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Abstract

Despite the great successes achieved by deep neu-
ral networks (DNNs), recent studies show that
they are vulnerable against adversarial examples,
which aim to mislead DNNs by adding small ad-
versarial perturbations. Several defenses have
been proposed against such attacks, while many of
them have been adaptively attacked. In this work,
we aim to enhance the ML robustness from a
different perspective by leveraging domain knowl-
edge: We propose a Knowledge Enhanced Ma-
chine Learning Pipeline (KEMLP) to integrate do-
main knowledge (i.e., logic relationships among
different predictions) into a probabilistic graphi-
cal model via first-order logic rules. In particular,
we develop KEMLP by integrating a diverse set
of weak auxiliary models based on their logical re-
lationships to the main DNN model that performs
the target task. Theoretically, we provide conver-
gence results and prove that, under mild condi-
tions, the prediction of KEMLP is more robust
than that of the main DNN model. Empirically,
we take road sign recognition as an example and
leverage the relationships between road signs and
their shapes and contents as domain knowledge.
We show that compared with adversarial train-
ing and other baselines, KEMLP achieves higher
robustness against physical attacks, Lp bounded
attacks, unforeseen attacks, and natural corrup-
tions under both whitebox and blackbox settings,
while still maintaining high clean accuracy.
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1. Introduction

Recent studies show that machine learning (ML) models are
vulnerable to different types of adversarial examples, which
are adversarially manipulated inputs aiming to mislead ML
models to make arbitrarily incorrect predictions (Szegedy
et al., 2013; Goodfellow et al., 2015; Bhattad et al., 2020;
Eykholt et al., 2018). Different defense strategies have
been proposed against such attacks, including adversarial
training (Shafahi et al., 2019; Madry et al., 2017), input
processing (Ross and Doshi-Velez, 2018), and approaches
with certified robustness against Lp bounded attacks (Cohen
et al., 2019; Yang et al., 2020a). However, these defenses
have either been adaptively attacked again (Carlini and Wag-
ner, 2017a; Athalye et al., 2018) or can only certify the
robustness within a small `p perturbation radius. In addition,
when models are trained to be robust against one type of
attack, their robustness is typically not preserved against
other attacks (Schott et al., 2018; Kang et al., 2019). Thus,
despite the rapid recent progress on robust learning, it is still
challenging to provide robust ML models against a diverse
set of adversarial attacks in practice.

In this paper, we take a different perspective towards train-
ing robust ML models against diverse adversarial attacks by
integrating domain knowledge during prediction, given the
observation that human with knowledge is quite resilient
against these attacks. We will first take stop sign recogni-
tion as a simple example to illustrate the potential role of
knowledge in ML prediction. In this example, the main

task is to predict whether a stop sign appears in the input
image. Training a DNN model for this task is known to be
vulnerable against a range of adversarial attacks (Eykholt
et al., 2018; Xiao et al., 2018a). However, upon such a
DNN model, if we could (1) build a detector for a different
auxiliary task, e.g., detecting whether an octagon appears
in the input by using other learning strategies such as tra-
ditional computer vision techniques, and (2) integrate the
domain knowledge such that “A stop sign should be of an
octagon shape”, it is possible that additional information
could enable the ML system to detect or defend against
attacks, which lead to conflicts between the DNN prediction
and domain knowledge. For instance, if a speed limit sign
with rectangle shape is misrecognized as a stop sign, the
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Figure 1. An overview of the KEMLP framework. KEMLP con-
structs a factor graph by modeling the output of ML models as
random input variables, and the KEMLP prediction as a random
output variable. It integrates domain knowledge via factors con-
necting different random variables.

ML system would identify this conflict and try to correct
the prediction.

Inspired by this intuition, we aim to understand how to
enhance the robustness of ML models via domain knowledge
integration. Despite the natural intuition in the previous
simple example, providing a technically rigorous treatment
to this problem is far from trivial, yielding the following
questions: How should we integrate domain knowledge in a
principled way? When will integrating domain knowledge
help with robustness and will there be a tradeoff between
robustness and clean accuracy? Can integration of domain
knowledge genuinely bring additional robustness benefits
against practical attacks when compared with state-of-the-
art defenses?

In this work, we propose KEMLP, a framework that fa-
cilitates the integration of domain knowledge in order to
improve the robustness of ML models. Figure 1 illustrates
the KEMLP framework. In KEMLP, the outputs of dif-
ferent ML models are modeled as random input variables,
whereas the output of KEMLP is modeled as another vari-
able. To integrate domain knowledge, KEMLP introduces
corresponding factors connecting these random variables.
For example, as illustrated in Figure 1, the knowledge rule
“A stop sign is of an octagon shape” introduces a factor
between the input variable (i.e., the output of the octagon
detector) and the output variable (i.e., output of the stop
sign detector) with a factor function that the former implies
the latter. To make predictions, KEMLP runs statistical in-
ference over the factor graph constructed by integrating all
such domain knowledge expressed as first-order logic rules,
and output the marginal probability of the output variable.

Based on KEMLP, our main goal is to understand two fun-
damental questions based on KEMLP: (1) What type of
knowledge is needed to improve the robustness of the joint
inference results from KEMLP, and can we prove it? (2) Can
we show that knowledge integration in the KEMLP frame-
work can provide significant robustness gain over powerful
state-of-the-art models?

We conduct theoretical analysis to understand the first ques-
tion, focusing on two specific types of knowledge rules:
(1) permissive knowledge of the form “B =) A”, and
(2) preventive knowledge of the form “A =) B”, where
A represents the main task, B an auxiliary task and =)
denotes logical implication. We focus on the weighted ro-
bust accuracy, which is a weighted average of accuracies
on benign and adversarial examples, respectively, and we
derive sufficient conditions under which KEMLP outper-
forms the main task model alone. Under mild conditions,
we show that integrating multiple weak auxiliary models,
both in their robustness and quality, together with the per-
missive and preventive rules, the weighted robust accuracy
of KEMLP can be guaranteed to improve over the single
main task model. To our best knowledge, this is the first
analysis of proposed form, focusing on the intersection of
knowledge integration, joint inference, and robustness.

