
Regret Minimization in Stochastic Non-Convex Learning via a Proximal-Gradient Approach

A. Motivating examples

A.1. A conceptual approach for non-convex games

We extend here the solution concept for non-convex m-player games with smoothed local equilibrium proposed by (Hazan
et al., 2017) to be valid in our stochastic composite game setup. We emphasize that the guarantees we present in this section
are also valid for when each player only has access to a stochastic first-order oracle, making it closer to practical use.

To model the multi-player setting, consider m problems of the form (P) corresponding to each of the players, where every
player i observes her online part of her objective function

f it (z) := f(x1
t , . . . ,x

i−1
t , z, . . . ,xmt ), (A.1)

and then decides on xit+1.

It is sometimes desirable to induce specific properties in the game, this is fully supported by our model (P). For example:
(i) to incur risk-aversion, the regularizer of each player gi can be chosen accordingly, e.g., L1-norm; (ii) to ensure a
meaningful solution, such as the global minimax point condition defined by (Jin et al., 2019), restriction of the decision set
to a compact convex set can be applied.

In our non-convex setting, obtaining the global measure of Nash equilibrium is beyond reach, and may not exist at all;
see Proposition 6 in (Jin et al., 2019). Thus, a different, local, measure for equilibrium is essential. This topic is already
receiving much attention in the literature, for example, for a multi-player non-convex games, (Pang & Scutari, 2011)
proposes the local quasi-Nash equilibrium measure defined using KKT conditions. In the case of a (two-players) minmax
game (e.g., GANs) for example, local measure is defined as the stationarity (first-order condition) of both players in the
very recent (Jin et al., 2019, Nouiehed et al., 2019). For additional details, we refer to the works alluded above.

We follow the smoothed local equilibrium approach in Section 6 in (Hazan et al., 2017) , and extend it here to our composite
model. This approach comes naturally from assuming that the players take into account the behavior history of the other
players. Other than that, it allows for a tractable notion of equilibrium.

The smoothed local equilibrium is defined for the joint cost function (A.1) as follows, where Sit,w(x) =
1
w

∑t
j=t−w+1 f

i
j(x).

Definition A.1 (smoothed local equilibrium). Let η > 0, w ≥ 1. For an m-player iterative game with cost functions as
in (A.1), a joint strategy at iteration t > 0, (x1

t , . . . ,x
i−1
t ,xit, . . . ,x

m
t ), is an ε-(η, w) smoothed local equilibrium with

respect to the history of w-iterates if: ∥∥∥Pgiη (xit;∇Sit,w(xit)
∥∥∥2 ≤ ε ∀i ∈ [m]. (A.2)

Denote by Regiw(T ) the local regret (cf. Eq. (5)) of the i-th player. We first derive a guarantee for when each player has
access to a perfect first-order oracle (using Theorem 3.1).

Theorem A.1 (Equilibrium with perfect oracle). Let the sequence (x1
t , . . . ,x

i−1
t ,xit, . . . ,x

m
t ), t = 1, . . . , T be generated

by running Algorithm 1 for all players simultaneously with input η > 0 and w = d2k(δ2 + c)ε−1/2e, given that the online
function is determined by (A.1). Suppose that Vw[T ] ≤ cT for some c > 0. Then there exists t∗ ≥ w such that (A.2) holds
true.

Proof. There exists a t∗ ≥ w such that

k∑
i=1

∥∥∥Pgiη (xit∗ ;∇f it∗(xit∗)
∥∥∥2 ≤ 1

T − w

k∑
i=1

T∑
t=w

∥∥∥Pgiη (xit;∇f it (xit)
∥∥∥2

≤ 1

T − w

k∑
i=1

Regiw(T ).
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Thus, if each player has access to a perfect first-order oracle and Vw[T ] ≤ cT , then by Theorem 3.1

k∑
i=1

∥∥∥Pgiη (xit∗ ;∇f it∗(xit∗)
∥∥∥2 ≤ 1

T − w

k∑
i=1

2

w2

(
Tδ2 + Vw[T ]

)
≤ 2kT (δ2 + c)

(T − w)w2
.

