
∧αi

∨εi
+ (1−αi,D) log

1− ∨αi
1− ∧εi

−
∑
j∈J

εj,D log
∨αj

∧εj
− (1− εj,D) log

1− ∧αj
1− ∨εj

:= µI,D. (27)
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• EsI ,sJ [dJ ,D]: Following to the same strategy to that of EsI ,sJ [dI,D], we have

EsI ,sJ [dJ ,D] ≥
∑
j∈J

αj,D log
∧αj

∨εj
+(1−αj,D) log

1− ∨αj
1− ∧εj

−
∑
i∈I

εi,D log
∨αi

∧εi
− (1− εi,D) log

1− ∧αi
1− ∨εi

:= µJ ,D. (28)

Finally, combining (24, 25, 27, 28) we conclude

Es∗,sI ,sJ [∆w(y, s∗, sI , sJ )|y] = Es∗,sI ,sJ [d∗,D + ydI,D + (1− y)dJ ,D + (2y − 1)ry]

≥ µ∗,D + yµI,D + (1− y)µJ ,D + (2y − 1)ry := µy,D.
(29)

The proof is thus completed.

A.4. Proof of Theorem 1

We start by recalling our main theorem.

Theorem (Recall). For y ∈ Y andD ∈ {Db,Da}, let µy,D be defined as in Lemma 1. Suppose that the modeling assumption
holds, and suppose that µdK,D > 0, for all K ∈ {I,J } and D ∈ {Db,Da}. Then

AKEMLP ≥ 1− Eµy,D [exp
(
−2µ2

y,D/v
2
)
], (30)

where v2 is the variance upper bound to P[o = y|y] with

v2 = 4
(

log
∨α∗

1− ∧α∗

)2

+
∑

k∈I∪J

(
log

∨αk(1− ∧εk)

∧εk(1− ∨αk)

)2

.

Proof of Theorem 1. Recall that we define weighted robust accuracy of KEMLP as

AKEMLP = ED∼{Da,Db}Ey∼Y
[
PD[o = y|y,w]

]
.

The weighted accuracy definition comes from the latent variable z. That is, AKEMLP = P[o = y|w] =
∑
z∈{0,1} P[o =

y|z,w] where P[o = y|z = 0,w] = PDb
[o = y|w] and P[o = y|z = 1,w] = PDa [o = y|w]. Hence, AKEMLP =

ED∼{Db,Da}
[
PD[o = y|w]

]
= ED∼{Db,Da}Ey∼Y

[
PD[o = y|y,w]

]
.

Let w be the set of optimal parameters. Using (7) and our inference rule, PD[o = y|y,w] can be further expressed as

PD[o = y|y,w]

= PD
[
σ
(
∆w(y, s∗, sI , sJ )

)
> 1/2|y

]
= PD[∆w(y, s∗, sI , sJ ) > 0|y] = 1− PD[∆w(y, s∗, sI , sJ ) < 0|y]

For the rest of the proof, we will focus on bounding the term PD[∆w(y, s∗, sI , sJ ) < 0|y], and AKEMLP will follow from
taking expectation of 1− PD[∆w(y, s∗, sI , sJ ) < 0|y] over D ∈ {Db,Da} and y ∈ Y .

Next, we recall the generalized bounded difference inequality as well as generalized Hoeffding’s inequality (van de Geer,
2002). Note that the same result can be shown via Azuma’s inequality for submartingale sequences (Azuma, 1967).

Theorem 3 ( (Azuma, 1967), (van de Geer, 2002)). Assume that Xt be a random variable with respect to filtration Ft, and
Lt and Ut be Ft−1 measurable random variables such that

Lt ≤ Xt −Xt−1 ≤ Ut

where Lt < Ut and Ut − Lt ≤ ct almost surely. Therefore, for some ε > 0, one has

P(Xn−E[Xn] < −ε) ≤ exp
(
− 2ε2∑

t=[n] c
2
t

)
and symmetrically P(Xn−E[Xn] > ε) ≤ exp

(
− 2ε2∑

t=[n] c
2
t

)
. (31)

We now consider the random variable ∆w(y, s∗, sI , sJ ) = d∗,D + ydI,D + (1 − y)dJ ,D + (2y − 1)ry that is meant to
represent Xn in Theorem 3, where each increment is induced by a single model. We call ∆w(y, s∗, sI , sJ ) as X1+|I|+|J |.

To prove compatibility of our setting with the Theorem 3, we present the following remark.
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Remark 3 (Measurability of X1+|I|+|J | and the bounded differences). Let y = 1. We can write our random variable
X1+|I|+|J | = ∆w(y, s∗, sI , sJ ) as(

∆w(y, s∗, sI , sJ )|y = 1
)

= w∗(2s∗ − 1) + b∗ +
∑
i∈I

(wisi + bi)−
∑
j∈J

(wj(1− sj) + bj).

That is, we represent
(
∆w(y, s∗, sI , sJ )|y = 1

)
as a random process with a total of 1 + |I|+ |J | increments. Let X0 = 0,

we treat the main sensor as the first increment such that

X1 = w∗(2s∗ − 1) + b∗.

For t = 1, ..., |I| we let
Xt+1 −Xt = wisi + bi s.t. i = t+ 1.

Finally, for t = |I|+ 1, ..., |I|+ |J | we let

Xt+1 −Xt = −(wj(1− sj) + bj) s.t. j = t+ 1.

and the similar analysis can be performed for y = 0.

Above decomposition shows that X1+|I|+|J | is Fn measurable. Specifically, Xt+1 − Xt is Ft measurable for all t =
1, ..., 1 + |I|+ |J |. Moreover, Xt+1 −Xt and Xt′+1 −Xt′ are independent for t 6= t′.

Using the increments introduced above, one can further show that the maximum increments ct for t = 1, ..., 1 + |I|+ |J |
are given by

|w∗ + b∗ − (−w∗ + b∗)| = 2w∗ ≤ 2∨w∗ := c1.

For t = 1, ..., |I| we let
|Xt+1 −Xt| = |(wi + bi)− bi| ≤ ∨wi := ct+1 s.t. i = t+ 1.

Finally, for t = |I|+ 1, ..., |I|+ |J | we let

|Xt+1 −Xt| = | − (wj + bj)− (−bj)| ≤ ∨wj := ct+1 s.t. i = t+ 1.

Recalling the bounds in (14, 16, 17, 18, 19), we have

c1 = 2 log
∨α∗

1− ∧α∗
for t=1 and ct = log

∨αt(1− ∧εt)
∧εt(1− ∨αt)

for t ∈ I ∪ J . (32)

Next, for any y ∈ Y , we derive the following

PD[∆w(y, s∗, sI , sJ ) < 0|y]

= PD
[
∆w(y, s∗, sI , sJ )− Es∗,sI ,sJ [∆w(y, s∗, sI , sJ )] < −Es∗,sI ,sJ [∆w(y, s∗, sI , sJ )]

∣∣y]
(∗)
≤ PD

[
∆w(y, s∗, sI , sJ )− Es∗,sI ,sJ [∆w(y, s∗, sI , sJ )|y] < −µy,D

∣∣y]
where (*) stems from that µy,D is a lower bound to Es∗,sI ,sJ [∆w(y, s∗, sI , sJ )|y] as shown in Lemma 1.

Let ε = µy,D. If µy,D > 0, using Theorem 3 for Ψ2 =
∑

t∈{1}∪I∪J c
2
t

µ2
y,D

where ct is as defined in (32) results in

PD[∆w(y, s∗, sI , sJ ) < 0|y] ≤ PD
[
∆w(y, s∗, sI , sJ )− Es∗,sI ,sJ [∆w(y, s∗, sI , sJ )|y] < −µy,D

∣∣y] ≤ exp(−2/Ψ2).