We then conduct extensive empirical studies to understand
the second question. We focus on the road sign classi-
fication task and consider the state-of-the-art adversarial
training models based on both the Lp bounded perturba-
tion and occlusion perturbations (Wu et al., 2019) as our
baselines as well as the main task model. We show that by
training weak auxiliary models for recognizing the shapes
and contents of road signs, together with the corresponding
knowledge rules as illustrated in Figure 1, KEMLP achieves
significant improvements on their robustness compared with
baseline main task models against a diverse set of adversar-
ial attacks while maintaining similar or even higher clean
accuracy, given its improvement on the tradeoff between
clean accuracy and robustness. In particular, we consider
existing physical attacks (Eykholt et al., 2018), Lp bounded
attacks (Madry et al., 2017), unforeseen attacks (Kang et al.,
2019), and common corruptions (Hendrycks and Dietterich,
2019), under both whitebox and blackbox settings. To our
best knowledge, KEMLP is the first ML model robust to
diverse attacks in practice with high clean accuracy. Our
code is publicly available for reputability 1.

Technical Contributions. In this paper, we take the first
step towards integrating domain knowledge with ML to
improve its robustness against different attacks. We make
contributions on both theoretical and empirical fronts.

• We propose KEMLP, which integrates a main task ML
model with a set of weak auxiliary task models, together
with different knowledge rules connecting them.

• Theoretically, we provide the robustness guarantees for
KEMLP and prove that under mild conditions, the predic-
tion of KEMLP is more robust than that of a single main
task model.

• Empirically, we develop KEMLP based on different main
1https://github.com/AI-secure/

Knowledge-Enhanced-Machine-Learning-Pipeline

https://github.com/AI-secure/Knowledge-Enhanced-Machine-Learning-Pipeline
https://github.com/AI-secure/Knowledge-Enhanced-Machine-Learning-Pipeline
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task models, and evaluate them against a diverse set of
attacks, including physical attacks, Lp bounded attacks,
unforeseen attacks, and common corruptions. We show
that the robustness of KEMLP outperforms all baselines
by a wide margin, with comparable and often higher clean
accuracy.

2. Related Work

In the following, we review several bodies of literature that
are relevant to the objective of our paper.

Adversarial examples are carefully crafted inputs aiming
to mislead well-trained ML models (Goodfellow et al., 2015;
Szegedy et al., 2013). A variety of approaches to generate
such adversarial examples have also been proposed based
on different perturbation measurement metrics, including
Lp bounded, unrestricted, and physical attacks (Wong et al.,
2019; Bhattad et al., 2020; Xiao et al., 2018b;c; Eykholt
et al., 2018).

Defense methods against such attacks have been proposed.
Empirically, adversarial training (Madry et al., 2017) has
shown to be effective, together with feature quantization (Xu
et al., 2017) and reconstruction approaches (Samangouei
et al., 2018). Certified robustness has also been studied
by propagating the interval bound of a NN (Gowal et al.,
2018), or randomized smoothing of a given model (Cohen
et al., 2019). Several approaches have further improved
it: by choosing different smoothing distributions for differ-
ent Lp norms (Dvijotham et al., 2020; Zhang et al., 2020;
Yang et al., 2020a), or training more robust smoothed classi-
fiers via data augmentation (Cohen et al., 2019), unlabeled
data (Carmon et al., 2019), adversarial training (Salman
et al., 2019), and regularization (Li et al., 2019; Zhai et al.,
2019). While most prior defenses focus on leveraging statis-
tical properties of an ML model to improve its robustness,
they can only be robust towards a specific type of attack,
such as `p bounded attacks. This paper aims to explore how
to utilize knowledge inference information to improve the
robustness of a logically connected ML pipeline against a
diverse set of attacks.

Joint inference has been studied to take multiple predic-
tions made by different models, together with the relations
among them, to make a final prediction (Xu et al., 2020;
Deng et al., 2014; Poon and Domingos, 2007; McCallum,
2009; Chen et al., 2014; Chakrabarti et al., 2014; Biba
et al., 2011). These approaches usually use different infer-
ence models, such as factor graphs (Wainwright and Jordan,
2008), Markov logic networks (Richardson and Domingos,
2006) and Bayesian networks (Neuberg, 2003), as a way
to characterize their relationships. The programmatic weak
supervision approaches (Ratner et al., 2016; 2017) also per-
form joint inference by employing labeling functions and

using generative modeling techniques, which aims to cre-
ate noisy training data. In this paper, we take a different
perspective on this problem — we explore the potential
of using joint inference with the objective of integrating
domain knowledge and to eventually improving the ML ro-
bustness. As we will see, by integrating domain knowledge,
it is possible to improve the learning robustness by a wide
margin.

3. KEMLP: Knowledge Enhanced Machine

Learning Pipeline

We first present the proposed framework KEMLP, which
aims to improve the robustness of an ML model by integrat-
ing a diverse set of domain knowledge. In this section, we
formally define the KEMLP framework.

We consider a classification problem under a supervised
learning setting, defined on a feature space X and a finite
label space Y . We refer to x 2 X as an input and y 2 Y as
the target variable. An input x can be a benign example or
an adversarial example. To model this, we use z 2 {0, 1}, a
latent variable that is not exposed to KEMLP. That is, x is
an adversarial example with (x, y) ⇠ Da whenever z = 1,
and (x, y) ⇠ Db otherwise, where Da and Db represent the
adversarial and benign data distributions. We let ⇡Da =
P(z = 1) and ⇡Db = P(z = 0), implying ⇡Da + ⇡Db =
1. For convenience, we denote PDa(x, y) = P(x, y|z =
1) and PDb(x, y) = P(x, y|z = 0). In the following, to
ease the exposition, we slightly abuse the notation and use
probability densities for discrete distributions.

