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Abstract

In parametric Bayesian learning, a prior is as-
sumed on the parameter W which determines
the distribution of samples. In this setting, Mini-
mum Excess Risk (MER) is defined as the differ-
ence between the minimum expected loss achiev-
able when learning from data and the minimum
expected loss that could be achieved if W was
observed. In this paper, we build upon and ex-
tend the recent results of (Xu & Raginsky, 2020)
to analyze the MER in Bayesian learning and
derive information-theoretic bounds on it. We
formulate the problem as a (constrained) rate-
distortion optimization and show how the solution
can be bounded above and below by two other
rate-distortion functions that are easier to study.
The lower bound represents the minimum possible
excess risk achievable by any process using R bits
of information from the parameter 1. For the up-
per bound, the optimization is further constrained
to use 2 bits from the training set, a setting which
relates MER to information-theoretic bounds on
the generalization gap in frequentist learning. We
derive information-theoretic bounds on the differ-
ence between these upper and lower bounds and
show that they can provide order-wise tight rates
for MER under certain conditions. This analysis
gives more insight into the information-theoretic
nature of Bayesian learning as well as providing
novel bounds.

1. Introduction

One of the main problems studied in statistical learning
theory is the excess risks of learning algorithms, which is
the gap between the achieved error and the best possible
error if the distribution was known (LeCam et al., 1973;
Assouad, 1983; Keener, 2010). An interesting question
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in this regard is to study lower bounds on the excess risk
which could be achieved by any algorithm. This concept is
usually studied in the frequentist setting, in which a family
of distributions is assumed and minimax bounds are derived
to study if an algorithm which only has access to n samples
from the distribution, can work well for all the distributions
in the family.

Recently, (Xu & Raginsky, 2020) proposed a framework to
define and study Minimum Excess Risk (MER) in Bayesian
learning. In the Bayesian learning, it is assumed that the
underlying distribution is described by a variable W € W
and a prior Py is considered which describes the probability
of any W before observing data. The joint distribution of
W, the training set Z" = {(X;,Y;)}l, € (X x )",
and a test sample Z = (X,Y) € X x ), is described
as Py @ (PYY)™ ® PY. The goal is to find a function
h:Xx — Y after observing the training set, in a way that
E[¢(Y, h(X))] is small, where £ : ) x ) — R is the loss
function.

In order to quantify the hardness of a problem, (Xu & Ragin-
sky, 2020) define Minimum Excess Risk as the gap between
the expected error of the best algorithm which only has ac-
cess to the data and the minimum expected error if W was
also observed. They show that for a variety of loss func-
tions, the conditional mutual information I(W;Y|Z", X)
appears in the upper bounds on MER. When W € RP, using
information-theoretic results on the rate of I(W; Z™), they
achieve bound of O(y/p/n) on MER as n — oo, given
that some assumptions on the distribution and loss hold (see
Section 4). They also show that the bound can be improved
to O(p/n) for two specific losses: logarithmic loss and
quadratic loss (for bounded )). They left the study of lower
bounds on MER as an open problem.

In this work, we adapt a source coding view on learning and
introduce a (variant of) rate-distortion optimization which
captures the notion of MER. Then, we demonstrate how the
constraint on this rate-distortion minimization can naturally
be weakened and strengthened to achieve lower and upper
bounds, respectively. These lower and upper bounds are
easier to study and we derive a variety of results on them.
In particular, we study the lower bound with tools from the
source coding theory, and demonstrate that under some con-
ditions, MER is lower bounded by Q(p/n). This concludes
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the rate analysis of MER for the cases in which the matching
upper bound O(p/n) exists and show that both upper and
lower bounds are order-wise tight as n — co. As an impor-
tant example, we show that the bounds are order-wise tight
for quadratic loss when ) is bounded and the distribution is
suitably smooth (see Section 6).

The studied rate distortion problems (original, upper bound,
and lower bound) all have interesting interpretations and
might be of interest by themselves.

1.1. An Appetizer for the Rate-Distortion View

Loosely speaking, the main idea behind the rate-distortion
view developed in this paper is as follows. The variable W is
first generated and the dataset Z™ is generated from W. Our
goal is to observe Z™ and find h(x) which performs well
compared to the case where W is known. Thus, if we could
decode W from Z" perfectly, an MER equal to zero would
be achieved. However, in almost all applications of interest,
it is impossible to find the exact value of W, since the
information we can extract from W to build fz, is bounded
above by I(W; Z"™). In particular, if ¥ is continuous, an
infinite number of samples are needed for its exact decoding.
But of course, we don’t need full recovery of W to get a
good enough h. So the question is how good we can act,
based on a suitable distortion function, if only I(W; Z™)
nats of information about W is received through Z".

This line of reasoning makes it natural to study the problem
as a rate-distortion optimization. But there is a challenge in
using rate-distortion theory to study the learning problem: in
an standard rate-distortion problem, we can decide how we
encode W, but in learning problems, a (random) preprocess
W — Z™ is also enforced. If we remove this constraint,
we will have a standard rate-distortion problem. Since the
feasible set is enlarged, this gives us a lower bound on the
original minimization. It is not obvious how efficient this
preprocess acts; i.e., if one is asked to use R = I(W; Z")
nats to represent I by an intermediate variable = (in an
arbitrary space of choice) in a way that it is possible to
recover a good h,isita good idea to just generate n i.i.d.
samples from P)V(VY; ie.,use = = Z"? We will try to answer
such questions by quantifying and studying lower bounds.

On the other hand, there is an interesting question which is
answered by studying an upper bound on the rate-distortion
function. If we know that only R = I(W; Z™) nats about
W are present in the dataset Z™, we might hope to be able
to just extract those nats and don’t rely on Z" more than
necessary. To quantify this idea and study it, we can also
restrict I(Z";h) < R = I(W; Z™) and see if we can still
find an h with a good performance? This scenario is similar
to the frequentist approach of model compression in which
the mutual information between the training set and the
learned model is restricted to control the generalization gap.

To better understand the information-theoretic properties
of learning, we will study these rate-distortion functions
and derive information-theoretic bounds on their difference.
In particular we will show that (under some smoothness
conditions) all three rate-distortion functions converge as
n — o0o. The rates of convergence are also derived which
shows that the bounds are order-wise tight for quadratic loss
under certain conditions. We also provide non-asymptotic
information-theoretic bounds which explain the difference
between these rate-distortion functions for finite samples.

While rate-distortion theory was used before in learning
theoretic settings (see Section 2), the systematic view devel-
oped in this paper as well as the derived bounds are novel
to the best of our knowledge.

1.2. Outline of the Paper

In Section 2, the related literature is discussed. The nota-
tions are introduced in Section 3. Section 4 is devoted to
information-theoretic upper bounds on MER. In Section 5,
the main results of the paper on the rate-distortion view of
MER are presented. In Section 6, some applications of the
developed tools are studied. Finally, conclusions and future
works are presented in Section 7. The proofs of theorems
are presented in the supplementary materials.

2. Related Work

Deriving minimax bounds on excess risk in the frequentist
setting is a well studied problem. The Le Cam’s and As-
souad’s methods are two of the most widely used approaches
for deriving lower bounds on minimax risk (LeCam et al.,
1973; Assouad, 1983). Fano’s method is also a popular
method based on Fano’s lower bound on the error probabil-
ity in an M-ary testing problem (Yang & Barron, 1999).