By further taking the expectation of PD[∆w(y, s∗, sI , sJ ) < 0|y] over D ∈ {Db,Da} and y ∈ Y such that

AKEMLP = ED∼{Da,Db}Ey∼Y
[
PD[o = y|y]

]
= ED∼{Da,Db}Ey∼Y

[
PD[∆w(y, s∗, sI , sJ ) > 0|y]

]
= 1− ED∼{Da,Db}Ey∼Y

[
PD[∆w(y, s∗, sI , sJ ) < 0|y]

]
≥ 1− Eµy,D

[
exp(−2µ2

y,D/v
2)
]

concludes the proof.
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A.5. Proof of Theorem 2

We begin with recalling Theorem 2.

Theorem (Recall). Let the number of permissive and preventative models be the same and denoted by n such that n :=
|I| = |J |. Note that the weighted accuracy of the main model in terms of its truth rate is simply α∗ :=

∑
D∈{Db,Da} πDα∗,D.

Moreover, let K,K′ ∈ {I,J } with K 6= K′ and for any D ∈ {Db,Da}, let

γD :=
1

n+ 1
min
K

{
α∗,D − 1/2 +

∑
k∈K

αk,D −
∑
k′∈K′

εk′,D

}
.

If γD >
√

4
n+1 log 1

1−α∗ for all D ∈ {Db,Da}, then AKEMLP > Amain.

Proof of Theorem 2. We start by recalling the widely known Chernoff bound for the sum of independent and non-identical
random variables.

Lemma 2 (Chernoff Bound for Poisson Binomial Distributions). Let X be a random variable with Poisson Binomial
distribution. For δ ∈ [0, 1],

P[X < (1− δ)µX ] ≤ exp(−δ2µX/2).

Recall that KEMLP predicts y to be ô where

ô = arg max
ỹ∈Y

P[o = ỹ|s̃∗, s̃I , s̃J ,w] = arg max
ỹ∈Y

σ(∆w(ỹ, s∗, sI , sJ ))

where

∆w(ỹ, s∗, sI , sJ ) = (2ỹ − 1)
(
b+ w∗(2s∗ − 1) +

∑
i∈I

wisi −
∑
j∈J

wj(1− sj)
)
.

We showed earlier that there exist a set of parameters w, and call it optimal parameters w∗, where

P[o = ỹ|s̃∗, s̃I , s̃J ,w∗] = P[y = ỹ|s̃∗, s̃I , s̃J ]

for all ỹ ∈ Y .

Note that, due to above equation, P[o = ỹ|s̃∗, s̃I , s̃J ,w∗] is Bayes classifier where the error of classifier is minimized over
w. Hence,

P[ô 6= y|w∗] ≤ P[ô 6= y|w]

and

P[ô = y|w∗] ≥ P[ô = y|w]

for any w ∈ R|I|+|J |+2.

Leveraging above fact, we will bound P[ô = y|w] from below where we will use some parameters w that are not optimal.
That is, from now on, we will focus on P[ô = y|w] where w is not optimal but leads to a close resemblance of P[ô = y|w∗].
In other words, we will perform a worst-case analysis where ô will be a result of unweighted majority voting. Hence, we
let w be given by w = [0; 1/2; (1)i∈I ; (1)j∈J ]. For this case, ∆w(ỹ, s∗, sI , sJ ) becomes a random variable with Poisson
Binomial distribution and with some bias. That is,

∆w(ỹ, s∗, sI , sJ ) = (2ỹ − 1)
(

(s∗ − 1/2) +
∑
i∈I

si −
∑
j∈J

(1− sj)
)
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where s∗, si∈I and sj∈J are random variables in Y .

Using the weight introduced above, we can now re-write the weighted robust accuracy of KEMLP as

AKEMLP = P[ô = y|w∗] ≥ P[ô = y|w] = πDa
PDa

[ô = y|w] + πDb
PDb

[ô = y|w]

= πDa

(
PDa

[ô = y|w, y = 1]PDa
[y = 1] + PDa

[ô = y|w, y = 0]PDa
[y = 0]

)
+ πDb

(
PDb

[ô = y|w, y = 1]PDb
[y = 1] + PDb

[ô = y|w, y = 0]PDb
[y = 0]

)
.

(33)

Next, we will derive a lower bound for PD[ô = y|y = ỹ,w] for D ∈ {Db,Da} and for all ỹ ∈ {0, 1}.

For y = 1: We have

PD[ô = y|w, y = 1] = PD[s∗ +
∑
i∈I

si +
∑
j∈J

sj − (|J |+ 1/2) ≥ 0|y = 1]

1− PD[s∗ +
∑
i∈I

si +
∑
j∈J

sj − (|J |+ 1/2) < 0|y = 1] = 1− PD[s∗ +
∑
i∈I

si +
∑
j∈J

sj < |J |+ 1/2|y = 1]

where PD[s∗ = 1|y = 1] = α∗,D (resp. PD[si = 1|y = 1] = αi,D and PD[sj = 1|y = 1] = 1− εj,D).

We let

ΨD,y=1 := s∗ +
∑
i∈I

si +
∑
j∈J

sj − (|J |+ 1/2)

and

Ψ̂D,y=1 := s∗ +
∑
i∈I

si +
∑
j∈J

sj = ΨD,y=1 + |J |+ 1/2.

Similarly, the expected values of ΨD,y=1 and Ψ̂D,y=1 over s∗, si and sj are given by µΨD,y=1
and µΨ̂D,y=1

, respectively.
Precisely,

µΨD,y=1
= α∗,D − 1/2 +

∑
i∈I

αi,D −
∑
j∈J

εj,D

and

µΨ̂D,y=1
= α∗,D +

∑
i∈I

αi,D +
∑
j∈J

(1− εj,D) = µΨD,y=1
+ |J |+ 1/2

We then write PD[ô 6= y|w, y = 1] as

PD[ô 6= y|w, y = 1] = P[ΨD,y=1 < 0] ≤ exp(−δ2
D,y=1µΨ̂D,y=1

/2)

where

δD,y=1 = 1− |J |+ 1/2

µΨ̂D,y=1

=
µΨD,y=1

µΨ̂D,y=1

.

Let now γD,y=1 be the difference between true and false rates of sensors normalized over preventative models when y = 1
such that

γD,y=1 :=
1

|J |+ 1
(α∗,D − 1/2 +

∑
i∈I

αi,D −
∑
j∈J

εj,D).
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Noting that µΨD,y=1
= (|J |+1)γD,y=1, we have δD,y=1 =

(|J |+1)γD,y=1

(|J |+1)γD+|J |+1/2 and µΨ̂y=1
= (|J |+1)γD,y=1 + |J |+1/2.

Using Lemma 2 for a Poisson random variable Ψ̂y=1, we bound PD[ô 6= y|w, y = 1] as

PD[ô 6= y|w, Y = 1] = P[ΨD,y=1 < 0] = P[Ψ̂D,y=1 < |J |+ 1/2] ≤ exp(−δ2
D,y=1µΨ̂D,y=1

/2)

= exp

(
−

(|J |+ 1)2γ2
D,y=1

2
(

(|J |+ 1)γD,y=1 + |J |+ 1/2
))≤ exp

(
−

(|J |+ 1)2γ2
D,y=1

2
(

(|J |+ 1)γD,y=1 + |J |+ 1
))

= exp

(
− (|J |+ 1)

γ2
D,y=1

2(γD,y=1 + 1)

) (34)

For y = 0: We have

PD[ô = y|w, y = 0] = PD[s∗ − 1/2 +
∑
i∈I

si −
∑
j∈J

1− sj ≤ 0|y = 0]

1− PD[s∗ − 1/2 +
∑
i∈I

si −
∑
j∈J

1− sj > 0|y = 0] = 1− PD[−s∗ + 1/2−
∑
i∈I

si +
∑
j∈J

1− sj < 0|y = 0]

= 1− PD[−s∗ + 1− 1/2 +
∑
i∈I

1− si − |I|+
∑
j∈J

1− sj < 0|y = 0]

= 1− PD[−s∗ + 1 +
∑
i∈I

1− si +
∑
j∈J

1− sj < |I|+ 1/2|y = 0]

where PD[s∗ = 1|y = 0] = 1− α∗,D (resp. PD[si = 1|y = 0] = εi,D and PD[sj = 1|y = 0] = 1− αj,D).