Given an input x whose corresponding z is unknown (be-
nign or adversarial), KEMLP aims to predict the target
variable y by employing a set of models. These predic-
tive models are constructed, say, using ML or some other
traditional rule-based methods (e.g., edge detector). For
simplicity, we describe the KEMLP framework as a binary
classification task, in which case Y = {0, 1}, noting that
the multi-class scenario is a simple extension of it. We
introduce the KEMLP framework as follows.

Models Models are a collection of predictive ML models,
each of which takes as input x and outputs some predictions.
In KEMLP, we distinguish three different type of models.

• Main task model: We call the (untrusted) ML model
whose robustness users want to enhance as the main task
model, denoting its predictions by s⇤ 2 Y .
• Permissive models: Let sI = {si : i 2 I} be a set of
m permissive models, each of which corresponds to the
prediction of one ML model. Conceptually, permissive
models are usually designed for specific events which are
sufficient for inferring y = 1: si =) y.
• Preventative models: Similarly, we have n preventative
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models: sJ = {sj : j 2 J }, each of which corresponds to
the prediction of one ML model. Conceptually, preventative
models capture the events that are necessary for the event
y = 1: y =) sj .

Knowledge Integration Given a data example (x, y) ⇠
Db or (x, y) ⇠ Da, y is unknown to KEMLP. We create
a factor graph to embed the domain knowledge as follows.
The outputs of each model over x become input variables:
s⇤, sI = {si : i 2 I}, sJ = {sj : j 2 J }. KEMLP
also has an output variable o 2 Y , which corresponds to
its prediction. Different models introduce different types of
factors connecting these variables:

• Main model: KEMLP introduces a factor between the
main model s⇤ and the output variable o with factor function
f⇤(o, s⇤) = {o = s⇤};
• Permissive model: KEMLP introduces a factor between
each permissive model si and the output variable o with
factor function fi(o, si) = {si=) o}.
• Preventative model: KEMLP introduces a factor between
each preventative model sj and the output variable o with
factor function fj(o, sj) = {o=) sj}.

Learning with KEMLP To make a prediction, KEMLP
outputs the probability of the output variable o. KEMLP
assigns a weight for each model and constructs the following
statistical model:

P[o|s⇤, sI , sJ , w⇤, wI , wJ , bo] /
exp{bo + w⇤f⇤(o, s⇤)}⇥

exp
�X

i2I
wifi(o, si)

 
⇥ exp

�X

j2J
wjfj(o, sj)

 

where w⇤, wi, wj are the corresponding weights for models
s⇤, si, sj , wI = {wi : i 2 I}, wJ = {wj : j 2 J }
and bo is some bias parameter that depends on o. For the
simplicity of exposition, we use an equivalent notation by
putting all the weights and outputs of factor functions into
vectors using an ordering of models. More precisely, we
define

w = [1;w⇤; (wi)i2I ; (wj)j2J ],

fo(s⇤, sI , sJ ) = [bo; f⇤(o, s⇤); (fi(o, si))i2I ; (fj(o, sj))j2J ],

for o 2 Y . All concatenated vectors from above are in
Rm+n+2. Given this, an equivalent form of KEMLP’s sta-
tistical model is

P[o|s⇤, sI , sJ ,w] =
1

Zw
exp(hw, fo(s⇤, sI , sJ )i) (1)

where Zw is the normalization constant over o 2 Y . With
some abuse of notation, w is meant to govern all parameters
including weights and biases whenever used with probabili-
ties.

Weight Learning During the training phase of KEMLP,
we choose parameters w by performing standard maximum
likelihood estimation over a training dataset. Given a par-
ticular input instance x(n), respective model predictions
s(n)
⇤ , s(n)

I , s(n)

J , and the ground truth label y(n), we minimize
the negative log-likelihood function in view of

ŵ = argmin
w

n
�
X

n

log
⇣
P[o(n) = y(n)|s(n)

⇤ , s(n)

I , s(n)

J ,w]
⌘o

.

Inference During the inference phase of KEMLP, given
an input example x̂, we predict ŷ that has the largest prob-
ability given the respective model predictions ŝ⇤, ŝI , ŝJ ,
namely, ŷ = argmaxỹ2Y P[o = ỹ|ŝ⇤, ŝI , ŝJ , ŵ].

4. Theoretical Analysis

How does knowledge integration impact the robustness of
KEMLP? In this section, we provide theoretical analysis
about the impact of domain knowledge integration on the ro-
bustness of KEMLP. We hope to (1) depict the regime under
which knowledge integration can help with robustness; (2)
explain how a collection of “weak” (in terms of prediction
accuracy) but “robust” auxiliary models, on tasks different
from the main one, can be used to boost overall robustness.
Here we state the main results, whereas we refer interested
readers to Appendix A where we provide all relevant details.

Weighted Robust Accuracy Previous theoretical analy-
sis on ML robustness (Javanmard et al., 2020; Xu et al.,
2009; Raghunathan et al., 2020) have identified two natural
dimensions of model quality: clean accuracy and robust
accuracy, which are the accuracy of a given ML model on
inputs x drawn from either the benign distribution Db or
adversarial distribution Da. In this paper, to balance their
tradeoff, we use their weighted average as our main metric
of interest. That is, given a classifier h : X ! Y we define
its Weighted Robust Accuracy as

Ah = ⇡DaPDa [h(x) = y] + ⇡DbPDb [h(x) = y].