In Bayesian learning, one of the tracks which is related to
MER, is the convergence of posterior to the true parameter
(Ghosal et al., 2000; Shen et al., 2001; Ghosal et al., 2007;
Le Cam & Yang, 2012). The main difference between this
line of works and MER studied by (Xu & Raginsky, 2020)
is that the former tries to analyze Bayesian inference from a
frequentist perspective, while in latter, W is still considered
as random in the analysis. The information-theoretic results
used in this new setting as well as the definition of MER
itself (which is based on an expectation on Py ) are influ-
enced by this view on the problem. Moreover, the subject of
study in previous works is usually estimation of the param-
eter while in MER, the Bayes risk for the random variable
of interest is directly studied. Results from convergence
of posterior are useful to derive bounds on MER (e.g. see
Theorem 7 of current paper as well as Section 4 of (Xu &
Raginsky, 2020)).

These recent results of Xu & Raginsky (2020) can be seen as
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extensions to the universal prediction of (Merhav & Feder,
1998). In universal prediction, the accumulated loss on a
sequence of samples is studied (using an approach similar
to universal source coding). In contrast, this new treatment
allows the analysis of the supervised setting with general
subgaussian loss. Moreover, they utilize a refined treatment
which yields direct bounds on the error of estimating the
label of the test sample (the last sample) when the training
set is given.

Another track which heavily influences the current work,
is the recent series of results in frequentist learning which
use mutual information between the learned model and the
dataset to control the generalization gap (Russo & Zou,
2015; 2016; Xu & Raginsky, 2017; Bassily et al., 2018;
Asadi et al., 2018; Steinke & Zakynthinou, 2020; Hafez-
Kolahi et al., 2020). While the setting in these works
is different, the mathematical tools developed to derive
information-theoretic bounds are similar. In particular, we
use ideas from (Steinke & Zakynthinou, 2020) to derive
new bounds on MER. Moreover, the upper bound on rate-
distortion function studied in this paper, which is based on
I(Z™; h), is directly related to this frequentist setting (see
Section 5.4). A relevant work on this setting is (Bu et al.,
2020) which used model compression to produce h from h
to control the generalization gap.

In (Gao et al., 2019), a rate-distortion optimization is utilized
to understand the limits of model compression, and results
for linear models are derived. Their setting is similar to a
loosened variant of the rate-distortion lower bound studied
in this paper where the solution is restricted to be from the
parametric family (see Section 6).

In (Nokleby et al., 2016), upper bounds on the expected
excess risk are derived for certain class of problems which
satisfy a notion of “interpolation set”. Their Bayesian treat-
ment of the parameter makes their results comparable to the
setting of (Xu & Raginsky, 2020) when studying zero-one
loss.

3. Notation and Preliminaries

Random variables and their realizations are represented with
uppercase and lowercase letters respectively; e.g., x € X
is a realization of random variable X . Conditional distribu-
tions and expectations are identified with superscripts; e.g.,
P% indicates the conditional distribution of X given Z = 2
and E5 [f (X, z)] indicate the expectation of f (X, z) based

on this distribution. KL(Px || Qx) = [ log G33dP is
the KL divergence of distribution Py from @ x. Mutual
information is defined as I(X;Y) = KL(Pxy || Px ® Py)
where Px and Py are marginal distributions of Pxy . The
conditional mutual information is defined as I(X;Y|Z) =

Ez[I#(X;Y)] in which for all 2, I*(X;Y) is the mu-

tual information on the conditioned distributions P%y, i.e.
I*(X;Y) = KL(P%y || P% ® Pg). Throughout the pa-
per, all logarithms are in natural base and all information-
theoretic quantities are in nats.

Given a distribution Pxy ona set X x ) and a loss function
{:Y x Y — R, the Bayes risk of estimating Y from X is
denoted by

RYIX) = infEIE(Y, (X))

It is assumed that the infimum is attained, and the optimal
decision for a given x is represented by 1} Yix (z), where
we omit /, if it is clear from the context.

4. MER and the Information-Theoretic Upper
Bounds

As described in Section 1, a common scenario in Bayesian
learning is to consider a prior distribution Py on W and
consider the joint distribution Py ® (P¥,, )" ® PY;- which
generates W, Z", Z. Here, Z™ = {(X;,Y;)}_, is the train-
ing setand Z = (X,Y) is the test sample. Usually, it is also
assumed that X is independent of W, and we have the distri-
bution PY,, = Px ® Pf", i.e., the unknown parameter is
just used in describing the relation between X and Y. The
goal is to predict Y when Z" and X are given. The Bayes
risk for this task is R,(Y'|Z™, X). If the parameter W was
known, we could do better and achieve Ry (Y |W, X). MER
is defined as the expected extra price we should pay as a
result of not knowing W; i.e.,

MER] = Ry(Y|Z", X) — Ry(Y|W, X). (1)

Upper bounds on MER for various loss functions are studied
in (Xu & Raginsky, 2020). Note that if we have a Markov
chain Y — U — V then there is a data processing inequality
for Bayes risk; i.e.,

Ry(Y|U) < Ry(Y|V)

(see Lemma 1 of (Xu & Raginsky, 2020)). The following
lemma, which is due to Theorem 4 of (Xu & Raginsky,
2020), gives an upper bound on the looseness of this in-
equality when the loss function is bounded.

Lemma 1. Consider random variables Y, U and V' forming
Markov chain Y — U — V and an arbitrary non-negative
bounded function £ : ) x Y — [0, b]. We have

2

RiYIV) = Ri(Y|U) </ 21 01). @

Using this lemma, it is straightforward to derive upper
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bounds on MER} as

MER} = Ry(Y|2", X) — Ry(Y|W, X)
=Ry(Y|Z",X)— Ry(Y|W, Z", X)

2
< \/ T Iy Wiz X) 3)

/b2

where the second equality is due to the fact that Y I
Z™W, X. The final inequality is proved by noting that
I(Z;W|Z"™) is a decreasing function of n and applying
chain rule on I(Z™; W) (see the Proof of Theorem 2 in (Xu
& Raginsky, 2020)). Note that the bound (3) could be much
better than (4). The main reason is that it does not depend on
I(W; X) which could be large. The improvement one can
achieve when using (3) instead of (4) is similar to using the
conditioning technique to improve the information-theoretic
generalization bounds in frequentist learning (Hafez-Kolahi
et al., 2020). Actually, the same conditioning technique is
at the heart of deriving the first bound (see proof of Lemma
1 in the supplementary materials). It is also worth noting
that if the distribution on W is not known, but the capacity
of channel P, is limited, then I(W; Z™) is controlled and
Equation (4) can be used to derive a redundancy-capacity re-
sult similar to universal prediction (Merhav & Feder, 1998).

The following lemma can be used along Lemma 1 to achieve
convergence rates. This is a classic result on growth rate of
mutual information between observations and the parameter
which can be found in (Clarke & Barron, 1990; 1994).

Lemma 2. If W is taking values in a p-dimensional com-
pact subspace of RP, and the model P is smooth in w, then
asn — oo, we have

n E[log|J7 (W)]]

p
Iw:zm =21
(W;27") =3 og ( 5

+h(W)+
271‘6) (W)
in which |.J}} (w)| is the determinant of the Fisher informa-
tion matrix about W contained in Z. Rigorous statement of
the smoothness conditions can be found in the appendix.

Using this lemma, it can be shown that I(Y; W|Z") =
O(1/n) as n — oo. This gives us a rate of O(1/1/n) on
MER} for any bounded loss. In (Xu & Raginsky, 2020), it is
also proved that for bounded quadratic loss and logarithmic

loss the square root can be removed which improves the rate
to O(1/n).

4.1. Dropping the Square Root

Whether it is possible to drop the square root for a gen-
eral bounded loss is an open problem. In this section we
demonstrate that this is possible for the realizable case.