Consequently, by setting T = w2 and w = d2k(δ2 + c)ε−1/2e we obtain

k∑
i=1

∥∥∥Pgiη (xit∗ ;∇f it∗(xit∗)
∥∥∥2 ≤ 2k(δ2 + c)

(w − 1)w
≤ ε,

as desired.

By similar arguments, we derive the guarantees for when players have access via a stochastic first-order oracle, only now
we utilize Theorem 4.2; we implicitly assume here that all the conditions of Theorem 4.2 are satisfied.

Theorem A.2 (Equilibrium with stochastic first-order oracle). Suppose that the sequence (x1
t , . . . ,x

i−1
t ,xit, . . . ,x

m
t ), t =

1, . . . , T is generated by running Algorithm 1 for all players simultaneously with input η > 0 and w = d 2k(δ
2+7σ2+6c)√

ε
e,

given that the online function is determined by (A.1). Suppose that Vw[T ] ≤ cT for some c > 0. Then there exists t∗ ≥ w

such that (A.2) holds true in expectation.

Proof. There exists a t∗ ≥ w such that

k∑
i=1

∥∥∥Pgiη (xit∗ ;∇f it∗(xit∗)
∥∥∥2 ≤ 1

T − w

k∑
i=1

T∑
t=w

∥∥∥Pgiη (xit;∇f it (xit)
∥∥∥2

≤ 1

T − w

k∑
i=1

Regiw(T ).

Thus, by taking expectation and using the fact that Vw[T ] ≤ cT , we obtain from Theorem 4.2 that

k∑
i=1

E
∥∥∥Pgiη (xit∗ ;∇f it∗(xit∗)

∥∥∥2 ≤ 1

T − w

k∑
i=1

2

((
T

w2

)(
δ2 + 7σ2

)
+

6

w2
Vw[T ]

)

=
2kT

(
δ2 + 7σ2 + 6c

)
(T − w)w2

.

Consequently, by setting T = w2 and w = d 2k(δ
2+7σ2+6c)√

ε
e we obtain

k∑
i=1

E
∥∥∥Pgiη (xit∗ ;∇f it∗(xit∗)

∥∥∥2 ≤ 2k
(
δ2 + 7σ2 + 6c

)
(w − 1)w

≤ ε,

as desired.

A.2. The online traffic assignment problem

Referring to (Bertsekas & Gallager, 1992) and (Shakkottai & Srikant, 2008) for an introduction to the topic, the key
objective in traffic assignment problems is the optimal allocation of traffic over a given network with variable traffic
inflows. To state this precisely, consider a directed multi-graph G = (V, E) with vertex set V and edge set E . Embedded in
this network is a set of origin-destination (O/D) pairs (oi, di) ∈ V × V , i ∈ N = {1, 2, . . . , N}, each routing a (possibly
random) quantity of traffic from oi to di via a set of paths Pi in G. Writing Ki = ∆(Pi) for the simplex spanned by Pi, a
trafic allocation vector for the i-th O/D pair is defined to be a vector xi = (xi,pi)pi∈Pi ∈ Ki with each xi,pi denoting the
fraction of the traffic of the i-th O/D pair that is routed via pi. Then, collectively, a traffic allocation profile is an ensemble
x = (x1, . . . ,xN ) of such vectors belonging to the product space K =

∏
iKi.
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In this general context, the cost (delay, latency, etc.) of routing a certain amount of traffic via a given path pi is a function
`pi(x;λ) of the chosen allocation profile x ∈ K and the set of traffic demands λ = (λ1, . . . , λN ) of each O/D pair.These
demands are typically assumed to follow a non-stationary probability distribution (e.g., accounting for diurnal variations
in an urban traffic network), leading to the online traffic assignment problem (OnTAP) stated below:

minimize `t(x) =
∑
i∈N

∑
pi∈Pi

xi,pi`pi(x;λt) + µ‖x‖1

subject to x ∈ K.
(OnTAP)

In the above formulation, the sparsity-inducing L1 term is intended to “robustify” solutions by minimizing the overall
number of paths employed. The cost functions `pi are sums of positive polynomials (described below), so they are smooth
overK but may otherwise be non-convex. As such, (OnTAP) can be cast in the framework of (P) by taking g = δK+µ‖·‖1
with δK denoting the convex indicator of K.