We use AKEMLP and Amain to denote the weighted robust
accuracies of KEMLP and main task model, respectively.

4.1. AKEMLP
: Weighted Robust Accuracy of KEMLP

The goal of our analysis is to identify the regime under
which AKEMLP > Amain is guaranteed. The main analy-
sis to achieve this hinges on deriving the weighted robust
accuracy AKEMLP for KEMLP. We first describe the model-
ing assumptions of our analysis, and then describe two key
characteristics of models, culminating in a lower bound of
AKEMLP.

Modeling Assumptions We assume that for a fixed z, that
is, for a fixed D 2 {Db,Da}, the models make independent
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errors given the target variable. Thus, for all D 2 {Db,Da},
the class conditional distribution can be decomposed as

PD[s⇤, sI , sJ |y] = PD[s⇤|y]
Y

i2I
PD[si|y]

Y

j2J
PD[sj |y].

We also assume for simplicity that the main task model
makes symmetric errors given the class of target variable,
that is, PD[s⇤ 6= y|y] is fixed with respect to y for all D 2
{Db,Da}.

Characterizing Models: Truth Rate (↵) and False Rate

(✏) Each auxiliary model k 2 I [ J is characterized by
two values, their truth rate (↵) and false rate (✏) over benign
and adversarial distributions. These values measure the
consistency of the model with the ground truth:

Permissive Models:
↵i,D := PD[si = y|y = 1], ✏i,D := PD[si 6= y|y = 0]

Preventative Models:
↵j,D := PD[sj = y|y = 0], ✏j,D := PD[sj 6= y|y = 1]

Note that, given the asymmetric nature of these auxiliary
models, we do not necessarily have ✏k,D = 1 � ↵k,D. In
addition, for a high quality permissive model (k 2 I), or a
high quality preventative model (k 2 J ) for which the logic
rules mostly hold, we expect ↵k,D to be large and ✏k,D to
be small.

We define the truth rate of main model over data examples
drawn from D 2 {Db,Da} as ↵⇤,D := PD(s⇤ = y), and its
false rate as ✏⇤,D := PD(s⇤ 6= y) = 1� ↵⇤,D.

These characteristics are of integral importance to weighted
robust accuracy of KEMLP. To combine all the models
together, we define upper and lower bounds to truth rates and
false rates. For the main model, we have ^↵⇤ := minD ↵⇤,D
and _↵⇤ := maxD ↵⇤,D. For the auxiliary models, on the
other hand, for each model index k 2 I [ J , we have

^↵k := min
D

↵k,D, ^✏k := min
D

✏k,D

_↵k := max
D

↵k,D, _✏k := max
D

✏k,D.

Intuitively, the difference between ^↵ and _↵ (resp. ^✏ and
_✏) indicates the “robustness” of each individual model. If a
model performs very similarly when it is given a benign and
an adversarial example, we have that ^↵ should be similar
to _↵ (resp. ^✏ to _✏).

The truth and false rates of models directly influence the
factor weights which govern the influence of models in
the main task. In Appendix A.2 we prove that the opti-
mal weight of an auxiliary model is bounded by wk �
log ^↵k(1 � _✏k)/(1 � ^↵k)_✏k, for all k 2 I [ J . That

is, the lowest truth rate and highest false rate of an auxiliary
model (resp. ^↵k and _✏k) are indicative of its influence
in the main task. By taking partial derivatives, this lower
bound can be shown to be increasing in ^↵k and decreasing
in _✏k. That is, as the lowest truth rate of a model gets higher,
KEMLP increases its influence in the weighted majority vot-
ing accordingly – in the above nonlinear fashion. The lowest
truth rate is often determined by the robust accuracy. As a
result, the more “robust” an auxiliary model is, the larger
the influence on KEMLP, which naturally contributes to its
robustness.

Weighted Robust Accuracy of KEMLP We now pro-
vide a lower bound on the weighted robust accuracy of
KEMLP, which can be written as

AKEMLP = ED⇠{Da,Db}Ey⇠Y
⇥
PD[o = y|y,w]

⇤
. (2)

We first provide one key technical lemma followed by the
general theorem.

We see that the key component in AKEMLP is PD[o =
y|y,w], the conditional probability that a KEMLP pipeline
outputs the correct prediction. Using knowledge aggregation
rules f⇤, fi and fj , as well as (1), for each D 2 {Db,Da}
we have

PD[o = y|y,w] = PD

h
P[o = y|s⇤, sI , sJ ,w] > 1/2

��y
i

= PD
⇥
hw, fy(s⇤, sI , sJ )� f1�y(s⇤, sI , sJ )i > 0|y

⇤
.

To bound the above value, we need to characterize the con-
centration behavior of the random variable

�w(y, s⇤, sI , sJ ) := hw, fy(s⇤, sI , sJ )�f1�y(s⇤, sI , sJ )i.

That is, we need to bound its left tail below zero. For this
purpose, we reason about its expectation, leading to the
following lemma.
Lemma 1. Let �w be a random variable defined above.
Suppose that KEMLP uses optimal parameters w such that
P[y|s⇤, sI , sJ ] = P[o|s⇤, sI , sJ ,w]. Let also ry denote
the log-ratio of class imbalance log P[y=1]

P[y=0] . For a fixed
y 2 Y and D 2 {Db,Da}, one has

Es⇤,sI ,sJ [�w(y, s⇤, sI , sJ )|y]
� µd⇤,D+yµdI,D+(1� y)µdJ ,D+(2y � 1)ry := µy,D,

where

µd⇤,D = ↵⇤,D log ^↵⇤
1� ^↵⇤

+ (1� ↵⇤,D) log
1� _↵⇤

_↵⇤
,

µdI,D =
X

i2I

↵i,D log
^↵i

_✏i
+ (1� ↵i,D) log

1� _↵i

1� ^✏i

�
X

j2J

✏j,D log
_↵j

^✏j
� (1� ✏j,D) log

1� ^↵j

1� _✏j
,
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and

µdJ ,D =
X

j2J

↵j,D log
^↵j

_✏j
+ (1� ↵j,D) log

1� _↵j

1� ^✏j

�
X

i2I

✏i,D log
_↵i

^✏i
� (1� ✏i,D) log

1� ^↵i

1� _✏i
.