+o(1),

Lemma 3. Consider random variables Y,U, and V form-
ing Markov chainY —U —V and an arbitrary non-negative
bounded function £ : ) x Y — [0, b]. We have

Ry(Y|V) < 2R,(Y|U) +3bI(Y;UV). (5

To prove this bound, a symmetrization technique that is
used in (Steinke & Zakynthinou, 2020) to derive a vari-
ety of bounds on generalization gap, is adapted. For the
case where R,(Y'|U) is close to zero, this bound can give
better results compared to Lemma 1. The mutual informa-
tion I(Y'; U|V') can be unbounded in certain problems. In
particular, in realizable setting, this can happen when the
random variables are continuous and the relation between
them is deterministic. Informally, this is due to the fact that
I(Y; U|V) quantifies the nats necessary for full recovery
of Y (which could be unbounded for continuous random
variables). This can be solved by covering the space of )
at different levels and adopting the chaining technique to
acquire sharper bounds (e.g., see (Asadi et al., 2018) for
an application of the chaining technique on information-
theoretic generalization bounds). This is discussed in the
supplementary materials.

5. Rate-Distortion Analysis of MER

Inequalities (4) and (3) give us information-theoretic upper
bounds on MER. Lower bounding MER in Bayesian learn-
ing has been remained as an open problem (Xu & Raginsky,
2020). The tools we develop in this section let us study the
lower bounds as well.

5.1. The Challenge of Finding a Lower Bound

First, it should be noted that it is not possible to have
a matching lower bound in the form of (MER), >
ar/I(Y;W|Zn, X) for some o > 0. Loosely speaking,
the reason is that it is possible that Y and W share many
bits but those bits are not used in the loss function. In other
words, the information contained in W about Y is not nec-
essarily related to loss. As an example, consider the toy
problem where W = Y = [-2,2]?, and
W; "% Unif(~1, 1),

indep. .
€ ~ Unif(—a;,a;),

Y =(Y1,Y2) = (Wi +e,Wa + ).

Define £((y1, y2), (91, 92)) = c1(y1 — 91)* + ca(y2 — §2)*.
Here, a1, as, c1, and co are hyper-parameters defining the
problem. Now consider the extreme case where a3 =
0,as = 1,c¢; = 1, and ¢ = 0. In this case, the loss
function is ignoring the second dimension of Y, which is
the harder one to estimate. Actually, by observing a single
sample, W7 is found and Vn > 1, MERj = 0. However,
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the mutual information I (W; (Y1,Y2)|Z™) > I(W;Y5|Z™)
approaches zero only as n — oco.

Based on such observations, we argue that in order to derive
MER lower bounds, the relation between the used rate and
the loss function ¢ should be considered more carefully.
This was one of the main motivations to define the MER as
a rate-distortion problem. But, it is also insightful in itself to
study Bayesian learning from a source coding perspective,
as was discussed in Section 1.1.

5.2. Rate-Distortion Optimization

Rate-Distortion theory was introduced by (Shannon, 1948;
1959) to quantify the minimum average number of bits
needed to transmit a random variable with a given max-
imum distortion. Let Px be a distribution over X and
X" = {X;}}, be niid. samples of Py. An encoder
fn: & — {1,2,... 2%} maps the message into a code-
word, and the decoder g,, : {1,2,...,2"F} — X", decodes
the codeword. The distortion function d : X x X — Rt,
measures the distortion and d(X™, X) is the average dis-
tortion of X; and Xis. For a given rate R, the rate-distortion
function D(R) is the infimum of all distortions D, such that
there exists a sequence (f,, g,) with codeword size 2",
that lim, oo E[d(X™, gn(fn(X™))] < D. It is shown that

D(R) = inf E[d(X, X)] s.t. I[(X;X) <R.

PX
X

We denote this optimization as the rate-distortion minimiza-
tion, and the function D(R) as the the rate-distortion func-
tion (some authors call this the distortion-rate function to
contrast with another function R(D) which maps distortion
to rate). For an overview of the classic rate distortion theory,
see Chapter 10 of (Cover & Thomas, 2012).

Now, we are ready to precisely define the rate-distortion
problem describing the MER. To do so, let’s define the
distortion function as the excess risk of compared to the
Bayes decision h} (x), i.e.

d(w, h) = Exy [((Y, (X)) = €Y, 1}, (X)) (6)

Note that this definition is consistent with our final goal
which is to study MER: if we consider the optimal learning
algorithm which generates h(.) = 5 ;. (2", ) for any
given dataset Z™ = 2", the expected distortion is

Ew zn [d(W, ¢;|ZnX(Zn7 ’ ))]
=Ewzrxy[{(Y, ¥y 2. x (2", X))
— LY, Py x (W, X))
=R(Y|Z", X) — R (YW, X)
— MER?. %

Now, we define the (constrained) rate-distortion optimiza-
tion as

D, (R) = inf E[d(W,})], (8)

pz"
h
st. I(W;h) <R,

in which the expectation and mutual information are evalu-
ated with respect to Py;,;, which is the marginal distribution
of Py ® PV, ® PIEZ ", Note that in standard rate-distortion
problems, we are allowed to directly optimize PHW . How-
ever, here there is an extra constraint that P}JL/V =Py ®PEZ
Also note the dependence of D,,(R) on n: for each n there
is a different rate-distortion optimization which yields D,,.
Thus, we have a series of optimization problems. It is easy
to verify that D,, (R) is non-increasing in both n and R.

The following theorem states the relation between D,, (R)
and MER;'.

Theorem 4. For a given training set size n, for all rates
R > I(W;Z"), we have

D,(R) = MER}.

Note that since a Markov chain W — Z™ — h holds, having
R > I(W;Z") actually removes the constraint on opti-
mization problem (8). Thus, Eq. (7) can be used to prove
this theorem.

We have seen that I(W; Z™) appeared in an upper bound
on MER in Eq. (4). Combining this fact and Theorem 4, for
a bounded loss we have

b2

D (I(W:2") = MER] < |/ - I(W; 7). ()

5.3. Lower Bound

As discussed in Section 1.1, to have a standard rate-
distortion problem, one can remove the constraint that i
is generated only using the samples Z”; i.e.

DY(R) = inf E[d(W, b)), (10)

st. I(W;h) < R.

Note that since the feasible set is enlarged, the solution to
this minimization will be a lower bound on the optimization
of (8):

VR, Vn; DY(R) < D,(R). (11)

Function D (R) is much easier to study than D,,(R), since
the corresponding optimization problem (10) is independent
of n.

In the next sections, we will first derive an upper bound on
D,,(R). Then by studying the gap between the upper and
lower bounds, we shed light on the behavior of D,,(R).
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5.4. Upper Bound

To define the upper bound, we add another constraint to
the optimization problem (8): the mutual information be-
tween the dataset and the learned model /4 should also be
constrained by . More precisely, we define

D;l(R) = inf E[d(W, h)], (12)

st. I1(Z";h) < R.

Note that the constraint in (12) is more strict than the con-
straint in (8), since by data processing inequality we have

I(Z":h) < R= I(W;h) <R.
Thus, we can write

VR, ¥n; D, (R) < Dy (R). (13)

This rate-distortion problem is of interest by itself. Note
that an increasingly popular approach in controlling the
generalization gap in frequentist setting by information-
theoretic tools, is to guarantee that mutual information be-
tween dataset and the model is small (Xu & Raginsky, 2017;
Russo & Zou, 2015; 2016; Bassily et al., 2018). To translate
the frequentist setting to the Bayesian setting of our dis-
cussion, consider the same form of parametric learning in
which the unknown distribution is assumed to be described
by the parameter w. But no distribution is assumed on the
value of w, and an algorithm should work for any w, in
a minimax fashion. Thus, by bounding the mutual infor-
mation, we mean that for all w, I (Z"; ﬁ) < R and we
have I(Z™; h|W) = Ew[I*(Z";h)] < R. On the other
hand since there is the Markov chain W — Z" — h, we
have I(Z™; h|W) < I(Z™;h). Therefore, understanding
the effect of the constraint I(Z"; h) < R in the Bayesian
setting could be illuminative also for the frequentist setting.