Let us now detail the definition of the cost functions `pi for (OnTAP). For simplicity, we will suppress the O/D index
i ∈ N , i.e., we will treat the problem as a single-O/D one; this doesn’t play a major role in the sequel and only serves to
make the notation ligther.

To begin, given a traffic allocation vector x ∈ K and an inflow rate λ, the traffic load carried by edge e ∈ E is defined to
be the total traffic routed via the edge in question, i.e.,

ye ≡ ye(x;λ) = λ
∑
p:p3e

xp, (A.3)

and we write y = (ye)e∈E for the corresponding load profile on the network. Given all this, the cost (delay, latency, etc.)
experienced by an infinitesimal traffic element traversing edge e is given by a non-decreasing continuous cost function
`e : R+ → R+; more precisely, if y ≡ y(x;λ) is the load profile induced by a traffic allocation profile x ∈ K and a traffic
demand λ, the incurred cost on edge e ∈ E is simply `e(ye). Hence, the associated cost for path p ∈ P will be

`p(x;λ) ≡
∑
e∈p

`e(ye(x;λ)) =
∑
e∈p

`e

λ ∑
p′:p′3e

xp′

 . (A.4)

In urban traffic networks, the cost functions `e are typically non-decreasing positive polynomials fitted to appropriate
statistical data; a common choice is the so-called “quartic BPR” model `e(ye) = ae + bey

4
e of the US Bureau of Public

Roads (BPR), but this is beyond our scope.

B. Regretfulness when w = 1

For completeness, we provide a simple example for when the ”standard” stationarity measure Eq. (4), obtained from the
local regret when w = 1, fails. The bound O(T/w2) established by (Hazan et al., 2017) (cf. Theorem 2.7) is proved via a
similar example.

Suppose that g(x) = δ[−1,1](x) is the indicator function for the set [−1, 1], and that

ft(x) =

{
−x with probability 0.5,

x with probability 0.5.

Then

EReg1(T ) = E
T∑
t=1

∥∥Pgη (xt;∇ft(xt)
∥∥2 ≥ O(T ).

C. Fundamental Properties

Throughout the analysis, we utilize fundamental properties of the proximal mapping operator for L-smooth functions. The
descent lemma (see e.g., Lemma 5.7 in (Beck, 2017)) and the sufficient decrease property of the proximal gradient operator
(cf. Lemma 10.4 in (Beck, 2017)) are given as follows.
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Lemma C.1 (Descent lemma). Let f : Rn → (−∞,∞] be an L-smooth function (L ≥ 0) over a convex set C ⊆ Rn.
Then for any x,y ∈ C, f(y) ≤ f(x) + 〈∇f(x),y − x〉+ L

2 ‖x− y‖2.
Lemma C.2 (Sufficient decrease property). Let h : Rn → R ∪ {∞} be a proper, convex, l.s.c function, and f : Rn →
(−∞,∞) be an L-smooth function (L ≥ 0) over domh. Then for any x ∈

∫
domh and η ∈ (0, L/2) it holds for

x+ = proxηh(x− η∇f(x)) that

h(x) + f(x)− h(x+)− f(x+) ≥ η
(

1− ηL

2

)∥∥∥∥1

η

(
x+ − x

)∥∥∥∥2 .
We also use a trivial, yet essential, property of the proximal gradient mapping.

Lemma C.3. For any x,d1,d2 ∈ Rn and η > 0 it holds that∥∥Pgη (x;d1 + d2)
∥∥ ≤ ∥∥Pgη (x;d1)

∥∥+ ‖d2‖ .

Proof. By the triangle inequality and non-expensiveness of the prox operator (cf. (?)Theorem 6.42]B17)∥∥Pgη (x;d1 + d2)
∥∥− ∥∥Pgη (x;d1)

∥∥ ≤ ∥∥Pgη (x;d1 + d2)− Pgη (x;d1)
∥∥

≤ 1

η
‖(x− η(d1 + d2))− (x− ηd1)‖ = ‖d2‖.

D. Proofs of Section 3

Proof of Theorem 3.1. Note that

St(x) =
1

w

t∑
i=t−w+1

fi(x) = St−1(x) +
1

w
(ft(x)− ft−w(x)).