Proof Sketch. This lemma can be derived by first decompos-
ing �w into parts that are relevant for s⇤, sI , sJ , namely
there exist d⇤,D, dI,D, dJ ,D such that

�w(y, s⇤, sI , sJ )=d⇤,D+ydI,D+(1� y)dJ ,D+(2y � 1)ry.

Then we prove that µ⇤,D  E[d⇤,D] for the main model,
and µdK,D  E[dK,D] for K 2 {I,J }, the permissive
and preventative models. The full proof is presented in
Appendix A.3.

Discussion The above lemma illustrates the relationship
between the models and AKEMLP. Intuitively, the larger µy,D
is, the further away the expectation of �w(y, s⇤, sI , sJ )
is from 0, and thus, the larger the probability that
�w(y, s⇤, sI , sJ ) > 0. We see that µy,D consists of three
terms: µd⇤,D , µdI,D , µdJ ,D , measuring the contributions
from the main model for all y, permissive models and pre-
ventative models for y = 1 and y = 0, respectively. More
specifically, µy,D is increasing in terms of a weighted sum
of ↵i, and decreasing in terms of a weighted sum of ✏j .
When si =) y holds (permissive models), it implies a
large ↵i for y = 1, whereas when y =) sj holds (pre-
ventative model) it implies a small ✏j for y = 1. Thus,
this lemma connects the property of auxiliary models to the
weighted robust accuracy of KEMLP.

4.2. Convergence of AKEMLP

Now we are ready to present our convergence result.
Theorem 1 (Convergence of AKEMLP). For y 2 Y and D 2
{Db,Da}, let µy,D be defined as in Lemma 1. Suppose that
the modeling assumption holds, and suppose that µdK,D >
0, for all K 2 {I,J } and D 2 {Db,Da}. Then

AKEMLP � 1� Eµy,D [exp
�
�2µ2

y,D/v
2
�
], (3)

where v2 is the variance upper bound to P[o = y|y,w] with

v2= 4
⇣
log

_↵⇤

1� ^↵⇤

⌘2
+

X

k2I[J

⇣
log

_↵k(1� ^✏k)

^✏k(1� _↵k)

⌘2
.

Proof Sketch. We begin by subtracting the term µy,D from
PD(o = y|y,w), and then decomposing the result into in-
dividual summands, where each summand is induced by a
single model. We then treat each summand as a bounded
increment whose sum is a submartingale. Followed by
an application of generalized bounded difference inequal-
ity (van de Geer, 2002), we arrive at the proof, whose full
details can be found in Appendix A.4.

Discussion In the following, we attempt to understand the
scaling of the weighted robust accuracy of KEMLP in terms
of models’ characteristics.

Impact of truth rates and false rates: We note that µdK,D

for K 2 {I,J }, which is an additive component of µy,D,
poses importance to understand the factors contributing
to the performance of KEMLP. Generally, larger µdK,D

(hence µy,D) would increase the right tail probability of
�w(y, s⇤, sI , sJ ) leading to a larger weighted accuracy for
KEMLP. Although exceptions exist in cases where the vari-
ance increases disproportionally, here in our discussion we
first focus on parameters that increase µdK,D . Towards that,
we simplify our exposition and let each auxiliary model
have the same truth and false rate over both benign and
adversarial examples, and within each type, where the exact
parameters are given by ↵k := ↵k,D = ^↵k,D = _↵k,D
and ✏k := ✏k,D = ^✏k,D = _✏k,D, for k 2 I [ J . In
this simplified setting where the expected performance im-
provement by the auxiliary models is given by µdK,D for
K 2 {I,J } and fixed with respect to D, one can observe
through partial derivatives that µdK,D is increasing over ↵k

and decreasing over ✏k. This explains why the two types
of knowledge rules would help: high-quality permissive
models would have high truth rate and low false rate (↵i

and ✏i), as well as the preventative models (↵j and ✏j), yet
with different coverages for y 2 Y .

Auxiliary models in KEMLP - the more the merrier? Next,
we investigate the effect of the number of auxiliary models.
To simplify, let |I| = |J |, and let µ̂y,D be a random variable
with µ̂y,D = µy,D/(n+ 1), and v̂2 = v2/(n+ 1). The
exponent thus becomes �µ2

y,D/v
2 = �(n + 1)µ̂2

y,D/v̂
2.

One can show that µ̂2
y,D/v̂

2 � c for some positive constant
c, implying that AKEMLP � 1 � exp(�2(n + 1)c). That
is, increasing the number of models generally improves the
weighted robust accuracy of KEMLP. To demonstrate this,
we now focus on understanding the scaling of weighted
robust accuracy on a simplified setting. We assume that the
auxiliary models are homogeneous for each type: permissive
or preventative. For example, ↵k is fixed with respect to
k 2 I [ J , hence we drop the subscripts, i.e., ↵k,D = ↵
and ✏k,D = ✏. We assume that the same number of auxiliary
models are used, namely |I| = |J | = n, and that the
classes are balanced with PD(y = 1) = PD(y = 0), for all
D 2 {Db,Da}. Finally, we let ↵⇤,Db = 1 and ↵⇤,Da = 0,
and ↵� ✏ > 0. Then, the following holds.