In particular, if I(Z™;h) < R is satisfied for all Py, we

have I*¥(Z™; h) < R;Yw € W.

A natural question that should be studied is whether the
equality D,,(I(W; Z")) = DU (I(W; Z™)) holds. The in-
formal rational behind this question is as follows: Intuitively,
if we know that only R = I(WW; Z™) nats of information
about W is present in the dataset Z", it should be possible
to just extract those nats without relying more on the dataset.
Unfortunately, this equality does not hold in general. Ac-
tually, often an unbounded I(h; Z™) is needed in order to
achieve D, (R). To see this, consider the simple problem
where W ~ N (0,1), Z" = (Y;)i—,, Y; ~ N(W, 1), and
U(y,9) = (y — §)°. In this case, it is easy to verify that
there is a unique optimal Bayes decision rule ¢5 . (2")
(expected value of the posterior distribution of W given
Z™), which is a deterministic function of Z". Thus, while

I(W; Z™) is finite (as we know from well-known results on

Gaussian channels), I(Z™; h) should be infinite to achieve
the best performance.

Despite this unsatisfactory observation, it is actually possi-
ble to do quite well with a limited rate if we don’t persist in
using exactly the optimal decision rule. This is made precise
in the next theorem.

Theorem 5. For any bounded loss function £ : Y x Y —
[0, 0], and for all n > 1, we have

DUviz) <\ Srvivizex)  as

b2
<\ LW Zm). (15)

5.5. Relation between Lower and Upper Bounds

The following theorem states the relation between the upper
bound DY (R) and the lower bound Dy, (R).

Theorem 6. For any bounded loss £ : Y x Y — [0, b], we

have
2 ~
DY(R) < DH(R) 4/ S 1(W;hnlZ%), (16

where the mutual information is based on the distribution
PWJ}Rzn =Py ® P;:ZV ® PgVn and P}’:zv is a solution to

the optimization of DX (R).

This theorem states that to understand the difference be-

tween DL (R) and DY (R), one can solve the optimization

associated to D*(R) to find P;'V. Then, the mutual in-
R

formation I(W; h|Z™) controls the gap between the up-
per bound and lower bound. While this nonasymptotic
bound provides an intuitive understanding of the interplay
between DY (R) and DY (R) for all n and R, it is hard to
be evaluated. But as n — oo, if the posterior is concen-
trated to the true realization, it is reasonable to expect that
I(W;hg|Z™) — 0 and all of the rate-distortion functions
converge. This is made precise in the next theorem.

Theorem 7. Suppose the distortion d(W, iz) defined in
Eq. (6) can be represented as a distance d'(hj, fAz) Let

W and W' be two samples independently generated from
PZ". If we have

lim E[d (hiy, hiy)] =0,

n— oo

then

VR >0; DY(R) = lim D,(R) = lim DY(R). (17)
n— oo

n—oo
Note that the condition lim,,_, E[d'(h}}, b)) = 0 is
usually satisfied as a result of the convergence of the poste-

rior distribution. In Section 6, we will see cases for which
the distortion can be represented as a distance.
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In Figure 1, the relation between all the introduced rate-
distortion functions is presented. This figure also summa-
rizes some of the presented results.

DA

MER™ |vveveveeeens o S

. - A
L
I(W;Z%)  I(W;2™) R

Figure 1. A schematic view of the relation between rate-distortion
functions studied in this paper. The original rate-distortion function
D,,(R) and its upper bound DY (R) are presented for two sample
sizes n and m, where n < m. The lower bound D*(R) is also
illustrated. As discussed in Theorem 4, D,,(R) is equal to MER"
for R > I(W; Z™). Also note that the upper bound approaches
MER" as R — oc. Both D,,(R) and DY (R) approach the D(R)
asn — oo.

6. Applications

In the framework developed in previous sections, the distor-
tion function d(W, 71) has a quite general form: it measure
the distortion between a variable W and a function k. In
practice it is usually easier to represent the problem in a
way that both input and output are elements of a shared
metric space and the distance of that space is the distortion
measure.

In order to achieve this, we first need a lemma which allows
us to reformulate the rate-distortion functions.

Lemma 8. (Reparameterization Lemma) Let d : X X X —

R be a distortion function. Assume that there exists map-

pings f: X - Vandg : X — V, and a distortion Sfunction

d:VxV =R, such that forallx € X, ¢ € X, we have

d(z, &) = d'(f(x),9(2)). If V = f(X), it follows that
min Ey ¢ [d(X,X)] = min Ey [d'(V, V)],

X \%

s.t. I(X;X)SR s.t. I(V;V)SR

where the second minimization is the rate-distortion func-
tion for random variable V = f(X).

When the reparameterization is applicable, we might abuse
the notation and write d(V, V) instead of d'(V, V).

For quadratic loss, the reparameterization lemma can be
used to represent d(W, fAz) as a norm on a suitable function
space. Let ) C R and consider I(y, §) = (y — §)?, for all
Y, 9, € Y. Based on Equation (6), we have

dw, ) = By [|Y = m(X)* = [¥ = h(x)[’]
= E% [n%,(0 - (O[],

which is the norm of L?(Px ). Thus using the reparameteri-
zation lemma, the rate distortion problems can be restated
for the distortion function d(hy,, h) = ||k, — hl|z2(py)-

It would be helpful if we could represent the distortion
function by a distance on the parameter space, but this is not
always possible. To be precise, define the hypothesis class

H={hu() =¢ywx(w,)|weW} (18)

where W is the set of all possible W's. Note that the optimal
function learned from the samples 2", 1/)§‘,| gnx (2",.), does
not necessarily lie in . In other words it might not be
parameterizable using W. But it might still be possible to
derive lower bounds by projecting on the set .

Assume that H is a convex subset of the Hilbert space
L?(Px). For a given f € L?(Px), define proj,(f) as the
projection of f on the convex set H C L?(Py). As aresult
of the contraction property of projections on convex sets
in Hilbert spaces, we have d(projy, (h), h%) < d(h, hZ).
Therefore,

Du(R) 2 mp E (Rt proj ()]

s.t. I(hi},;projﬂ(ﬁ)) <R.

By the application of Lemma 8, we arrive at the following
lower bound

Dr(R)> min E {d’(W,W))}.

PW
w
s.t. I(W; W) <R.
in which d'(w,w) = d(hf), hy) where hy = projH(iL).
This process of projection and reparameterization is sum-
marized in Fig. 2.

Based on Theorem 4 and Equation (11), we know that
MER} > DL(I(W;Z")). Under the conditions that the
space WV is finite-dimensional, and that some regularity con-
ditions on P} hold (see Lemma 2), we can use this fact and
the following lemma to lower bound MER.

Lemma ? (Shannon Lower Bound (Shannon, 1959)) Let
W and W be random variables taking values in RP, ||.|| be
an arbitrary norm on RP, and r be a positive real number.
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. oh

L*(Px)

g) .,

e

Figure 2. Projection to parametric family of functions. In the left,
we have the set of all parameters W and in the right, the set of
all functions in L?(Px). #H is the set of functions which are
associated to a parameter in V. For a function h which is not in
H, first it is projected to H using the L?(Px) geometry, and the
parameter W for proj,, (fz) is used. Then the reparameterization
lemma can be used to restate this refined problem in W.

For any D > 0, define the rate-distortion function
R(D) = inf I(W; W),
PW
w

st. By | [W —W||" < D.
We have

R(D) 2 (W) = og ((25) 11+ ),

in which h(W) is the differential entropy of W and V), is
the volume of {x € R? : ||z|| < 1}.