We let
ΨD,y=0 := 1− s∗ +

∑
i∈I

1− si +
∑
j∈J

1− sj − (|I|+ 1/2)

and
Ψ̂D,y=0 := 1− s∗ +

∑
i∈I

1− si +
∑
j∈J

1− sj = ΨD,y=0 + |I|+ 1/2.

Similarly, the expected values of ΨD,y=0 and Ψ̂D,y=0 over s∗, si and sj are given by µΨD,y=0
and µΨ̂D,y=0

, respectively.
Precisely,

µΨD,y=0
= α∗,D − 1/2−

∑
i∈I

εi,D +
∑
j∈J

αj,D

and
µΨ̂D,y=0

= α∗,D +
∑
i∈I

1− εi,D +
∑
j∈J

αj,D = µΨD,y=0
+ |I|+ 1/2

We then write PD[ô 6= y|w, y = 0] as

PD[ô 6= y|w, y = 0] = P[ΨD,y=0 < 0] ≤ exp(−δ2
D,y=0µΨ̂D,y=0

/2)

where

δD,y=0 = 1− |I|+ 1/2

µΨ̂D,y=0

=
µΨD,y=0

µΨ̂D,y=0

.

Let now γD,y=0 be the difference between true and false rates of sensors normalized over permissive models when y = 0
such that

γD,y=0 :=
1

|I|+ 1
(α∗,D − 1/2 +

∑
j∈J

αj,D −
∑
i∈I

εi,D).
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Noting that µΨD,y=0
= (|I|+ 1)γD,y=0, we have δD,y=0 = (|I|+1)γD

(|I|+1)γD+|I|+1/2 and µΨ̂y=0
= (|I|+ 1)γD,y=0 + |I|+ 1/2.

Using Lemma 2 for a Poisson random variable Ψ̂y=0, we bound PD[ô 6= y|w, y = 0] as

PD[ô 6= y|w, y = 0] = P[ΨD,y=0 < 0] = P[Ψ̂D,y=0 < |I|+ 1/2] ≤ exp(−δ2
D,y=0µΨ̂D,y=0

/2)

= exp

(
−

(|I|+ 1)2γ2
D,y=0

2
(

(|I|+ 1)γD,y=0 + |I|+ 1/2
))≤ exp

(
−

(|I|+ 1)2γ2
D,y=0

2
(

(|I|+ 1)γD,y=0 + |I|+ 1
))

= exp

(
− (|I|+ 1)

γ2
D,y=0

2(γD,y=0 + 1)

) (35)

Last step: For convenience, let n := |I| = |J | and

γD := min(γD,y=1, γD,y=0).

Using (34) and (35), we bound the pipeline accuracy in (33) such that

AKEMLP ≥ 1−
∑

D∈{Db,Da}

πD exp

(
− (n+ 1)

γ2
D

2(γD + 1)

)

≥ 1−
∑

D∈{Db,Da}

πD exp

(
− (n+ 1)

γ2
D
4

)
.

(36)

Hence, if

1− exp

(
− (n+ 1)

γ2
D
4

)
> Amain (37)

for all D ∈ {Db,Da}, then we have AKEMLP > Amain. Manipulating (37) for all D ∈ {Db,Da} concludes the proof.

A.6. Proof of Corollary 1

We recall the respective setting as follows. We assume that the auxiliary models are homogeneous for each type: permissive
or preventative. For example, αk is fixed with respect to k ∈ I ∪ J , hence we drop the subscripts, i.e., αk,D = α and
εk,D = ε. We assume that the same number of auxiliary models are used, namely |I| = |J | = n, and that the classes are
balanced with PD(y = 1) = PD(y = 0), for all D ∈ {Db,Da}. Finally, we let α∗,Db

= 1 and α∗,Da
= 0, and α− ε > 0.

Then, the following holds.

Corollary (Recall). The weighted robust accuracy of KEMLP in the homogeneous setting satisfies

AKEMLP ≥ 1− exp
(
− 2n(α− ε)2

)
.

In particular, one has limn→∞AKEMLP = 1.

Proof of Corollary 1. First, for α∗,Db
= 1 and α∗,Da = 0, using (10) and (11), we note that

w∗ = b∗ = 0.

Secondly, in the homogeneous case, the conditional independence reflects to the mixture model and models become
conditionally independent in the mixture model as well. That is, the condition on the other models in (16, 17, 18, 19) drops
and we have closed form expression for all optimal parameters. Namely, for αi,D = αj,D = α and εi,D = εj,D = ε with
α > ε, once can deduce from (16, 17, 18, 19) that the optimal weight of auxiliary sensors are given by wi = wj = log α

ε
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and b =
∑
i∈I bi −

∑
j∈J bj =

∑
i∈I log 1−α

1−ε −
∑
j∈J log 1−α

1−ε = 0. Also, wi = wj > 0 for α > ε. For this setting, we
can write out AKEMLP as follows.

AKEMLP = ED∈{Db,Da}Ey∼Y
[
P[d∗,D + ydI,D + (1− y)dI,D > 0|y]

] (∗)
= Ey∼Y

[
P[ydI,D + (1− y)dI,D > 0|y]

]
(∗∗)
=

1

2

(
P[dI,D > 0|y = 1] + P[dJ ,D > 0|y = 0]

) (∗∗∗)
= P[dI,D > 0|y = 1]

where (*) follows from the homogeneity of models over both benign and adversarial distributions as well as that d∗,D =
w∗(2s∗ − 1) = 0, (**) follows from the class balance, and finally (***) stems from the symmetry.

Let B(n, p) denote the Binomial distribution with count parameter n and success probability p. Let also that dα and dε be
random variables with Binomial distributions such that dα ∼ B(n, α) and dε ∼ B(n, ε). We then rewrite the Weighted
Robust Accuracy of KEMLP as follows.

AKEMLP = P[dI,D > 0|y = 1] = 1− P[dI,D < 0|y = 1] = 1− P[w(dα − dε) < 0|y = 1] = 1− P[dα − dε < 0]

where the last equality follows from that w = log α
ε > 0.

We then review the Bounded Differences Inequality which will enable us to bound the tail probability P[dα− dε < 0|y = 1].

Theorem 4 (Bounded Differences Inequality (Boucheron et al., 2013)). Assume that a function φ : Xn → R of independent
random variables X1, ..., Xn ∈ X satisfies the bounded differences property with constants c1, ..., cn. Denote v2 =∑
i=[n] c

2
i and Z = φ(X1, ..., Xn). Z satisfies:

P(Z − E(Z) > t) ≤ exp
(
−2t2

v2

)
and P(Z − E(Z) < −t) ≤ exp

(
−2t2

v2

)
.

We refer to, for example, (Boucheron et al., 2013) for a proof of Theorem 4.

Using Theorem 4 for Z = dα − dε, AKEMLP can be bounded as:

AKEMLP = 1− P[dα − dε < 0] = 1− P[dα − dε − E[dα − dε] < −E[dα − dε]] = 1− P[dα − dε − n(α− ε) < −n(α− ε)].