Corollary 1 (Homogenous models). The weighted robust
accuracy of KEMLP in the homogeneous setting satisfies

AKEMLP � 1� exp
�
� 2n(↵� ✏)2

�
.

In particular, one has limn!1 AKEMLP = 1.

For this particular case, the predicted class for the target
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variable y is based upon an (unweighted) majority voting de-
cision. The above result suggests that for a setting where the
auxiliary models are homogeneous with different coverage,
the performance of KEMLP to predict the output variable
y robustly is determined by: (a) the difference between the
probability of predicting the output variable correctly and
that of making an erroneous prediction, that is, ↵� ✏, and
(b) the number of auxiliary models. Consequently, AKEMLP

converges to 1 exponentially fast in the number of auxiliary
models as long as ↵ � ✏ > 0, which is naturally satisfied
by the principle KEMLP employs while constructing the
logical relations between the output variable and different
knowledge.

4.3. Comparing AKEMLP
and Amain

Theorem 1 guarantees that the addition of models allows
the weighted robust accuracy of KEMLP to converge to 1
exponentially fast. We now introduce a sufficient condition
under which AKEMLP is strictly better than Amain.

Theorem 2 (Sufficient condition for AKEMLP > Amain). Let
the number of permissive and preventative models be the
same and denoted by n such that n := |I| = |J |. Note that
the weighted accuracy of the main model in terms of its truth
rate is simply ↵⇤ :=

P
D2{Db,Da} ⇡D↵⇤,D. Moreover, let

K,K0 2 {I,J } with K 6= K0 and for any D 2 {Db,Da},
let

�D :=
1

n+ 1
min
K

n
↵⇤,D � 1/2 +

X

k2K
↵k,D �

X

k02K0

✏k0,D

o
.

If �D >
q

4
n+1 log

1
1�↵⇤

for all D 2 {Db,Da}, then

AKEMLP > Amain.

Proof Sketch. We first approximate �w(y, s⇤, sI , sJ ) with
a Poisson Binomial random variable and apply the rele-
vant Chernoff bound. Imposing a strict bound between the
Chernoff result and the true and false rates of main model
concludes the proof. We note that this bound is slightly
simplified, and our full proof in the Appendix A.5 is tighter.

Discussion We start by noting that �D is a combined truth
rate of all models normalized over the number of models.
That is, for a fixed distribution D, ↵⇤,D � 1/2 indicates the
truth rate of main task model over a random classifier andP

k2K ↵k,D �
P

k02K0 ✏k0,D refers to the improvement by
the auxiliary models on top of the main task model. More
specifically, in cases where the true class of output variable
is positive with y = 1,

P
i2I ↵i,D�

P
j2J ✏j,D account for

the total (and unnormalized) success of permissive models
in identifying y = 1 interfered by the failure of preventative
model in identifying y = 1 (resp. For y = 0, K = J ).
Hence, �D is the ”worst-case” combined truth rate of all

models, where the worst-case refers to minimization over
all possible labels of target variable.

Theorem 2 therefore forms a relationship between the im-
provement of KEMLP over the main task model and the
combined truth rate of models, and theoretically justifies our
intuition – larger truth rates and lower false rates of individ-
ual auxiliary models result in larger combined truth rate �D,
hence making the sufficient condition more likely to hold.
Additionally, employing a large number of auxiliary models
is found to be beneficial for better KEMLP performance, as
we conclude in Corollary 1 as well. Our finding here also
confirms that in the extreme scenarios where the main task
model has a perfect clean and robust truth rate (↵⇤ = 1), it
is not possible to improve upon the main task model. Con-
versely, when ↵⇤ = 0, any improvement by KEMLP would
result in absolute improvement over the main model.

5. Experimental Evaluation

In this section, we evaluate KEMLP based on the traffic sign
recognition task against different adversarial attacks and
corruptions, including the physical attacks (Eykholt et al.,
2018), L1 bounded attacks, unforeseen attacks (Kang et al.,
2019), and common corruptions (Hendrycks and Dietterich,
2019). We show that under both whitebox and blackbox
settings against a diverse set of attacks, 1) KEMLP achieves
significantly higher robustness than baselines, 2) KEMLP
maintains similar clean accuracy with a strong main task
model whose clean accuracy is originally high (e.g., vanil-
lar CNN), 3) KEMLP even achieves higher clean accuracy
than a relatively weak main task model whose clean accu-
racy is originally low as a tradeoff for its robustness (e.g.,
adversarially trained models).

5.1. Experimental Setup

Dataset Following existing work (Eykholt et al., 2018;
Wu et al., 2019) that evaluate ML robustness on traffic sign
data, we adopt LISA (Mogelmose et al., 2012) and GT-
SRB (Stallkamp et al., 2012) for training and evaluation. All
data are processed by standard crop-and-resize to 32⇥32 as
described in (Sermanet and LeCun, 2011). In this paper, we
conduct the evaluation on two dataset settings: 1) Setting-A:
a subset of GTSRB, which contains 12 types of German
traffic signs. In total, there are 14880 samples in the training
set, 972 samples in the validation set, and 3888 samples in
the test set; 2) Setting-B: a modified version of Setting-A,
where the German stop signs are replaced with the U.S. stop
signs from LISA, following (Eykholt et al., 2018).

Models We adopt the GTSRB-CNN architecture (Eykholt
et al., 2018) as the main task model. KEMLP is constructed
based on the main task model together with a set of auxiliary
task models (e.g., color, shape, and content detectors). To
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Figure 2. (a) Clean accuracy and (b) (c) robust accuracy improvement of KEMLP (� = 0.5) over baselines against different attacks under
both whitebox and blackbox settings. The represented attack list and results of other baselines are in Appendix B.2.