It is known that Shannon Lower Bound is asymptotically
tight as D — 0 (Wu, 2020; Koch, 2016).

Under the conditions of Lemma 2, we can prove the follow-
ing lower bound for MER:
Theorem 10. Let W be a p-dimensional compact subspace
of RP, the hypothesis set defined in Eq. (18) be convex, and
assume that the regularity conditions of Lemma 2 hold. If
there exists a norm ||.|| such that ||W — W||? < d'(W, W),
we have

Elog |JY (W
MER} > P T (_M)
"V, T(1+12)" p
as n — oo, where V), is the volume of {x € R : ||z|| < 1}.
This theorem formalizes the intuition that a lower MER
might be achieved in problems in which the expected Fisher

information of W contained in Z is large. Note that this
theorem implies MER} = Q(1/n).

If there exists a constant ¢ such that for every w,
(ng(w))“ < ¢, we can write

p
Ew log|Jy (W)| < Ew log [ ] (/7 (W)),, < plog(e),

i=1

where the first inequality follows from Hadamard’s inequal-
ity. Also note that given a positive-definite matrix A, the
volume of the ellipsoid {z € R? : ||z||a < 1} is given
by V, = (det A)_% F(Trlpifg) Using these facts, the lower
bound of 2(p/n) can be obtained for MER, as stated in the

following corollary.

Corollary 10.1. Under the conditions of Theorem 10, if
l-1l=1l-lla for some positive-definite matrix A, and by
assuming that for all w; (J}Y (w)): < ¢, we have

MER} > 22 = Q(B),
nc n

as n — oo, in which -y is the smallest eigenvalue of A.

6.1. Gaussian Location Model

LetY; = W+ V;; Vi < n+ 1, where V; ~ N(0,02?)
and a prior W ~ Unif(0,1) be assumed on W. Given
{Y;}_,, the goal is to predict Y;,11. In this problem, we
have JY (w) = J¥ (w) = %. Let {(a,b) = (a — b)?
which implies d(w, h) = (w — h)2. The distance d(w, k)
is a norm in the space R, and it satisfies the conditions of
Theorem 10. Thus, MER} = Q(2).

6.2. Linear Regression

LetY = WTX + ov, where W ~ Py, X ~ N(0,Xx),
and v ~ N(0, 1), in which Py is supported on a compact
subspace WV of RP. Also assume that W, X, and v are inde-
pendent, the matrix X x is full-rank, and the space WV is con-
vex. Consider £(a,b) = (a — b)?. Note that b (z) = w ' z
and that the hypothesis class H = {h,(z) = w'z|w €
W} is convex. We have

d/(wa ’li)) = d(huu hﬁ))
=Ex[(w'X — " X)?
=(w—) Sx(w— ),

meaning that the distance d’(w, w) can be formulated by a
norm in the space R?, i.e. d'(w,w) = |[w — @|[3; . This
problem satisfies the assumptions of Corollary 10.1, and we
have MER} = Q(2). A similar rate-distortion problem has
been studied in the context of compression of linear models
in (Gao et al., 2019).

Note that in this case the loss is unbounded. While in
Lemma 1 upper bounds for bounded loss are provided, sim-
ilar results for the general case of unbounded loss can be
derived if the tails of the distribution are suitably controlled;
e.g. the distribution is subgaussian (see Theorem 4 of (Xu &
Raginsky, 2020)). Moreover, for the case of quadratic loss,
if the Gaussian noise v is replaced by a bounded random
variable, the loss would be bounded and there exists upper
bounds with the same rate of O(£) (see Theorem 3 of (Xu
& Raginsky, 2020)).
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6.3. Certain Classes of Non-Linearities

Fix wy € R? and a function ®,,,(-) : X — RP. Consider
the set of nonlinear functions

Fyw) = f(w0) + Py () (w — wo),

for w € W C RP. The class resembles Neural Tangent Ker-
nels (Jacot et al., 2018). Assume that Y = f(X, W) + ov,
where X ~ Px, W ~ Py in which Py is supported
on a compact subset W of R?, and v ~ AN(0,1). Also
assume that W is convex. Consider the loss function
{(a,b) = (a — b)%. We have h%,(r) = f(z,w) and the
hypothesis set H = {f(-,w)|w € W} is convex. If
E[®y,(X)®,,, (X)] is full-rank, and ®,,, is smooth such
that the smoothness conditions of Lemma 2 hold, then fol-
lowing the same line of reasoning as the linear regression
example, we have MER; = Q(2).

6.4. Usability for More General Cases

There are various aspects in Theorem 10 which one should
take care of when dealing with more complicated problems.
For example, while the previous section provided analysis
for a very simplified neural network, there are some diffi-
culties to apply such analysis for a more general (Bayesian)
neural network.

One difficulty is the apparent dependence of the bound
Q(p/n) on p in the over-parameterized regime where we
could have p > n. In particular, in many high dimensional
problems, there are just a few dimensions for which the
covariance matrix has large eigenvalues; i.e. data mostly
resides in a lower dimensional space. In such scenarios, a
more precise treatment is needed. To see that the bound
does not depend on p, note that the constant hidden in the
rate actually depends on the determinant of the covariance
matrix, and having small eigenvalues potentially allows one
to achieve a smaller MER.

Moreover, if the Fisher matrix is singular, better (non-
singular) parameterization of the problem exists and the
Reparameterization Lemma (Lemma 8) can be used to take
advantage of this fact and then apply the lower bounds. The
same technique might work for some cases where the map-
ping is not injective (a requirement which was enforced by
the conditions of Lemma 2). For example, in neural net-
works, one source of complexity is that permuting the order
of neurons and their corresponding weights in a hidden layer
of a fully connected NN does not change the function. It
might be possible to define a standard ordering of neurons
to tackle this problem, though it might be challenging as
other conditions should also be met simultaneously.

7. Conclusion and Future Work

In this paper, the recent framework of (Xu & Raginsky,
2020) for studying MER was studied and a source coding
view on MER was suggested. In this view, the variable
W is considered as the input, and the generated hypothe-
sis h as the output. A suitable distortion measure d(w, h)
was defined to capture the notion of excess risk. This view
was used to find fundamental limits on learning with lim-
ited amount of information. Since in learning from dataset
Z™, the information is inherently bounded by I(W; Z™),
this view provides a natural methodology to study the lim-
its of learning. Using this view, a rate-distortion function
D,,(R) was introduced and it was proved that it is equal
to MER for large enough R. Then it was demonstrated
how D,,(R) is bounded bellow and above by two other rate-
distortion functions DL(R) and DY ( R) respectively, which
were generated by two natural modifications of the original
optimization. The lower bound indicated the limits on the
ability of any process generating a hypothesis h from W
while having a limited rate (not restricted to use a training
set). The upper bound indicated the price one should pay if
a bound on the I(Z"; fz) is also enforced, a setting related
to model compression. These three rate-distortion functions
where studied and various upper and lower bounds on them
were derived. In particular, it was demonstrated that (un-
der certain conditions) the lower bound has the right rate
matching the upper bound, proving that all of the bounds are
order-wise tight, and the rate for MER}' is ©(p/n). Finally
some applications of these results were discussed.

Some problems remained open for future studies. One of the
limitations of the current work, is that Theorem 10 requires
some technical conditions for the Q(p/n) to be guaranteed.
Analyzing lower rates for more general classes of problems
remains an open problem. In particular, it is interesting to
study MER lower bounds for non-parametric problems. The
challenge in this setting is that the underlying results which
were used to derive lower bound require a finite dimensional
parameter space. Another interesting direction for future
studies is to find conditions which guarantee O(1/n) upper
bounds for general bounded (or subgaussian) losses. While
such rates are well studied from the frequentist standpoint
(minimax setting), they are less understood in the Bayesian
learning.
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Appendices

A. Proof of Lemma 1

We need the following base Lemma, which will be used in many proofs.