Moreover, for t = n(α− ε) and v2 = n we finally have

AKEMLP = 1− P[dα − dε − n(α− ε) < −n(α− ε)] ≥ 1− exp
(
− 2(n2(α− ε)2)/n

)
=≥ 1− exp

(
− 2n(α− ε)2

)
concludes the proof for the lower bound.

As the final step, we will prove that AKEMLP > Amain. Note that Amain = ED∈{Db,Da}Ey∼Y
[
P[d∗,D > 0|y]

]
= πDb

α∗,Db
+

πDaα∗,Da = 1/2 · 1 + 1/2 · 0 = 1/2. Therefore, it only remains to analyze whether AKEMLP > 1/2 or not. Towards that,
we state the following result.

Lemma 3 (On the comparison of two binomial random variables). Let p, q ∈ [0, 1] denote the success probabilities for two
Binomial random variables. If p > q, then P[X > Y ] > 1

2 .

Proof. Let X and Y be random variables such that X ∼ B(n, p) and Y ∼ B(n, q). Z := X − Y can be shown to have the
following probability mass function

P(Z = z) =

{∑
k∈{0}∪[n] f(k + z, n, p)f(k, n, q) if x ≥ 0∑
k∈{0}∪[n] f(k, n, p)f(k + z, n, q) elsewhere

where f(k, n, p) =
(
n
k

)
pk(1− p)n−k for k ≤ n. Moreover, we have

P(Z > 0) = P(X − Y > 0) =
∑
z∈[n]

k∈{0}∪[n]

f(k + z, n, p)f(k, n, q), P(Z ≤ 0) =
∑
z∈[n]

k∈{0}∪[n]

f(k, n, p)f(k + z, n, q).

Note that if p > q, then f(k + z, n, p)f(k, n, q) > f(k, n, p)f(k + z, n, q) for fixed n, k ≥ 0. Hence, the summation
over z ∈ [n], k ∈ {0} ∪ [n] leads to P(Z > 0) > P(Z ≤ 0). It is further implied by P(Z > 0) + P(Z ≤ 0) = 1 that
P(Z > 0) > 1

2 .
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Using Lemma 3 for X = dα and Y = dε as well as that α > ε, we have

AKEMLP = P[dα − dε > 0] = P[dα > dε] > 1/2 = Amain.

Hence the proof results.

B. Experimental Details
B.1. Detailed Setup of Baselines

To demonstrate the superior KEMLP, we compare it with two state-of-the-art baselines: adversarial training (Madry et al.,
2017) and DOA (Wu et al., 2019), which are strong defenses against Lp bounded attacks and physically realizable attacks
respectively.

For adversarial training, we adopt L∞ bound ε ∈ {4, 8, 16, 32} during training phase. Since adversarial training failed to
make progress for ε ∈ {16, 32}, we use the curriculum training version (Cai et al., 2018), where the model is firstly trained
on smaller ε with ε gradually increasing to the largest bound. For all versions of adversarial training in our implementation,
we adopt 40 iterations of PGD attack with a step size of 1/255. In all cases, pixels are in 0 ∼ 255 range and the retraining
takes 3000 training iterations with a batch size of 200 for each random iteration.

For DOA, we consider adversarial patches with the size of 5 × 5 and 7 × 7 respectively for rectangle occlusion during
retraining. For both cases, we use an exhaustive search to pick the attack location and perform 30 iterations PGD inside the
adversarial patch to generate noise. The retraining takes 5000 training iterations and the batch size is 200.

Thus, in total, we have 7 baseline CNN models (1 standard CNN model, 4 adversarially trained CNN models, 2 DOA
trained CNN models), and we use id numbers 1 ∼ 7 to denote “GTSRB-CNN”, “AdvTrain (ε = 4)”, “AdvTrain (ε = 8)”,
“AdvTrain (ε = 16)”, “AdvTrain (ε = 32)”, “DOA (5x5)”, “DOA (7x7)”, respectively in Figure 2(a).

B.2. Details of Attacks and Corruptions

Since our constructed KEMLP pipeline is a compound model consisting of multiple sub-models, some of which are not
differentiable, we can not directly generate adversarial examples via the standard end-to-end white-box attack. Alternatively,
we further propose three different attack settings to evaluate the robustness of our KEMLP pipeline: 1)White-box sensor
attack, where adversarial examples are generated by directly applying gradient methods to the main task model of the
KEMLP pipeline in a white-box fashion; 2)Black-box sensor attack. In this setting, we train substitute model of the main
task model using the same model architecture and the same standard training data, and generate adversarial examples with
this substitute model; 3)Black-box pipeline attack, in which we generate adversarial examples with a substitute model,
which is obtained via distilling the whole KEMLP pipeline. For this setting, a substitute model with the same GTSRB-CNN
architecture is trained on a synthetic training set, where all the images are from the original training set, while the labels are
generated by the pipeline model. Then all the models are evaluated on the same set of adversarial test samples crafted on the
trained substitute.

Specifically, 1) For L∞ attack, we consider the strength of ε ∈ {4, 8, 16, 32} in our evaluation. 1000 iterations of standard
PGD (Madry et al., 2017) with a step size of 1/255 is used to craft the adversarial examples, and all the three attack settings
introduced above are respectively applied; 2) For unforeseen attacks, we consider the Fog, Snow, JPEG, Gabor and Elastic
attacks suggested in Kang et al. (2019), which are all gradient-based worst-case adversarial attacks, generating diverse
test distributions distinct from the common Lp bounded attacks. For Fog attack, we consider ε ∈ {256, 512}. For Snow
attack, we evaluate for ε ∈ {0.25, 0.75} respectively. For JPEG attack, we adopt the parameters ε ∈ {0.125, 0.25}. For
Gabor attack, ε ∈ {20, 40} are tested. Finally, ε ∈ {1.5, 2.0} are considered for Elastic attack. Since all of these attacks
are gradient based, we also apply the three different settings above to generate adversarial examples respectively; 3) For
physical attacks on stop signs, we directly use the same stickers (i.e., the same color and mask) generated in Eykholt et al.
(2018) to attack the same 40 stop sign samples, and we also adopt the same end-to-end classification model used in Eykholt
et al. (2018) to construct KEMLP model. Since our ultimate goal is defense, we follow the same practice in Wu et al. (2019),
where we only consider the digital representation of the attack instead of the real physical implementation, ignoring issues
like the attack’s robustness to different viewpoints and environments. Thus, we implement the physical stop sign attack
by directly placing the stickers on the stop sign samples in digital space; 4) For common corruptions, we evaluate our
models with the 15 categories of corruptions suggested in Hendrycks and Dietterich (2019). Empirically, in our traffic sign
identification task, only 3 types of corruptions out of the 15 categories effectively reduce the accuracy (with a margin over
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Table 5. Correspondence between id numbers and attacks/corruptions
1 2 3 4 5

Physical Attack Fog Corruption Contrast Corruption Brightness Corruption L∞ Attack (ε = 4, whitebox sensor)
6 7 8 9 10

L∞ Attack (ε = 8, whitebox sensor) L∞ Attack (ε = 16, whitebox sensor) L∞ Attack (ε = 32, whitebox sensor) Fog Attack (ε = 256, whitebox sensor) Fog Attack (ε = 512, whitebox sensor)
11 12 13 14 15

Snow Attack (ε = 0.25, whitebox sensor) Snow Attack (ε = 0.75, whitebox sensor) Jpeg Attack (ε = 0.125, whitebox sensor) Jpeg Attack (ε = 0.25, whitebox sensor) Gabor Attack (ε = 20, whitebox sensor)
16 17 18 19 20

Gabor Attack (ε = 40, whitebox sensor) Elastic Attack (ε = 1.5, whitebox sensor) Elastic Attack (ε = 2.0, whitebox sensor) L∞ Attack (ε = 4, blackbox sensor) L∞ Attack (ε = 8, blackbox sensor)
21 22 23 24 25