Table 1. Model performance (%) under physical attacks (� = 0.4). Performance gain and loss of KEMLP over baselines are highlighted.
Main KEMLP

Clean Acc Robust Acc W-Robust Acc Clean Acc Robust Acc W-Robust Acc
GTSRB-CNN 100 5 52.5 100(±0) 87.5(+82.5) 93.75(+41.25)

AdvTrain (✏ = 4) 100 12.5 56.25 100(±0) 90(+77.5) 95(+38.75)
AdvTrain (✏ = 8) 97.5 37.5 67.5 100(+2.5) 90(+52.5) 95(+27.5)
AdvTrain (✏ = 16) 87.5 50 68.75 100(+12.5) 90(+40) 95(+26.25)
AdvTrain (✏ = 32) 62.5 32.5 47.5 100(+37.5) 90(+57.5) 95(+47.5)

DOA (5x5) 95 90 92.5 100(+5) 100(+10) 100(+7.5)
DOA (7x7) 57.5 32.5 45 100(+42.5) 100(+67.5) 100(+55)

train the weights of factors in KEMLP, we use � to denote
the prior belief on balance between benign and adversarial
distributions. More details on implementation are provided
in Appendix B.3.

Baselines To demonstrate the superiority of KEMLP, we
compare it with two state-of-the-art baselines: adversarial

training (Madry et al., 2017) and DOA (Wu et al., 2019),
which are strong defenses against Lp bounded attacks and
physically attacks respectively. Detailed setup for baselines
is given in Appendix B.1.

Evaluated Attacks and Corruptions We consider four
types of attacks for thorough evaluation: 1) physical at-
tacks on stop signs (Eykholt et al., 2018); 2) L1 bounded
attacks (Madry et al., 2017) with ✏ 2 {4, 8, 16, 32}; 3) Un-
foreseen attacks, which produce a diverse set of unforeseen
test distributions (e.g. Elastic, JPEG, Fog) distinct from Lp

bounded perturbation (Kang et al., 2019); 4) common cor-
ruptions (Hendrycks and Dietterich, 2019). We present ex-
amples of these adversarial instances in Appendix B.4. For
each attack, we consider both the whitebox attack against
the main task model and blackbox attack by distilling either
the main task model or the whole KEMLP pipeline. More
details can be found in Appendix B.2.

5.2. Evaluation Results

Here we compare the clean accuracy, robust accuracy, and
weighted robustness (W-Robust Accuracy) for baselines and
KEMLP under different attacks and settings.

Clean accuracy of KEMLP First, we present the clean
accuracy of KEMLP and baselines in Figure 2 (a) and Ta-
bles 1–4. As demonstrated, the clean accuracy of KEMLP
is generally high (over 90%), by either maintaining the high
clean accuracy of strong main task models (e.g., vanilla
DNN) or improving upon the weak main task models with
relatively low clean accuracy (e.g., adversarially trained
models). It is clear that KEMLP can relax the tradeoff be-
tween benign and robust accuracy and maintain the high
performance for both via knowledge integration.

Robustness against diverse attacks We then present the
robustness of KEMLP based on different main task models
against the physical attacks, which is very challenging to
defend currently ( Table 1), `p bounded attacks ( Table 2),
unseen attacks (Table 3), and common corruptions (Table 4)
under whitebox attack setting. The corresponding results
for blackbox setting can be found in Appendix B.5. From
the tables, we observe that KEMLP achieves significant
robustness gain over baselines. Note that although adver-
sarial training improves the robustness against L1 attacks
and DOA helps to defend against physical attacks, they are
not robust to other types of attacks or corruptions. In con-
trast, KEMLP presents general robustness against a range
of attacks and corruptions without further adaptation.

Performance stability of KEMLP We conduct addi-
tional ablation studies on �, representing the prior belief
on the benign and adversarial distribution balance. We set
� = 0.5 for KEMLP indicating a balanced random guess
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Table 2. Accuracy (%) under whitebox L1 attacks (� = 0.8)
Models ✏ = 0 ✏ = 4 ✏ = 8 ✏ = 16 ✏ = 32

GTSRB-CNN Main 99.38 67.31 43.13 13.50 3.63
KEMLP 98.28(�1.10) 85.39(+18.08) 71.76(+28.63) 48.89(+35.39) 26.13(+22.50)

AdvTrain (✏ = 4) Main 97.94 87.94 68.85 38.66 8.77
KEMLP 97.89(�0.05) 92.80(+4.86) 79.58(+10.73) 57.48(+18.82) 28.58(+19.81)

AdvTrain (✏ = 8) Main 93.72 84.21 71.76 43.16 13.01
KEMLP 96.79(+3.07) 92.08(+7.87) 81.58(+9.82) 59.18(+16.02) 30.61(+17.60)

AdvTrain (✏ = 16) Main 84.54 78.58 71.89 55.99 19.55
KEMLP 94.68(+10.14) 91.64(+13.06) 85.55(+13.66) 67.98(+11.99) 32.61(+13.06)

AdvTrain (✏ = 32) Main 74.74 70.24 65.61 56.22 29.04
KEMLP 91.46(+16.72) 88.58(+18.34) 83.23(+17.62) 72.02(+15.80) 41.90(+12.86)

DOA (5x5) Main 97.43 57.46 28.76 5.81 0.85
KEMLP 97.45(+0.02) 83.85(+26.39) 67.98(+39.22) 45.27(+39.46) 24.28(+23.43)

DOA (7x7) Main 97.27 38.50 9.75 2.83 0.67
KEMLP 97.22(�0.05) 80.89(+42.39) 63.40(+53.65) 49.20(+46.37) 31.04(+30.37)

Table 3. Accuracy (%) under whitebox unforeseen attacks (� = 0.8)
Clean Fog-256 Fog-512 Snow-0.25 Snow-0.75 Jpeg-0.125 Jpeg-0.25 Gabor-20 Gabor-40 Elastic-1.5 Elastic-2.0