Lemma A.1 (Xu & Raginsky 2017). Consider random variables X and Y with joint distribution Pxy and a function
g: X xY — Rsuch that g(X,Y) is o-subgaussian under the distribution Pyy = Px @ Py, then

|E[g(X,Y)] —E[g(X,Y)]]| < 202I(X;Y). (A.D)

Recall that a bounded random variable L € [0, b] is b/2-subgaussian.

Now, we are ready to prove Lemma 1.

Lemma 1. Consider random variables Y,U and V' forming Markov chain Y — U — V and an arbitrary non-negative
bounded function £ : ) x Y — [0, b]. We have

RUYIV) — RU(Y|D) <\ S 100w, (A2)

Proof. The idea of the proof is similar to the method used in Theorem 4 of (Xu & Raginsky, 2020) which here is presented
for general random variables forming a Markov chain. Assume a fixed v is given. Consider a random variable U’
which is generated from Pp;. To estimate Y from v, a non-optimal approach is to use w;‘,lU(U "). Consider the function

g(U,Y) =T, w;‘,lU(U )). Now we use the conditioning technique of (Hafez-Kolahi et al., 2020) for random variable V.

Notice that the conditions of Lemma A.1 are satisfied for conditional distributions Py = P4 ® PY and Py, = P}, @ Py
for all v; thus we have

2
B [g(U,Y) — g(U,Y)] < | G I(U3 V), (A3)

where by taking expectation on v ~ Py from both sides and using the Jensen’s inequality we get

b2
E[g(U".Y) = g(U.Y)] </ 5 LU Y]V). (A4
On the other hand, from definition of ¢5, ;; and 3y, we note that E[g(U, Y')] = R¢(Y|U) and E[g(U",Y)] = R(Y'|Z"),
which yields
b2
R(YIV) = Re(Y|U) < E[g(U", Y)] = E[g(U,Y)] <\ S L(Y;UIV), (A5)
this concludes the proof. O

B. Conditions for Lemma 2

For the sake of completeness, the technical conditions of Lemma 2, originally found in Section 2 of (Clarke & Barron, 1994),
are presented in this section. Let W C RP and assume that the densities of Py’ (.|w) exist with respect to the Lebesgue
measure.

0. The parameter space YV has a non-void interior and its boundary has a p-dimensional Lebesgue measure zero.

l.a. (Smoothness) The density p} (z|w) is twice continuously differentiable in w for almost every z. There also exists 6 (w)
such that for every j, k € {1,...,p}:

fw)=E[  sup log p (Z]w')

2
! !
' w!—w]|<6(w) | OW;OW],

is finite and continuous.

"Recall that a random variable V' is o-subgaussian if log E[e*V ~EVD] < X252 /2 for all X € R.
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L.b. (Existence of Moments) For each j € {1,...,d}:

| ™

0
—logp%W (Z|w
5 losPY (Z1)
is finite and continuous, as a function of w, for some ¢ > 0.

2. Fisher Information matrix and the second derivative of the relative entropy are equal; i.e., define the matrix

1) = B o log Y (210) 5 logplf (Z1)]

Wi
Ji
w'=w

we have I(w) = J(w). The matrix I(w) is also assumed to be positive definite.

and o2
[J(w)ljk = | 77— KL( Pg|| Py’
J {aw;-@w;ﬂ ( Zhsz )

3. (One to One) For w # w’, we have P¥ # Py’

4. The prior on W is assumed to be continuous. It is also assumed that prior is supported on a compact subset of the
interior of W.

C. Proof of Lemma 3

The proof is similar to the proof of Lemma 3, but instead of using Lemma A.1, we use the following lemma which is based
on a symmetrization technique presented by (Steinke & Zakynthinou, 2020).

Lemma C.1 (Steinke & Zakynthinou 2020). Let Pz be a distribution on Z, PV%, a conditional distribution to generate
W eW from Z, and L : W x Z — |0, 1] an arbitrary bounded function. Then, we have

Ewz [((W,Z")] <2BEw z[((W, Z)] + 3I(W; Z) (C.1)
where Z' ~ Py is an independent copy of Z.

This lemma is a restating of Theorem 5.8 of (Steinke & Zakynthinou, 2020) where we used n = 1 and also upper bounded
the “Conditional Mutual Information (CMI)” by I(WW; Z) (see Theorem 2.1 of (Haghifam et al., 2020) for the proof that
CMLI is less than I(W; Z)).

Lemma C.1 can easily be extended to get an alternative bound in the setting of Lemma A.1 for non-negative bounded loss.
This is summarized in the following corollary.

Corollary C.1.1. Consider random variables X andY with joint distribution Pxy, and a function g : X x Y — [0,b],
then
Elg(X,Y)] < 2E[g(X,Y)] + 3bI(X;Y). (€2)

Lemma 3. Consider random variables Y,U, and V forming Markov chain Y — U — V and an arbitrary non-negative
bounded function £ : ) x Y — [0, b]. We have

Ry(Y|V) <2R(Y|U) 4+ 3bI(Y;U|V). (C.3)
Proof. The proof is similar to proof of Lemma 1, but instead of inequality (A.3), we use Corollary C.1.1 to achieve
Ev[g(U",Y)] < 2E”[g(U,Y)] 4 3bI"(U;Y). (C4)

The rest of the proof follows similarly. O
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D. Tightening the Bounds by Applying the Chaining Technique

When ) is a metric space and the loss £ : ) X ) — R is the distance of this space, it is possible to tighten the bounds by
applying a chaining argument. The nature of the method is similar to what was used in (Asadi et al., 2018) to improve the
information theoretic bounds on the generalization gap. Consider the sequence of functions (II;)$2, where 7, is the largest

integer that satisfies 2—(i1—1) > diam(Y), and for all i > i1, II; : J — Y is a function satisfying £(y, IL;(y)) < 27% Vy € V.
Define Y; = I1;(Y"). Suppose that for all y, ¢;, 1) = yo for a given yo € V.

Define L = (Y, h(W, X)) where h(w,z) = Vs x (w,z) for all W € Wand X € X. Similarly define L =
(Y, (W', X)) where W' is generated from the posterior P . The loss at level i is defined as L; = £(Y;, h(W, X)), and
similarly L, = ¢(Y;, h(W’, X)). Define D = L’ — L. For a fixed integer M, we can write
M
D =D, 1)+ > Di—=Di1+D—Du, (D.1)

=11

where D; = L} — L;. By fixing Z" = 2" and X = x and taking expectation on other random variables we have

M
E*"*[L' — L] =E*""[D] = Y B*"*[D; — D; 1] + E*"*[D — Dy, (D.2)
i=iy

where we used EZW'E[D(Z»I,U} = 0, which is true because f/(il,l) = yo (and thus is independent of W). The idea of

chaining is to bound each of these terms separately. Define £/ = (L, — L;_,) and E; = (L; — L;_1). Note that
D;—Diy=L,— Ly — (L,_, — Li_y) (D.3)
=(L;—L,_y)— (L — L;i—1) D.4)
—E - E;. (D.5)

A bound on random variable E; (and similarly E}) can be derived by noting that

Li— Li—y = (Y3, h(W, X)) — £(Y;—1, (W, X))

< (Y, Y1) (D.6)
<U(Y3,Y) + LY, Yi) (D.7)
<2742t (D.8)
=3x 27" (D.9)

In inequalities (D.6) and (D.7) the triangle inequality is used as ¢ is assumed to be a metric. In inequality (D.8) the property
of the mappings 7; and 7;_1 is used (recall that £(y, I1;(y)) < 274 Vy € D, Vi).