L∞ Attack (ε = 16, blackbox sensor) L∞ Attack (ε = 32, blackbox sensor) Fog Attack (ε = 256, blackbox sensor) Fog Attack (ε = 512, blackbox sensor) Snow Attack (ε = 0.25, blackbox sensor)
26 27 28 29 30

Snow Attack (ε = 0.75, blackbox sensor) Jpeg Attack (ε = 0.125, blackbox sensor) Jpeg Attack (ε = 0.25, blackbox sensor) Gabor Attack (ε = 20, blackbox sensor) Gabor Attack (ε = 40, blackbox sensor)
31 32 33 34 35

Elastic Attack (ε = 1.5, blackbox sensor) Elastic Attack (ε = 2.0, blackbox sensor) L∞ Attack (ε = 4, blackbox pipeline) L∞ Attack (ε = 8, blackbox pipeline) L∞ Attack (ε = 16, blackbox pipeline)
36 37 38 39 40

L∞ Attack (ε = 32, blackbox pipeline) Fog Attack (ε = 256, blackbox pipeline) Fog Attack (ε = 512, blackbox pipeline) Snow Attack (ε = 0.25, blackbox pipeline) Snow Attack (ε = 0.75, blackbox pipeline)
41 42 43 44 45

Jpeg Attack (ε = 0.125, blackbox pipeline) Jpeg Attack (ε = 0.25, blackbox pipeline) Gabor Attack (ε = 20, blackbox pipeline) Gabor Attack (ε = 40, blackbox pipeline) Elastic Attack (ε = 1.5, blackbox pipeline)
46

Elastic Attack (ε = 2.0, blackbox pipeline)

10%) of our standard GTSRB-CNN model. Thus, we only present the evaluation results of our models against the three
most successful corruption — Fog, Contrast, Brightness. (Note that, here we use Fog corruption which is similar to the Fog
attack in unforeseen attacks. However, they are different in that the Fog corruption here is not adversarially generated like
that in Fog attack.)

Thus, based on different attack/corruption methods and attack settings, in total, we have 46 different attacks/corruptions.
In Figure 2(b)(c), we use id numbers 1 ∼ 46 to denote all the attacks we evaluate on, and we present the correspondence
between id numbers and attacks in Table 5. Moreover, besides the two representative baselines presented in the main
body, we present the complete robustness improvement results under the 46 types of attacks/corruptions for all baselines in
Figure 3.

B.3. Implementation Details of KEMLP Pipeline for Traffic Sign Identification

To implement a nontrivial KEMLP pipeline for traffic sign identification, we need to design informative knowledge rules,
connecting useful sensory information to each type of traffic sign. The full GTSRB dataset contains 43 types of signs, thus it
requires a large amount of fine-grained sensory information and corresponding knowledge rules to distinguish between
different signs, which requires a heavy engineering workload. Since the main purpose of this work is to illustrate the
knowledge enhancement methodology rather than engineering practice, alternatively, we only consider a 12-class subset (as
shown in Figure 4) in our experiment, where the selected signs have diverse appearance and high frequencies.

For detailed KEMLP pipeline implementation, we consider two orthogonal domains — logic domain and sensing domain,
respectively.

In the logic domain, based on the specific tasks we need to deal with, we design a set of knowledge rules, which determine
the basic logical structure of the predefined reasoning model. Specifically, for our task of traffic sign identification on the
12-class dataset, in total, we have designed 12 pieces of permissive knowledge rules and 12 pieces of preventative knowledge
rules for the selected 12 types of signs. Each type of sign shares exactly one permissive knowledge rule and one preventative
knowledge rule, respectively.

In our design, we take border patterns and sign contents of the traffic signs as the sensory information to construct knowledge
rules. As shown in Figure 5, based on the border pattern, we can always construct a preventative knowledge rule for each
sign based on its border in the form as if it is a stop sign, it should be of the shape of octagon. In our 12-class set, since
there are six types of signs (“Stop”, “Priority Road”, “Construction Area”, “Yield”, “Do Not Enter”, “End of Previous
Limitation”) sharing the unique border pattern, we also design an permissive rule for each of the six classes based on their
borders, e.g. if the sign is of the shape of octagon, it must be a stop sign. Then, for the rest of the six types (“No Vehicles”,
“Speed Limit 50”, “Speed Limit 20”, “Speed Limit 120”, “Keep Right”, “Turn Left Ahead”), whose borders can not uniquely
determine their identity, we use their unique sign content to design permissive rules for them. Specifically, we define the
content pattern Blank Circle, Digits-20, Digits-50, Digits-120, Arrow-Right-Down, Arrow-Left-Ahead to distinguish between
these signs. We present the permissive relations in Figure 6.

In the sensing domain, the principal task is to design a set of reliable auxiliary models to identify those sensory information
required by the knowledge rules defined in the logic domain. For traffic sign identification, we adopt a non-neural pre-
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(a) Baseline: KEMLP over GTSRB-CNN (b) Baseline: KEMLP over AdvTrain (ε = 4)

(c) Baseline: KEMLP over AdvTrain (ε = 8) (d) Baseline: KEMLP over AdvTrain (ε = 16)

(e) Baseline: KEMLP over AdvTrain (ε = 32) (f) Baseline: KEMLP over DOA (5x5)

(g) Baseline: KEMLP over DOA (7x7)

Figure 3. Improvement of robustness accuracy after being enhanced by KEMLP. (α = 0.5)
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Figure 4. The selected 12 types of signs from the full GTSRB.

Figure 5. Border patterns of the selected signs.

processing plus neural identification workflow to identify the border and content of each type. Specifically, to identify the
border type (e.g. shape and color), we first use GrabCut (Rother et al., 2004) to get the mask of the sign and then discard
all pixels of sign content and background, only retaining the border pixels, and finally a binary CNN classifier is used to
make the statistical prediction (e.g. predict whether the shape is octagon only based on the border pixels). For sign content,
similarly, we first use GrabCut to filter out all irrelevant pixels except for the sign content, and then the edge operator will
extract the contour of the content, finally CNN models are applied to recognize specific features like digits, arrows and
characters. In Figure 7, we provide an overview of the workflow of our implemented auxiliary models.

In total, in our KEMLP pipeline, we implement 19 submodels — 1) One end-to-end GTSRB-CNN classifier (Eykholt et al.,
2018) as the main task model; 2) 8 binary preventative models for all 8 types of borders; 3) 6 binary permissive models for
the 6 border types, each of which is shared only by a unique class of sign; 4) 3 binary permissive models based on edge map
of sign content (Blank Circle, Arrow-Right-Down, Arrow-Left-Ahead); 5) A single permissive model for digit recognition,
which is used to identify Digits-20, Digits-50, Digits-120. All of the 17 binary classification neural models adopt the same
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Figure 6. permissive relations for each sign.

Figure 7. Overview: workflow of the auxiliary models.

backbone architecture in GTSRB-CNN and the rest digit recognition model adopts the architecture proposed in Goodfellow
et al. (2013).

Training Details. To make our KEMLP pipeline function normally as the way we expect, next, we consider the training
issues of the overall model.

Given the definition of permissive and preventative models, ideally, the permissive models should have low false rate and
nontrivial truth rate, while the preventative models should have high truth rate and nontrivial false rate. These conditions are
very critical for auxiliary models to bring accuracy improvement into the KEMLP pipeline. We guarantee the conditions to
hold by assigning biased weights to classification loss on positive samples and negative samples during the training stage.
Specifically, we train all of our binary auxiliary models with the following loss function:

L(D, f) = aEx∼D+ [CE(f(x), 1)] + bEx∼D− [CE(f(x), 0)],

where D = {D+, D−} is the dataset, D+ is the subset containing positive samples, D− is the subset containing negative
samples, f is the classifier and CE is the crossentroy loss. For permissive model, we set a << b, so that low false rate will
be encouraged at the cost of truth rate; while for preventative sensors, we set a >> b, then we can expect a high truth rate at
the cost of some false rate.