GTSRB-CNN Main 99.38 59.65 34.18 56.58 24.54 55.74 27.01 57.25 32.41 44.78 24.31
KEMLP 98.28(�1.10) 76.95(+17.30) 62.83(+28.65) 78.94(+22.36) 53.22(+28.68) 79.63(+23.89) 63.40(+36.39) 80.17(+22.92) 65.20(+32.79) 69.34(+24.56) 52.37(+28.06)

AdvTrain (✏ = 4) Main 97.94 55.53 29.50 66.31 32.61 56.58 28.11 73.30 46.76 57.25 30.09
KEMLP 97.89(�0.05) 76.08(+20.55) 61.96(+32.46) 80.45(+14.14) 57.84(+25.23) 84.23(+27.65) 68.57(+40.46) 81.48(+8.18) 65.77(+19.01) 71.19(+13.94) 50.33(+20.24)

AdvTrain (✏ = 8) Main 93.72 50.03 23.56 63.71 34.93 57.56 26.16 76.72 53.76 48.25 24.46
KEMLP 96.79(+3.07) 76.59(+26.56) 63.97(+40.41) 81.40(+17.69) 57.07(+22.14) 85.11(+27.55) 68.70(+42.54) 85.29(+8.57) 68.90(+15.14) 68.78(+20.53) 49.31(+24.85)

AdvTrain (✏ = 16) Main 84.54 47.92 19.75 66.46 37.60 66.56 34.23 78.01 64.33 55.48 32.28
KEMLP 94.68(+10.14) 77.13(+29.21) 64.38(+44.63) 81.64(+15.18) 58.20(+20.60) 86.99(+20.43) 70.40(+36.17) 87.42(+9.41) 72.61(+8.28) 67.31(+11.83) 50.28(+18.00)

AdvTrain (✏ = 32) Main 74.74 48.71 22.84 61.78 38.91 63.58 43.49 70.37 65.20 54.58 39.45
KEMLP 91.46(+16.72) 79.22(+30.51) 66.33(+43.49) 81.20(+19.42) 64.53(+25.62) 86.70(+23.12) 73.38(+29.89) 87.04(+16.67) 74.92(+9.72) 66.38(+11.80) 54.76(+15.31)

DOA (5x5) Main 97.43 58.00 32.69 61.19 28.34 41.13 11.29 55.43 29.55 58.02 32.74
KEMLP 97.45(+0.02) 76.85(+18.85) 63.07(+30.38) 78.78(+17.59) 56.76(+28.42) 78.60(+37.47) 61.78(+50.49) 80.25(+24.82) 63.89(+34.34) 72.69(+14.67) 57.51(+24.77)

DOA (7x7) Main 97.27 59.88 38.01 62.47 30.17 23.46 3.65 54.58 27.29 56.33 30.97
KEMLP 97.22(�0.05) 78.09(+18.21) 62.76(+24.75) 79.68(+17.21) 58.26(+28.09) 74.25(+50.79) 61.39(+57.74) 79.06(+24.48) 62.29(+35.00) 71.27(+14.94) 55.09(+24.12)

Table 4. Accuracy (%) under common corruptions (� = 0.2)
Clean Fog Contrast Brightness

GTSRB-CNN Main 99.38 76.23 57.61 85.52
KEMLP 98.28(�1.10) 78.14(+1.91) 72.43(+14.82) 89.58(+4.06)

AdvTrain (✏ = 4) Main 97.94 63.81 42.31 78.47
KEMLP 97.89(�0.05) 70.29(+6.48) 67.46(+25.16) 86.70(+8.23)

AdvTrain (✏ = 8) Main 93.72 59.05 31.97 78.47
KEMLP 96.79(+3.07) 67.41(+8.36) 66.69(+34.72) 85.91(+7.44)

AdvTrain (✏ = 16) Main 84.54 56.58 34.31 78.01
KEMLP 94.68(+10.14) 66.80(+10.22) 68.39(+34.08) 86.14(+8.13)

AdvTrain (✏ = 32) Main 74.74 50.87 30.45 71.30
KEMLP 91.46(+16.72) 64.94(+14.07) 68.31(+37.86) 83.20(+11.90)

DOA (5x5) Main 97.43 73.95 62.24 83.92
KEMLP 97.45(+0.02) 76.08(+2.13) 74.38(+12.14) 87.60(+3.68)

DOA (7x7) Main 97.27 73.41 57.54 83.56
KEMLP 97.22(�0.05) 76.00(+2.59) 72.40(+14.86) 87.78(+4.22)

for the distribution tradeoff. We show the clean accuracy
and robustness of KEMLP and baselines under diverse 46 at-
tacks in Figure 2. We can see that KEMLP consistently and
significantly outperforms the baselines, which indicates the
performance stability of KEMLP regarding different distri-
bution ratio �. More results can be found in Appendix B.5,
with additional discussions in Appendix B.6.

6. Discussions and Future Work

In this paper, we propose KEMLP, which integrates domain
knowledge with a set of weak auxiliary models to enhance
the ML robustness against a diverse set of adversarial attacks
and corruptions. While our framework can be extended to
other applications, for any knowledge system, one naturally
needs domain experts to design the knowledge rules specific
to that application. Here we aim to introduce this framework
as a prototype, provide a rigorous analysis of it, and demon-

strate the benefit of such construction on an application.
Nevertheless, there is probably no universal strategy on how
to aggregate knowledge for any arbitrary application, and in-
stead, application-specific constructions are needed. We do
believe that, once the principled framework of knowledge
fusion is ready, application-specific developments of knowl-
edge rules will naturally follow, similar to what happened
previously for knowledge-enriched joint inference.
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