Now, Lemma A.1 can be used to bound E; — E, since Pf};‘” = PVZVH,“, E; is a function of W and (57;, }N/i,l) and E is a
function of W’ and (Y3, Y;_1). We have

E*"*[E! — b \/2]2"“” ; (Y3, Y1), (D.10)

where b; = 3 x 27%. Also note that lim;_, o E; = lim;_, o E! = 0and limps_,o Das = D. Finally, taking expectation
with respect to x and 2", we have

MER} < E[L' — L] < 322 \/21 Y, 1)|ZnX), (D.11)

’Lll

where the first inequality is based on the discussions in proof of Lemma 1. If we further assume that Y;_; is a function of Y;

we have -
MER} < 3% 27%/2I(W;Y;|Z"X). (D.12)

i=i
Note that even if I(W; Y;|Z" X) is not finite, the summation in D.12 could be finite as long as the rate at which the sequence
(I(W; Y/,-\Z”X)) ~ goes to infinity, is small.
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E. Proof of Theorem 4
Theorem 4. For a given training set size n, for all rates R > I(W; Z"™), we have

D,(R) = MER}.

Proof.
Dy(R) = inf E[d(W,h)]

Pzn,
h

= inf Eyy oy (LY (X)) — (Y, iy (X)]

pz"
i

“R(YWX) + inf By (Y, h(X))]

“R(YWX) + inf By (B0 RO0)))]

> —Ry(YIWX) + };}ﬁ Exzni {waznx(zan)}
— “R(Y|WX) + R(Y|XZ")
— MER?

where all the minimizations are subject to the constraint I(W; ﬁ) < Rand Py, ,.; = Pw ® Pl ® PHZ ". Now note that
when R > I(W; Z™), by data processing inequality we have I(W; h) < I(W; Z™) < R, thus the constraint on I(W; ) is
automatically satisfied. In this case it is enough to use the deterministic algorithm which chooses i(.) = w’{,l gnx (27,.) for

the given 2™ to achieve MER}. O
F. Proof of Theorem 5
Theorem 5. For any bounded loss function ¢ : Y x Y — [0,b], and for all n > 1, we have
DY(1(W; 27) < \/ 1wz x) E1)
b2
< %I(W; zn). (F2)

Proof. The construction of the proof is similar to the proof of Lemma 1. Consider the (non-optimal) estimator ﬁ(x) =
Vs wx (W', z) where W' is a sample from the posterior P7" . As was proved in Lemma 1, we have

E[d(W, h)] = E vy ,uj [((Y. (X)) = Re(Y W X) (F3)

b2
<\ SV W2 X)

B2

<4/ —I(W;Z"),

< /5 107; 27)
where the second inequality is proved by applying the chain rule on I(Z"; W) and noting that I(Z; W|Z™) is a decreasing
function of n (see the Proof of Theorem 2 in (Xu & Raginsky, 2020)). Now, we just need to show that this process of
generating h provides a feasible point for the optimization of DY (R) for R = I(W; Z™) in Eq. (12). To see this, note that
Py zn = Py zn and we have [(W; Z™) = I(W'; Z™). Now, since the Markov chain W — Z™ — W’ — h holds, by using
the data processing inequality, we have

(Z™h) <I(Z"W'=I(W;Z") = R.

Thus, we have found a feasible candidate for solving the minimization, and E[d(W, ﬁ)] in Eq. (F.3) provides an upper bound
on the real solution DY (I(W; Z™)). O
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Note that in the proof of Theorem 5, the proposed solution to find h was also a parametric approach; i.e., heHs

{w;‘,‘w y(w,.)|we W} So we actually found an upper bound which would still work if there was another constraint on

optimization of DY (R) (Eq. (12)) which restricted heH.

G. Proof of Theorem 6

Theorem 6. For any bounded loss £ : Y x Y — [0, b], we have
b2 .
D;(R) < D(R) + [ 5 (W hi|27), (G.1)

where the mutual information is based on the distribution P,

A W w W .
Wohnzn = Py ® PER ® Py, and PER is a solution to the
optimization of D* (R).

Proof. Fix the rate R. Consider random variable h r which its joint distribution with W' is Py, e = Py ® P;:W. Now let
’ R

parameter W’/ ~ Pv%n be an independent copy of W for the given Z" and consider another random variable fz’R generated

from W’ using the conditional distribution P;:f/ = P;L‘W.
R R

Note that Pfﬁ " is in the feasible set of optimization of DY (R) since
R

I(Z";hlg) < I(W's hig) = I(W; hg) < R,
where the equality is due to the fact that P, e = Py, . and the final inequality is true since P]{’Z = P;I‘;V is a solution for
DE(R).
Thus, by bounding E[d(W, i'5)] we can find an upper bound on DY (R). This is done by using Lemma A.1 for the function

d(W, iL) Fix 2", and note that P‘f/ h, = PV%,n ® PHZ " . Thus, the conditions of Lemma A.1 are satisfied and we have
R R

B AW, )] B (W, )] < | 1 (W )

By taking expectation from both sides and using the concavity of the square root function, we get

E[d(W, )] ~ EA(W, )] < |/ 5 1(W: gl 20)

Finally, since Py, - provides a solution for DY (R) and Py, o provides an upper bound for DY (R), we have

DY(R) ~ D(R) < Bld(W, k)] ~ BId(W, h)] < | 510 ha 27,

which concludes the proof. O

H. Proof of Theorem 7

To prove this theorem, it is easier to describe the achievable rate R as a function of distortion D. So instead of D,,(R),
DE(R) and DY (R), consider optimizations

R, (D) = inf I(W;h), (H.1)

and

RY(D) = inf I(W;h), (H.2)
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and

RY(D) = inf 1(Z";h), (H.3)

pz"
s.t. E[d(W,h)] < D.

The following theorem describes a relation between RY (D) and RY (D).

Theorem H.1. Suppose the distortion d(W, iL) defined in Eq. (6) can be represented as a distance d' (hj;, ﬁ) Let W and
W' be two samples independently generated from PV%,TL. We have

R/[(D') < RH(D) = I(W; hp|Z"),
where D' = D + E[d(W, W,,)] and the conditional mutual information is based on the distribution Py, ,..; == Py ®

Pl ® P;:W and P;:W is a solution to the optimization of R* (D).
D D

Proof. Consider the random variable ﬁ’D generated from W’ using the conditional distribution P;‘l’}’ = P}{W. We have the
D D

Markov chain hp — W — Z" — W’ — h/,. We can write
E[d(W, )] = Eld (i, )]

E[d' (hiy, hiy:)] + E[d (hiy:, 7lp)]
E[d (hiy, hiy)] + D. (H4)

IAIA

In the first inequality we used the triangle inequality which holds since d’ is a distance. The second inequality is due to the
fact that PW’E’D = Py, = Pw ® Pi’:W, and that PgW is in the feasible set of optimization (H.2); i.e., E[d(W, hp)] =
D D

Eld' (h}y, hp)] < D. If we define D' = E[d' (hfy, hiy.)] + D, we see that the process of generating h’ meets the constraint
of minimization describing RY (D’) (Eq. H.3), thus I(Z"; h',) provides an upper bound on RY (D). Thus, we have

R(D') < I(Z";Ip)

= I(W's hlp) — I(W'; Hp|Z™) (H5)
= I(W;hp) — I(W;hp|Z™) (H.6)
= RH(D) = I(W;hp|2Z™), (H.7)
where the equality (H.5) is based on I(W'; ') = I(W', Z"; b)) = I(Z"; hy) + I(W'; W] Z™), inequality (H.6) is
based on the fact that Pp,.y,;, = Py, i and finally equality (H.7) is true since PW’ by, = Pw ® P;:JZV and P}’:]‘;V isa
solution to the optimization of RY(D). O

Now we can prove Theorem 7.