Besides the performance of each individual model, we also need to get proper weights for the reasoning graphical model in
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Figure 8. Visualization of adversarial examples and corrupted samples.

the KEMLP pipeline. Empirically, in our traffic sign identification task, since the end-to-end main task model has almost
perfect accuracy on clean data, directly training on clean data will always give the main task model a dominant weight,
leading to a trivial pipeline model. Thus, during training, we augment the training set with artificial adversarial samples,
where the sensing signal from the main task model is randomly flipped. As a result, during training, to make correct
predictions on these artificial adversarial samples, the optimizer must also assign nontrivial weights to other auxiliary models.
We call the ratio of such artificial adversarial samples in the training set the “adversarial ratio” in our context, indicating
prior belief on the balance between benign and adversarial distributions, and use α to denote it. In our evaluation, we test
different settings of α ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and report the best results in Table 2,6,7,1,3,8,9,4.
In particular, we use α = 0.8 in Table 2,3, α = 0.2 in Table 6,7,8,9,4 and α = 0.4 in Table 1. Moreover, we also present the
performance of KEMLP against different attacks with a fixed α = 0.5 in Figure 3.

For all the neural models, we use the standard Stochastic Gradient Descent Optimizer for training. The optimizer adopts a
learning rate of 10−2, momentum of 0.9 and weight decay of 10−4. In all the training cases, we use 50000 training iterations
with a batch size of 200 for each random training iteration. To train the weights of the graphical model in the pipeline, we
perform Maximum Likelihood Estimate (MLE) with the standard gradient descent algorithm, and we use a learning rate of
10−1 and run 4000 training iterations with a batch size of 50 for each random iterations.

B.4. Visualization of Adversarial Examples and Corrupted Samples

In Figure 8, we provide a visualization of the generated adversarial examples (corrupted samples) that are used for robustness
evaluation in our work. For each type of attack (corruption), we present the generated example (the first image in each
block), the extracted border (the second image in each block), and the sign content (the third image in each block) from the
sample.

As we can see, although the adversarial examples can easily fool an end-to-end neural network based main task model, the
non-neural GrabCut algorithm and edge operator can still correctly extract the border and sign content from them. This
allows other auxiliary models help to rectify the mistakes made by the main task model.

B.5. Additional Experiment Results

In the main text, we have presented our evaluation results under the setting of whitebox sensor attack. In this subsection,
we present the evaluation results of L∞ attack and unforeseen attacks under blackbox sensor and blackbox pipeline attack
settings. Specifically, we present the two blackbox results for L∞ attack in table 6 and table 7, and accordingly the two
blackbox results for unforeseen attacks in table 8 and table 9.
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Table 6. Adversarial accuracy under black-box sensor L∞ attack, α = 0.2 (Accuracy %)
ε = 0 ε = 4 ε = 8 ε = 16 ε = 32

GTSRB-CNN Main 99.38 85.16 67.98 47.56 25.69
KEMLP 98.28(−1.10) 91.36(+6.20) 79.53(+11.55) 61.21(+13.65) 41.85(+16.16)

AdvTrain (ε = 4) Main 97.94 94.88 90.23 72.99 50.75
KEMLP 97.89(−0.05) 95.88(+1.00) 90.66(+0.43) 77.01(+4.02) 55.56(+4.81)

AdvTrain (ε = 8) Main 93.72 91.49 89.02 80.56 64.76
KEMLP 96.79(+3.07) 94.29(+2.80) 90.23(+1.21) 81.40(+0.84) 65.92(+1.16)

AdvTrain (ε = 16) Main 84.54 83.05 82.00 79.76 73.20
KEMLP 94.68(+10.14) 90.72(+7.67) 86.52(+4.52) 80.02(+0.26) 70.47(−2.73)

AdvTrain (ε = 32) Main 74.74 73.64 72.79 71.91 67.77
KEMLP 91.46(+16.72) 86.60(+12.96) 81.66(+8.87) 75.69(+3.78) 66.77(−1.00)

DOA (5x5) Main 97.43 84.93 70.70 52.44 33.15
KEMLP 97.45(+0.02) 92.21(+7.28) 81.56(+10.86) 64.07(+11.63) 45.70(+12.55)

DOA (7x7) Main 97.27 79.48 65.77 48.71 30.99
KEMLP 97.22(−0.05) 90.56(+11.08) 80.20(+14.43) 62.55(+13.84) 44.24(+13.25)

Table 7. Adversarial accuracy under black-box pipeline L∞ attack, α = 0.2 (Accuracy %)
ε = 0 ε = 4 ε = 8 ε = 16 ε = 32

GTSRB-CNN Main 99.38 81.17 60.52 37.60 24.28
KEMLP 98.28(−1.10) 89.76(+8.59) 76.18(+15.66) 56.07(+18.47) 37.50(+13.22)

AdvTrain (ε = 4) Main 97.94 94.42 88.32 66.08 46.60
KEMLP 97.89(−0.05) 95.88(+1.46) 89.61(+1.29) 71.91(+5.83) 51.57(+4.97)

AdvTrain (ε = 8) Main 93.72 90.72 87.11 75.49 58.64
KEMLP 96.79(+3.07) 94.16(+3.44) 89.40(+2.29) 77.31(+1.82) 60.26(+1.62)

AdvTrain (ε = 16) Main 84.54 82.87 81.46 77.13 70.09
KEMLP 94.68(+10.14) 90.87(+8.00) 86.37(+4.91) 78.06(+0.93) 68.44(−1.65)

AdvTrain (ε = 32) Main 74.74 73.66 72.35 70.16 66.08
KEMLP 91.46(+16.72) 86.70(+13.04) 81.74(+9.39) 73.46(+3.30) 65.23(−0.85)

DOA (5x5) Main 97.43 81.94 66.13 48.28 33.26
KEMLP 97.45(+0.02) 91.13(+9.19) 78.88(+12.75) 61.42(+13.14) 42.36(+9.10)

DOA (7x7) Main 97.27 77.85 63.68 46.55 31.79
KEMLP 97.22(−0.05) 89.84(+11.99) 77.78(+14.10) 60.39(+13.84) 40.90(+9.11)

As shown, similar trends in whitebox sensor attack setting can also be observed in these two blackbox attack settings, which
indicates that the robustness is not just coming from gradient masking (Carlini and Wagner, 2017b; Athalye et al., 2018).

B.6. Conceptual Discussion on KEMLP

In the main body of this work, we have both empirically and theoretically justified our intuition — With the incorporation of
human knowledge, in KEMLP, weak (in terms of accuracy) but robust sensors (or auxiliary models named in the main text)
can assist a SOTA NN to enhance its robustness.

In general, we expect that KEMLP can be more generic — it is not necessarily constructed by exactly one main task model
and several auxiliary models that assist the main task model, instead, it can incorporate any kind of sensors (sub-models) and
knowledge rules to form a sensing-reasoning style pipeline, which first captures observational information from the input
via its sensors and then makes decision via reasoning based on knowledge rules and observational information extracted by
the sensors. As a supplement, in this section, we give out a conceptual discussion on this generic version, presenting some
additional promising opportunities it can provide for robust machine learning:

1. The decision process of KEMLP framework allows the incorporation of human knowledge, which helps to improve
the robustness of machine learning systems in a fundamental way.
Recently, Ilyas et al. (2019) point out that the adversarial vulnerability can be directly attributed to the presence of non-
robust features. This feature perspective indicates that adversarial vulnerability may be a human-centric phenomenon —
in some sense, as long as a classifier relies on some human imperceptible/incomprehensible features, an adversarial
example may be constructed via controlling these features without affecting human’s recognition. However, since we
usually train a classifier to solely maximize distributional accuracy, the learnt model tend to use any available signal
to do so, even those that look incomprehensible to humans — after all, the presence of “a tail” or “ears” is no more
natural to a model than any other equally predictive feature.