Setting h1 = St−1, h2 = 1
w (ft − ft−w), applying Lemma C.3 and the triangle inequality yields

‖P(xt;∇St(xt))‖ = ‖P(xt;∇(h1 + h2)(xt))‖

≤ ‖P(xt;∇St−1(xt))‖+
1

w
‖∇ft(xt)−∇ft−w(xt)‖ .

By the definition of the method, i.e. ‖P(xt;∇St−1(xt))‖ ≤ δ
w , we thus have that

‖P(xt;∇St(xt))‖ ≤
δ

w
+

1

w
‖∇ft(xt)−∇ft−w(xt)‖ , ∀t ∈ [T ],

and consequently, for any t ∈ [T ],

‖P(xt;∇St(xt))‖2 ≤
2δ2

w2
+

2

w2
‖∇ft(xt)−∇ft−w(xt)‖2 .

Summing over t = 1, . . . , T , then results with

Regw(T ) =

T∑
t=1

‖P(xt;∇St(xt))‖2 ≤
2

w2

(
Tδ2 + Vw[T ]

)
.

To prove that Algorithm 1 executes O(w2) proximal gradient calls, we require a sufficient decrease property that is given
next.
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Lemma D.1 (Sufficient decrease property). Let t ∈ [T ], and let τt be the number of times step 3 is executed at the t-th
iteration. Then

St,w(xt) + g(xt)− St,w(xt+1)− g(xt+1) ≥ τt
(
η − η2L

2

)
δ2

w2
, ∀t ∈ [T ].

Proof. Denote the sequence generated in the inner loop at time t ∈ [T ] by

y0
t = xt, yk+1

t = arg min
z∈Rn

g(z) + 〈∇St(ykt ), z− ykt 〉+
1

2η
‖z− ykt ‖2, k = 0, 1, . . . , τt − 1,

and note that yτtt = xt+1. By the sufficient decrease property of the proximal gradient operator (cf. Lemma C.2), and the
stopping criteria of the inner loop, we have that for all k = 0, 1, . . . , τt − 1

St(y
k
t ) + g(ykt )− St(yk+1

t )− g(yk+1
t ) ≥

(
η − η2L

2

)∥∥P(ykt ;∇St(ykt ))
∥∥2 ≥ (η − η2L

2

)
δ2

w2
. (D.1)

Summing (D.1) over k = 0, 1, . . . , τt − 1, then yields

St(xt) + g(xt)− St(xt+1)− g(xt+1) = St(y
0
t ) + g(y0

t )− St(y
τt
t )− g(yτtt )

≥ τt
(
η − η2L

2

)
δ2

w2

which completes our proof.

We will now bound the number of proximal gradient iterations executed by Algorithm 1.

Proof of Theorem 3.2. Recall that S0(x0) ≡ 0, and St(x) = 1
w (ft(x)− ft−w(x)) + St−1(x). Thus,

ST (xT ) =

T∑
t=1

(St(xt)− St−1(xt−1))

=
1

w

T∑
t=1

(ft(xt)− ft−w(xt)) +

T∑
t=2

(St−1(xt)− St−1(xt−1))

≤ 2MT

w
+

T∑
t=2

(St−1(xt)− St−1(xt−1)) ,

where the last inequality follows from our blanket assumptions. Consequently, by Lemma D.1, we have that

ST (xT ) + g(xT )− g(x1) ≤ 2MT

w
+

T∑
t=2

(St−1(xt) + g(xt)− St−1(xt−1)− g(xt−1))

≤ 2MT

w
−
T−1∑
t=1

τt

(
η − η2L

2

)
δ2

w2

≤ 2MT

w
− τ

(
η − η2L

2

)
δ2

w2
,

where the last inequality uses τ =
∑T−1
t=1 τt. On the other hand, by our blanket assumptions,

ST (xT ) =
1

w

T∑
i=T−w+1

fi(xi) ≥ −M.

By combining both sides we obtain that

−M ≤ g(x1)− g(xT ) +
2MT

w
− τ

(
η − η2L

2

)
δ2

w2
,
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and the desired immediately follows from the nonnegativity of g:

τ ≤
g(x1)− g(xT ) +M + 2MT

w(
η − η2L

2

)
δ2

w2

≤ 2Tw(g(x1) + 3M)

(2− ηL) ηδ2
.