Theorem 7. Suppose the distortion d(W, ;L) defined in Eq. (6) can be represented as a distance d'(h}y,, iz) Let W and W'
be two samples independently generated from PV%,H. If we have
lim E[d' (h}y, hyy )] = 0,
n—r oo

then
VYR >0; D¥(R) = lim D,(R)= lim DY(R). (H.8)

n—oo n—oo

Proof. Note that in the rate distortion theory, functions R*(D) and D*(R) are decreasing and convex functions both
describing the boundary of the achievable (R, D) pairs (see Chapter 10 of (Cover & Thomas, 2012)). As they are different
representations of the same entity, the achievability results can be derived based on either R(D) or D(R). The same is
true for RY (D) and DY (R), as well as R,,(D) and D,,(R). In order to prove the theorem, we need to show that the set of
achievable (R, D) pairs coincide for all of three minimization problems as n — oco. As such, it is enough to equivalently
show that lim,, oo RY (D) = lim,,_,, R,,(D) = RE(D).
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Define dpin = lim,, ;oo D¥(R). Define d = D*(R). For now we assume d > dpi,, later we will also address the case
d = dmin>. We have RY(d) = R < cc. Define 4,, = E[d’(h}y, h}y/)]. By using Theorem H.1, we have

lim RY(d) < lim R*(d—6,) — I(W;hg_s,|2") (H.9)
n—oo n—oo
= R (d) - lim I zm) (H.10)
< R*(a), (H.11)

where in the equality (H.10) the continuity of RY(d) (for d > dp;y) is used (see Corollary 9.4.2 of (Gallager, 1968)) along
with the assumption that lim,, ,, d, = 0. On the other hand, we know that RY (d) > R,,(d) > RY(d);¥n. Thus, we have

lim RY(d) = lim R,(d) = R*(d);Vd > dpin.

n—oo n—oo

Equivalently, we have
lim DY(r) = lim D,(r) = D (r),

n— oo n—oo

where r is a rate satisfying D(r) > dpnin. Now, to complete the proof, we just need to handle the case where there exists
Tmax Such that D(7max) = dimin, and show

lim D (rmax) = lim Dn(rmax) = DL(""max)a

n—roo n—roo

which is true by monotone convergence since DY () and D,,(r) are decreasing functions converging to D% (r); V7 < 7ax
and DL (r) is continuous. O

I. Proof of Lemma §

Lemma 8. (Reparameterization Lemma) Let d : X' X X — R be a distortion function. Assume that there exists mappings
f:X =>Vandyg : X — V and a distortion function d:VxV = R such that forallx € X, & € X, we have

d(z, &) = d'(f(x),g(&)). IfV = f(X), it follows that

rg&n Ey ¢ [d(X,X)] = r}r_}%/n Ey v [d'(V, ‘7)],
v

st. I(X;X)<R st. I(V;V)<R

where the second minimization is the rate-distortion function for random variable V- = f(X).

Proof. Define Dy (R) and D2(R) as follows:

Di(R) = rganE[d(X,X)] st. I(X;X) <R, 1.1)
and R A
Dy(R) = rgivn]E[d’(V, V)] st I(V;V) <R 1.2)

\4

Now, let P;X be a solution for Dy (R). We have E[d(X, X)] = E[d’ (f(X), g(X ))] where the expectations are with respect
to Pyx = Px ®P§X. Note that the Markov chain f(X)— X — X — g(X) holds. Hence, I(f(X); g(X)) < I(X;X) < R.
Thus, P)"‘A(X provides a feasible candidate for the second optimization, which implies that Dy (R) > Dy(R).

So it remains to prove that D;(R) < Dy(R). Let Py be the distribution of V' = f(X) where X ~ Px, and P‘i;v be the
solution for Dy(R). We have R R

E[d'(V, V)] = Eld(f'(V),g"(V))], 13)

’If there is no achievable d that satisfies d > dumin, it means that D*(R) = dmin; VR and Eq. (H.8) is trivially satisfied since

for all n and R, D*(R) = DY(R) = D,(R) holds. To see this, note that at R = 0 all the optimizations are equivalent; i.e.
D*(0) = DY (0) = D,(0) and DY (R) and D,,(R) are decreasing functions lower bounded by D*(R) = D¥(0) = duin.
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where the expectations are with respect to (V, V) ~ Py ® P*V and fT and g are functions for which V = g(gf(V)) and

V= f(fi(v )) almost surely. The function f t exists by constructlon of Py. To ensure the existence of g', we need to
assume that V = f(X ) Now, let X = gf(V). Note that V = f(X), and that the Markov chain X —V —V — ¢f(V) = X
holds. Hence, I(X; X ) < I(V; V) < R. Which means that P*V provides a feasible candidate for the first optimization.
On the other hand, we have R . .

E[d (V, V)] = E[d'(f(X),g(X))] = E[d(X, X)), (14)

thus Do(R) < D;(R), which concludes the proof. O

J. Proof of Theorem 10

Theorem 10. Lez WV be a p-dimensional compact subspace of RP, the hypothesis set defined in Eq. (18) be convex, and
assume that the regularity conditions of Lemma 2 hold. If there exists a norm ||.|| such that ||W — W||?> < d' (W, W), we

have
w
MER?ZB- ™ gexp(—EIOgUZ (W)‘)’
"oV, T(1+ )P p

as n — oo, where V), is the volume of {x € RP : ||z|| < 1}.

Proof. Define A .
RE(D) = inf IW; W) s.t. E[d(W,W)] <D, (J.1)

pPwW
w

which is the inverse of DL (R) (see Lemma 4.1.2 of (Gray, 1989)) and reparameterization lemma (Lemma 8) is used to
define the problem in terms of d'(W, W). It is assumed that for all w, w, the distortion measure d’'(w, ®) can be lower
bounded by ||w — w’||?, where ||.]| is a norm in R”. Hence, for the rate-distortion function R’ (D), defined as

R'1(D) = inf I(W;W) st E[||W - W]|]] <D, J.2)
P

w

we have R’ (D) < RL(D). We can use Shannon Lower Bound (Lemma 9), with r = 2, to further lower bound R} (D):

RE(D) 2 By (D) 2 1)~ tog (V,(229) Fra+ 2)).
Thus, for DY (R), we can write
DE(R) > zepcp exp (W;_m), (1.3)
in which C,, = (Vp i+ %)) %. Minimum Excess Risk and D*(R) are as
MER} = D, (I(W; Z")) > DE(1(W; Z™)), (J.4)

where the equality is due to Theorem 4. To derive an asymptotic lower bound on MER as n goes to infinity, we can use
Lemma 2 to lower bound DL (I(W; Z™). Based on this lemma, we have

I(W;2Z™) = 51og (27r )+ h(W) + w +o(1) as n— co. d.5)

By substituting I(W; Z™) from (J.5) in Eq. (J.3), we arrive at the following lower bound

Elog |JY (W 1
MERzlzg.;exp(_ 0gz(p)|+0( )).

n(V,T(1+18)"

Note that the differential entropy h (W) is vanished. O
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Corollary 10.1. Under the conditions of Theorem 10, if||-|| = ||-||a for some positive-definite matrix A, and by assuming
that for all w; (J} (w))i; < ¢, we have
MER; > 22 — (%),
ne n

asn — oo, in which vy is the smallest eigenvalue of A.

= b 1 .
Proof. In this case, we have V,, = (det A)*%F(fij%). Note that V,, < (g)ilﬂ*l(l + B). Besides, Ey log |[J} (W)] <

plog(c). Hence, based on Theorem 10, as n — oo we have

w
T (- ERSUEONN e
)p p n

1
(v, T(1+5) ¢

MER} >

3

concluding the proof.