Thus, from a pessimistic view, the problem of adversarial vulnerability of machine learning systems may never
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Table 8. Adversarial accuracy under black-box sensor unforeseen attack, α = 0.2 (Accuracy %)
clean fog-256 fog-512 snow-0.25 snow-0.75 jpeg-0.125 jpeg-0.25 gabor-20 gabor-40 elastic-1.5 elastic-2.0

GTSRB-CNN Main 99.38 77.55 59.93 78.50 45.34 83.10 65.90 75.36 59.26 77.16 57.64
KEMLP 98.28(−1.10) 84.03(+6.48) 68.54(+8.61) 83.08(+4.58) 57.77(+12.43) 88.97(+5.87) 74.90(+9.00) 84.88(+9.52) 70.04(+10.78) 82.10(+4.94) 66.69(+9.05)

AdvTrain (ε = 4) Main 97.94 70.68 54.06 77.70 49.67 87.45 72.84 88.14 68.21 83.38 70.09
KEMLP 97.89(−0.05) 79.37(+8.69) 64.38(+10.32) 82.38(+4.68) 59.21(+9.54) 91.80(+4.35) 80.09(+7.25) 91.51(+3.37) 75.05(+6.84) 84.80(+1.42) 73.12(+3.03)

AdvTrain (ε = 8) Main 93.72 67.70 53.73 76.13 51.75 86.27 76.75 89.25 76.47 80.71 67.85
KEMLP 96.79(+3.07) 76.70(+9.00) 64.97(+11.24) 80.99(+4.86) 60.39(+8.64) 91.02(+4.75) 82.54(+5.79) 91.56(+2.31) 79.45(+2.98) 83.26(+2.55) 71.37(+3.52)

AdvTrain (ε = 16) Main 84.54 66.44 49.64 75.15 52.73 81.58 77.78 83.90 82.48 76.23 68.26
KEMLP 94.68(+10.14) 77.11(+10.67) 63.84(+14.20) 81.58(+6.43) 60.73(+8.00) 87.68(+6.10) 82.77(+4.99) 89.27(+5.37) 83.44(+0.96) 81.07(+4.84) 71.55(+3.29)

AdvTrain (ε = 32) Main 74.74 65.82 50.18 71.97 52.37 72.61 71.09 76.26 77.16 68.03 64.38
KEMLP 91.46(+16.72) 77.62(+11.80) 64.56(+14.38) 79.60(+7.63) 61.09(+8.72) 83.85(+11.24) 79.30(+8.21) 85.60(+9.34) 80.09(+2.93) 77.67(+9.64) 70.81(+6.43)

DOA (5x5) Main 97.43 78.24 62.32 79.55 56.69 86.55 71.32 82.23 67.28 87.96 75.75
KEMLP 97.41(−0.02) 84.26(+6.02) 69.08(+6.76) 83.36(+3.81) 62.58(+5.89) 90.41(+3.86) 77.98(+6.66) 87.06(+4.83) 73.69(+6.41) 86.09(−1.87) 75.90(+0.15)

DOA (7x7) Main 97.27 76.34 61.32 79.30 55.94 83.20 66.10 82.25 67.54 86.73 73.77
KEMLP 97.22(−0.05) 82.74(+6.40) 68.52(+7.20) 83.74(+4.44) 62.47(+6.53) 89.04(+5.84) 76.44(+10.34) 87.60(+5.35) 74.51(+6.97) 85.91(−0.82) 75.49(+1.72)

Table 9. Adversarial accuracy under black-box pipeline unforeseen attack, α = 0.2 (Accuracy %)
clean fog-256 fog-512 snow-0.25 snow-0.75 jpeg-0.125 jpeg-0.25 gabor-20 gabor-40 elastic-1.5 elastic-2.0

GTSRB-CNN Main 99.38 71.17 49.13 70.73 36.45 75.44 51.98 72.61 53.47 70.88 54.53
KEMLP 98.28(−1.10) 78.96(+7.79) 60.65(+11.52) 80.02(+9.29) 52.16(+15.71) 85.31(+9.87) 67.64(+15.66) 84.13(+11.52) 69.24(+15.77) 80.66(+9.78) 67.80(+13.27)

AdvTrain (ε = 4) Main 97.94 66.23 47.33 73.46 42.10 84.23 65.07 87.29 66.95 82.10 68.80
KEMLP 97.89(−0.05) 74.97(+8.74) 58.62(+11.29) 80.63(+7.17) 54.09(+11.99) 90.84(+6.61) 76.00(+10.93) 90.61(+3.32) 74.77(+7.82) 84.85(+2.75) 74.95(+6.15)

AdvTrain (ε = 8) Main 93.72 63.14 45.14 72.87 46.66 84.59 71.35 88.86 73.74 80.30 67.88
KEMLP 96.79(+3.07) 72.89(+9.75) 58.02(+12.88) 79.73(+6.86) 55.86(+9.20) 90.59(+6.00) 80.02(+8.67) 90.92(+2.06) 77.93(+4.19) 83.80(+3.50) 73.77(+5.89)

AdvTrain (ε = 16) Main 84.54 62.32 42.98 73.23 50.08 80.97 76.26 83.51 81.22 75.80 68.75
KEMLP 94.68(+10.14) 73.48(+11.16) 58.18(+15.20) 80.45(+7.22) 57.54(+7.46) 86.99(+6.02) 80.92(+4.66) 88.30(+4.79) 82.23(+1.01) 81.71(+5.91) 72.69(+3.94)

AdvTrain (ε = 32) Main 74.74 61.86 45.01 70.47 50.57 72.38 69.70 76.16 76.39 68.65 64.99
KEMLP 91.46(+16.72) 73.33(+11.47) 58.49(+13.48) 78.94(+8.47) 58.67(+8.10) 83.33(+10.95) 77.42(+7.72) 84.95(+8.79) 79.09(+2.70) 78.37(+9.72) 71.45(+6.46)

DOA (5x5) Main 97.43 75.01 56.97 77.67 53.14 83.15 63.79 82.07 65.77 88.17 78.88
KEMLP 97.41(−0.02) 80.40(+5.39) 64.40(+7.43) 82.28(+4.61) 59.52(+6.38) 88.89(+5.74) 73.69(+9.90) 87.04(+4.97) 73.43(+7.66) 86.99(−1.18) 77.88(−1.00)

DOA (7x7) Main 97.27 73.97 57.05 77.21 53.55 81.40 62.68 82.15 67.28 87.42 78.27
KEMLP 97.22(−0.05) 80.04(+6.07) 64.17(+7.12) 82.46(+5.25) 59.75(+6.20) 88.30(+6.90) 73.48(+10.80) 87.09(+4.94) 73.95(+6.67) 86.42(−1.00) 78.58(+0.31)

be fundamentally solved via just training-level techniques like adversarial training (Madry et al., 2017) or purely
mathematical techniques like randomized smoothing (Cohen et al., 2019). After all, if the robustness problem is
human-centric, the predictive features and decision mechanisms learnt by purely supervised learning algorithms may
never be well aligned with human’s sense. Even a model is robust to certain Lp attack via these robust machine learning
techniques, there is deformation, snow, fog and any other kind of unforeseen adversarial attack (Kang et al., 2019), as
long as these perturbations can not affect human’s recognition in some sense.

From this perspective, to fundamentally solve the problem of adversarial vulnerability, which seems to be a human-
centric phenomenon, human knowledge should play a critical role as a guidance for learning features and decision
mechanisms.