We conclude with the implication of our guarantees to the stochastic offline setting.

Proof of Corollary 3.1. From the choice of t∗, Jensen’s inequality, and Theorem 3.1, we have that

Et∗
(
‖∇f(xt∗)‖

2
)

=
1

T − w

T∑
t=w

‖E (∇ft(xt))‖2

=
1

T − w

T∑
t=w

∥∥∥∥∥E
(

1

w

t∑
i=t−w+1

∇fi(xt)

)∥∥∥∥∥
2

≤ 1

T − w

T∑
t=w

E

∥∥∥∥∥ 1

w

t∑
i=t−w+1

∇fi(xt)

∥∥∥∥∥
2


≤ 1

T − w
E (Regw(T ))

≤ 2

(T − w)w2

(
Tδ2 + Vw[T ]

)
.

Plugging the parameters’ values T = 2w, w = d
√

2(δ2+c)
ε e, and Vw[T ] = cT , we immediately obtain that

E
(
‖∇f(xt∗)‖

2
)
≤ 2

(T − w)w2

(
δ2T + Vw[T ]

)
≤ 4

w2

(
δ2 + c

)
≤ ε.

Once again, by plugging the parameters’ values we obtain from (10) in Theorem 3.2 that

τ ≤ 2w2(g(x1) + 2M)

(2− ηL) ηδ2
∝ O(ε−1).

Since for each proximal gradient update the algorithm computes w gradient samples (for each function sampled in the
time-window), the SFO complexity is

τw ∝ O(ε−3/2).

E. Proofs of Section 4

Before proceeding to the stochastic analysis, we make some notational conventions for the sake of readability: St ≡ St,w,
T (x;d) ≡ T f,gη (x;d), and P(x;d) ≡ Pgη (x;d). Additionally, we set ykt = yτtt for all k ≥ τt; this means that ykt = yk+1

t

if and only if k ≥ τt.

The forthcoming analysis of Algorithm 2 requires delicate treatment of what is known, and what is not, at specific moments
during the run. To avoid confusion, we state explicitly what is included in the algorithm’s natural filtration at time t ≥ 1

and at each inner iteration k ≥ 1, thus extending on our original description.

Definition E.1 (Filtration). For all t ≥ 1, the filtration Ft includes all gradient feedback up to, but not including, the
execution of step 2 at stage t. In particular, it includes ft, xt and ∇̃St−1(xt), but it does not include ∇̃ft(xt).

For all t ≥ 1 and all k ≥ 1, the filtration Ft,k includes all gradient feedback up to, but not including, the execution of the
k-th iteration of step 5(b) at time t. In particular, it contains Ft, and includes ykt , G

k
t , and yk+1

t , but it does not include
{∇̃fi(yk+1

t )}ti=t−w, Gk+1
t .
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We will utilize two trivial technical corollaries of Definition 4.1 given next.

Corollary E.1. Let x ∈ Rn, then

E (‖Sσ(x;ω, h)−∇h(x)‖)2 ≤ E
(
‖Sσ(x;ω, h)−∇h(x)‖2

)
≤ σ2. (E.1)

Lemma E.1. Let x ∈ Rn and hi : Rn → R for any i = 1, 2, . . . , w. Then

E

∥∥∥∥∥ 1

w

w∑
i=1

Sσ(x;ω, hi)−
1

w

w∑
i=1

∇hi(x)

∥∥∥∥∥
2
 ≤ σ2.

Proof. Follows from Jensen’s inequality.

The following technical lemma is of key importance in the analysis ahead.

Lemma E.2. Let t ∈ [T ] and k ≥ 2. It holds that

E
(
〈Gkt −∇St(ykt ),yk+1

t − ykt 〉|Ft,k−1
)
≥ −ησ

2

w2
.

Proof. Define the full gradient proximal gradient by ŷkt = T gη (ykt ;∇St,w(ykt )), and note that

〈Gkt −∇St(ykt ),yk+1
t − ykt 〉 = 〈Gkt −∇St(ykt ),yk+1

t − ŷkt 〉+ 〈Gkt −∇St(ykt ), ŷkt − ykt 〉
≥ −‖Gkt −∇St(ykt )‖‖yk+1

t − ŷkt ‖+ 〈Gkt −∇St(ykt ), ŷkt − ykt 〉, (E.2)

where the last inequality follows from Cauchy-Schwartz inequality. By the nonexpansivity of the prox operator (?)Theorem
6.42]B17 we have that

‖yk+1
t − ŷkt ‖ ≤ ‖ykt − ηGkt − ykt + η∇St(ykt )‖ = η‖Gkt −∇St(ykt )‖,

meaning that
− ‖Gkt −∇St(ykt )‖‖yk+1

t − ŷkt ‖ ≥ −η‖Gkt −∇St(ykt )‖2. (E.3)

Plugging (E.3) to (E.2) then implies that

〈Gkt −∇St(ykt ),yk+1
t − ykt 〉 ≥ −η‖Gkt −∇St(ykt )‖2 + 〈Gkt −∇St(ykt ), ŷkt − ykt 〉. (E.4)

Noting that by Definition 4.1
E
(
〈Gkt −∇St(ykt ), ŷkt − ykt 〉|Ft,k−1

)
= 0,

we obtain, from taking expectation on (E.4) and using Lemma E.1, that

E
(
〈Gkt −∇St(ykt ),yk+1

t − ykt 〉|Ft,k−1
)
≥ −ησ

2

w2
.

We can now embark on proving our claims stated in Section 4.

Proof of Theorem 4.1. Recall that y1
t = xt,y

τt
t = xt+1, and

yk+1
t = arg min

z∈Rn

g(z) + 〈Gkt , z− ykt 〉+
1

2η
‖z− ykt ‖2, k ∈ [τt − 1].

Denote hkt := St(y
k
t )+g(ykt ). By combining the descent lemma (cf. Lemma C.1), the definition of yk+1

t , and the stopping
criteria of the inner loop, we have that for any k ∈ [τt − 1] (assuming that Ft is given),

hkt − hk+1
t ≥ 〈Gkt −∇St(ykt ),yk+1

t − ykt 〉+
1

2

(
η − η2L

) ∥∥P(ykt ;Gkt )
∥∥2

≥ 〈Gkt −∇St(ykt ),yk+1
t − ykt 〉+

1

2

(
η − η2L

) δ2
w2

.
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Applying expectation to the latter, using the law of total expection (tower rule), and invoking Lemma E.2 and relation (7),
we obtain that for any k ∈ [τt − 1] it holds that

E
(
hkt − hk+1

t

)
≥ E

(
〈Gkt −∇St(ykt ),yk+1

t − ykt 〉
)

+
1

2

(
η − η2L

) δ2
w2

≥ 2

w2

(
η (1− ηL) δ2 − 2σ2

)
> 0.

Set α := 2
(
η (1− ηL) δ2 − 2σ2

)
/w2 > 0. From the former, by using the law of total expectation, for any K ≥ 1 we

have that

h1t +M ≥ E
(
h1t − hK+1

t

)
= E

(
K∑
k=1

(hkt − hk+1
t )

)

=

K∑
k=1

E
(
hkt − hk+1

t

)
=

K∑
k=1

(
E
(
hkt − hk+1

t |τt ≥ k + 1
)
P(τt ≥ k + 1) + 0 · P(τt ≤ k)

)
≥ α

K∑
k=1

P(τt > k)

≥ α
K∑
k=1

P(τt > K) = αKP(τt > K).

Consequently, we must have that τt is almost surely finite, which in turn implies that τ must be almost surely finite as it is
the finite sum of almost surely finite variables.

Let us now establish the local regret bound stated in Theorem 4.2.

Proof of Theorem 4.2. Recall that

Regw(T ) =

T∑
t=1

‖P(xt;∇St(xt))‖2 =

T∑
t=1

1

η2
‖xt − T (xt;∇St(xt))‖2 . (E.5)

By simple algebra,

‖xt − T (xt;∇St(xt))‖2 ≤ 2
∥∥∥xt − T (xt; ∇̃St(xt))

∥∥∥2 + 2
∥∥∥T (xt; ∇̃St(xt))− T (xt;∇St(xt))

∥∥∥2 . (E.6)

Using the nonexpansivity of the prox operator (?)Theorem 6.42]B17 we have that∥∥∥T (xt; ∇̃St(xt))− T (xt;∇St(xt))
∥∥∥2 ≤ ∥∥∥xt − η∇̃St(xt)− xt + η∇St(xt)