Our KEMLP framework is one such attempt to adopt knowledge for robust machine learning. Different from end-to-end
neural network models, which complete the full procedure of sensory information process and decision making all in a
single uninterpretable black box, the KEMLP framework resolves a decision problem into two separate processes — 1)
sensory information capturing (sensing domain) during which a set of observations with clear semantic meanings are
obtained; 2) decision making (logic domain) during which the final decision is made via logical reasoning, based on
the observations from the first process and the decision rules determined by human knowledge.

Such design brings about two fundamental benefits:

• The sensory features extracted in the sensing domain of KEMLP are totally in a human understandable format with
clear semantic meaning, and the relations between features and candidate decisions in the logical domain also have
clear human knowledge as the basis. For instance, in our KEMLP implementation for traffic sign identification,
the extracted sensory features output by the sensors are all boolen variables, representing meaningful concepts,
e.g. whether the given sign is of the shape of octagon, whether the content on the sign are the characters “S”,

“T”, “O”, “P”., and the decision rules like “Stop sign must be of the shape of octagon” have clear logical basis.
As a result, the problem of non-robust features (Ilyas et al., 2019; Tsipras et al., 2019) no longer exists in the logic
domain of KEMLP framework, as long as the knowledge rules themselves are reasonable.

• In KEMLP framework, the adversarial vulnerability is strictly restricted to the sensing domain — to build up a
robust pipeline model, we only need to deal with the sensory errors (the mistakes made by sensors, given that the
sensors may still be attacked).
Specifically, if an adversarial example fools our KEMLP framework, we don’t need to consider the non-robust
features or unreliable decision mechanism, instead, the only error we need to deal with is — one or several sensors
have made wrong observations. Such errors are not as fundamental as what we have mentioned for end-to-end
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neural network models, because they are technically tractable and can be well controlled. One concrete example is
the case we present in the main body, where we have used a set of weak (in terms of accuracy) but robust sensors
to build a good KEMLP instance.

2. KEMLP framework provides a principled way to incorporate “weak” models.
As we have mentioned, in KEMLP, the false negative errors of permissive sensors and false positive errors of
preventative sensors will not mislead the decision process. Thus, to construct a KEMLP pipeline model, a binary sensor
with high precision but relatively low recall can be used as permissive sensor, and a binary sensor with high recall
but relatively low precision can be used as preventative sensor. Despite these sensors may be deemed as “weak” in
terms of their accuracy, incorporating them will be very helpful to improve the performance of decision making. In
particular, for robust machine learning, we are quite interested in taking use of some “weak” models with relatively
lower accuracy but better adversarial robustness, to boost the the whole pipeline system. In the main text, we have
already theoretically analyzed such robustness improvement.

In practice, such “weak” sensors are common. Take the traffic sign identification for example, earlier before the wide
application of DNNs, elaborate algorithms (Kehtarnavaz et al., 1993; Miura et al., 2000) were already designed to
handle this task. Although these sensors based on non-neural algorithms are weaker than the the state-of-the-art CNN
models in terms of identification accuracy on clean data, they are more interpretable and less likely to be attacked
by small adversarial noise. Moreover, in spite of relatively low accuracy, these “weak” sensors can usually be easily
adapted to have high precision (at the cost of recall) or high recall (at the cost of precision), thus they can be incorporated
into the KEMLP framework as permissive or preventative sensors. For instance, Kehtarnavaz et al. (1993) propose
to identify a stop sign by detecting the eight lines of its octagon shape with Hough transform. For sure, because of
the complex natural environment, this method (with a relatively high threshold to claim a straight line) often fails to
correctly detect all of the 8 lines, which leads to a low recall (about 30% on GTSRB dataset according to our evaluation).
However, it can achieve very high precision (about 95% on GTSRB dataset) because it’s hard to mistakenly detect an
octagon when the threshold of claiming each straight line of the eight edges is high. Similarly, one can hardly use small
adversarial noise to cheat Hough transform on the detection of all 8 edges, so its false positive error rate will still be
low even against adversarial attacks. So, although this Hough transform based sensor is “weak”, it can be helpful as an
permissive sensor in a KEMLP pipeline model.

Moreover, although recent study on robust machine learning have made some progress in improving adversarial
robustness (Cohen et al., 2019; Madry et al., 2017), it is often at the cost of clean accuracy (Tsipras et al., 2019;
Mohapatra et al., 2020). So, in some sense, all of the neural networks based sensors enhanced by adversarial defense
techniques may also be deemed as one class of “weak” sensors, which share better robustness with weaker clean
accuracy. Hence, we believe our KEMLP framework also provides an opportunity to incorporate those sensors enhanced
by state-of-the-art defense techniques and helps to relieve the trade-off between robustness and accuracy. Actually, as
we can see in Section 5, when we combine the adversarially trained main sensor and other auxiliary models, both the
robust accuracy and clean accuracy are significantly improved compared with a single adversarially trained model.

3. KEMLP framework subsumes ensemble defense and naturally leads to task-level diversity among the sub-models.
In some sense, our KEMLP framework can be deemed as a more general framework that subsumes ensemble
defense (Strauss et al., 2017; Liu et al., 2018; Kariyappa and Qureshi, 2019; Pang et al., 2019; Yang et al., 2020b), in
that each sub-model in the ensemble can be directly modeled as a Type-I sensor (main task model) in KEMLP.

Much the same to ensemble defense, if all (or at least a majority of) sub-models (sensors) in a KEMLP pipeline can
be simultaneously cheated, the final decision still can not be reliable. In the study of ensemble defense, to avoid
such problems, different training strategies (Pang et al., 2019; Kariyappa and Qureshi, 2019; Yang et al., 2020b) are
proposed, trying to diversify the sub-models during training stage, so that an adversarial example can only attack a
minority of the sub-models.

Besides these training-level diversities studied in ensemble defense, the KEMLP framework, as a more general form,
naturally provides us the opportunity to design diverse sub-models (sensors) in task level, because KEMLP framework
allows the incorporation of sensors that are designed for very different tasks, e.g. digit recognition, shape recognition,
etc. Intuitively, such task-level diversity naturally makes it harder to transfer an adversarial example to a majority
of sensors, for example, even if the attackers have managed to fool the digit recognition sensors by perturbing the
content of digits, the shape recognition of traffic sign border can’t be affected. We believe this new perspective of
model diversity can also provide a possible solution for adversarial vulnerability in machine learning systems.
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B.7. Is KEMLP Robust against Adaptive Attacks?

Since the auxiliary models are implemented by non-neural pre-processing (edge operators and Grab-Cut) followed by neural
network based classification, they are not end-to-end differentiable and thus the gradient-based adaptive attacks cannot be
directly applied. We evaluated KEMLP with whitebox adaptive attack against 1) the main sensor (Tables 2,3) and 2) the
distillated model of the whole pipeline (Tables 7,9) in paper. Note that we also evaluate KEMLP against the model agnostic
common corruptions (Table 4), which demonstrates its effectiveness from another perspective.

We also evaluated our KEMLP model on SPSA attack (Uesato et al., 2018), which is a gradient-free black box attack. We
conduct evaluation on a small test set with 50 stop-sign and 50 non-stop-sign samples. Our observations are as follows:
1) When we conduct SPSA attack directly on the main sensor, the accuracy of the main sensor can be reduced to near
zero (ε = 32 for L∞ attack), while the same attack is not effective when it is conducted on the whole end-to-end pipeline.
2) Alternatively, we conduct the attack directly on the auxiliary sensors which are based on non-neural preprocessing and
neural classification. Still, we find that even under strong perturbation (ε = 32), permissive sensors maintain low false
rate (below 15%) and non-trivial truth rate (over 50%), while preventative sensors maintain high truth rate (over 80%) and
relatively low false rate (below 30%).