∥∥∥2
= η2

∥∥∥∇̃St(xt)−∇St(xt)∥∥∥2 .
Subsequently, using the law of total expectation and Lemma E.1, we obtain the relation

E
(∥∥∥T (xt; ∇̃St(xt))− T (xt;∇St(xt))

∥∥∥2) = E
[
E
(∥∥∥T (xt; ∇̃St(xt))− T (xt;∇St(xt))

∥∥∥2 |Ft)]
≤ η2E

[
E
(∥∥∥∇̃St(xt)−∇St(xt)∥∥∥2 |Ft)] ≤ η2σ2

w2
.
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Then, plugging the latter to the expected value of (E.6) yields

E
(
‖xt − T (xt;∇St(xt))‖2

)
≤ 2η2E

(∥∥∥P(xt; ∇̃St(xt))
∥∥∥2)+

2η2σ2

w2
.

Thus,

E (Regw(T )) ≤ 2

T∑
t=1

[
E
(∥∥∥P(xt; ∇̃St,w(xt))

∥∥∥2)+
σ2

w2

]
. (E.7)

Setting G1 = ∇̃St−1(xt), G2 = 1
w (∇̃ft(xt)− ∇̃ft−w(xt)), and applying Lemma C.3 yields∥∥∥P(xt; ∇̃St(xt))

∥∥∥ = ‖P(xt;G1 +G2)‖ ≤
∥∥∥P(xt; ∇̃St−1(xt))

∥∥∥+
1

w

∥∥∥∇̃ft(xt)− ∇̃ft−w(xt)
∥∥∥

≤ δ

w
+

1

w

∥∥∥∇̃ft(xt)− ∇̃ft−w(xt)
∥∥∥ , (E.8)

where the last inequality follows from the termination rule of the inner loop. Therefore,∥∥∥P(xt; ∇̃St(xt))
∥∥∥2 ≤ 2

w2

(
δ2 +

∥∥∥∇̃ft(xt)− ∇̃ft−w(xt)
∥∥∥2) .

Using the triangle inequality and the relation (a+ b+ c)2 ≤ 3(a2 + b2 + c2), yields that∥∥∥∇̃ft(xt)− ∇̃ft−w(xt)
∥∥∥2 ≤

3
∥∥∥∇̃ft(xt)−∇ft(xt)∥∥∥2 + 3 ‖∇ft(xt)−∇ft−w(xt)‖2 + 3

∥∥∥∇ft−w(xt)− ∇̃ft−w(xt)
∥∥∥2 .

Applying expectation, from the law of total expectation together with Definition 4.1, we obtain that

E
[∥∥∥∇̃ft(xt)−∇ft(xt)∥∥∥2] = E

[
E
(∥∥∥∇̃ft(xt)−∇ft(xt)∥∥∥2 |Ft)] ≤ σ2

w2
,

E
[∥∥∥∇ft−w(xt)− ∇̃ft−w(xt)

∥∥∥2] = E
[
E
(∥∥∥∇ft−w(xt)− ∇̃ft−w(xt)

∥∥∥2 |Ft−w,xt)] ≤ σ2

w2
.

Thus, E
(∥∥∥∇̃ft(xt)− ∇̃ft−w(xt)

∥∥∥2) ≤ 6σ2

w2
+ 3E

(
‖∇ft(xt)−∇ft−w(xt)‖2

)
, and consequently

E
(∥∥∥P(xt; ∇̃St(xt))

∥∥∥2) ≤ 2

w2

(
δ2 + E

(∥∥∥∇̃ft(xt)− ∇̃ft−w(xt)
∥∥∥2))

≤ 2

w2

(
δ2 +

6σ2

w2
+ 3E

(
‖∇ft(xt)−∇ft−w(xt)‖2

))
.

Summing over t ∈ [T ] and plugging Vw[T ] defined in (6) then yields

T∑
t=1

E
(∥∥∥P(xt; ∇̃St(xt))

∥∥∥2) ≤ 2

(
δ2 +

6σ2

w2

)(
T

w2

)
+

6

w2
Vw[T ].

Finally, plugging the latter into (E.7), and recalling that w ≥ 1, results with the desired bound.

Finally, we prove the bound on the number of SFO calls, as stated by Theorem 4.3.

Proof of Theorem 4.3. Denote hkt := St(y
k
t ) + g(ykt ). By combining the descent lemma (cf. Lemma C.1), the definition

of the sequence {ykt }k≥1, Young’s inequality, and the stopping criteria of the inner loop, we have that for any K ≥ 1
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(assuming that Ft is given)

h1t − hK+1
t =

K∑
k=1

(hkt − hk+1
t ) ≥

min{K,τt}∑
k=1

(
〈Gkt −∇St(ykt ),yk+1

t − ykt 〉+
1− ηL

2η

∥∥yk+1
t − ykt

∥∥2)

≥ 1

2

min{K,τt}∑
k=1

(
−
∥∥Gkt −∇St(ykt )

∥∥2 − ∥∥yk+1
t − ykt

∥∥2 +
1− ηL
η

∥∥yk+1
t − ykt

∥∥2) .
Hence, by Assumption 1 and the stopping condition of the inner loop, we obtain

h1t − hK+1
t ≥ 1

2w2

min{K,τt}∑
k=1

(
−σ2 + (1− η(L+ 1))ηδ2

)
=

(1− η(L+ 1))ηδ2 − σ2

2w2
min{K, τt} > 0.

Recall that S0,w(x0) ≡ 0, and St(x) = 1
w (ft(x)− ft−w(x)) + St−1(x). Using the previous derivations for t− 1 (setting

K = τt−1 and noting that hτt−1+1
t−1 = h

τt−1

t−1 ), we have that

St−1(xt) + g(xt)− St−1(xt−1)− g(xt−1) = h
τt−1

t−1 − h1t−1 ≤ −τt−1
(1− η(L+ 1))ηδ2 − σ2

2w2
. (E.9)

Thus, since

ST (xT ) =

T∑
t=1

(St(xt)− St−1(xt−1)) =

T∑
t=1

(
1

w
(ft(xt)− ft−w(xt)) + St−1(xt)− St−1(xt−1)

)

=
2MT

w
+

T∑
t=2

(St−1(xt)− St−1(xt−1)) ,

we have from our blanket assumptions and relation (E.9), that

ST (xT ) ≤ g(x1)− g(xT ) +
2MT

w
− τ (1− η(L+ 1))ηδ2 − σ2

2w2
.

On the other hand, again by our blanket assumptions, ST (xT ) = 1
w

∑T
i=T−w+1 fi(xi) ≥ −M. By combining both sides,

we obtain that

−M ≤ g(x1)− g(xT ) +
2MT

w
− τ (1− η(L+ 1))ηδ2 − σ2

2w2
,

and the bound on τ immediately follows due to the nonnegativity of g. Finally, the desired bound on the SFO oracle calls
follows from the fact that the inner loop makes O(w) SFO calls per loop.

E.1. Implications to Offline Stochastic Optimization

Next we establish our derivations in the offline scenario described in Section 4.2.

Proof of Theorem 4.4. Note that ft ≡ f for any t ∈ [T ] implies that ∇St,w(x) ≡ ∇f(x). From Theorem 4.2 and the
choice of t∗ we have that

E
(
‖P(xt∗ ;∇f(xt∗))‖

2
)

=
1

T − w
E

(
T∑
t=w

‖P(xt;∇f(xt))‖2
)

≤ 1

T − w
E (Regw(T ))

≤ 2

(T − w)w2

((
δ2 + 7σ2

)
T + 6Vw[T ]

)
.
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Proof of Corollary 4.1. From Theorem 4.4 we immediately obtain that

2

(T − w)w2

((
δ2 + 7σ2

)
T + 6Vw[T ]

)
=

4w

w3

(
δ2 + 7σ2 + c

)
≤ ε.

The bound O(Mσε−3/2) is obtained by plugging the assumed values of w, T , and δ2, to (10) in Theorem 4.3:

wτ ≤ 2ηw3(g(x1) + 3M)

(1− η(L+ 1))δ2 − ησ2
=

2w3(g(x1) + 3M)

σ2
∝ O(Mσε−3/2),

where we used the fact that w is O(σ/
√
ε).
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