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Abstract
This paper develops a methodology for regret
minimization with stochastic first-order oracle
feedback in online, constrained, non-smooth,
non-convex problems. In this setting, the
minimization of external regret is beyond reach
for first-order methods, and there are no
gradient-based algorithmic frameworks capable
of providing a solution. On that account,
we focus on a local regret measure defined
via a proximal-gradient mapping, that also
encompasses the original notion proposed by
Hazan et al. (2017). To achieve no local regret
in this setting, we develop a proximal-gradient
method based on stochastic first-order feedback,
and a simpler method for when access to a perfect
first-order oracle is possible. Both methods
are order-optimal (in the min-max sense), and
we also establish a bound on the number of
proximal-gradient queries these methods require.
As an important application of our results, we
also obtain a link between online and offline non-
convex stochastic optimization manifested as a
new proximal-gradient scheme with complexity
guarantees matching those obtained via variance
reduction techniques.

1. Introduction

First-order methods have proven to be extremely flexible
and efficient in online convex optimization: They enjoy
tight performance guarantees in a wide range of relevant
settings such as convex, strongly convex and/or composite
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problems, and they can adapt to different measures of
regret under different oracle feedback assumptions, e.g.,
perfect/stochastic gradients or bandit feedback. For
example, see Abernethy et al. (2008), Hazan (2016), Hazan
et al. (2007) and Xiao (2010) for applications to different
convex settings, Besbes et al. (2015), Cesa-Bianchi et al.
(2012), and Hazan & Seshadhri (2009) for variant regret
measures, and Abernethy et al. (2008), Agarwal et al.
(2010), and Bubeck & Eldan (2016, 2017) for a range of
feedback assumptions.

On the other hand, many contemporary problems,
especially in machine learning, involve highly multi-
modal non-convex functions. In this case, the results
obtained in the above framework do not – in fact, cannot
– apply, and new analytical tools and algorithms are
needed. Nevertheless, and somewhat surprisingly at
that, online non-convex optimization problems are not as
well explored, and significantly less is known about the
performance of first-order methods in this context.

The key difficulties encountered in the online non-convex
setting are twofold: First, the standard regret comparator
of a “best action in hindsight” (fixed or otherwise) is
too ambitious because, in general, even offline non-
convex optimization problems are intractable. Second,
compared to problems with a convex structure, non-
convex problems have no local-to-global guarantees, so the
adversary has a near-insurmountable advantage (in analogy
to non-convexified/non-randomized optimizers facing an
adversarial bandit). Our paper seeks to address these
challenges in a unified way in the setting of first-order
methods.

Related work. One approach to treat online non-convex
optimization is to regard the problem as an adversarial
multi-armed bandit (MAB) with a continuum of arms.
This approach was pioneered by Bubeck et al. (2011),
Kleinberg (2004) and Kleinberg et al. (2008), who
proposed a range of hierarchical search methods, with
and without a doubling trick, that guarantee no regret
in problems with a geometry that is amenable to local
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search such as the hypercube. Krichene et al. (2015)
and, more recently, Perkins et al. (2017) and Héliou
et al. (2020, 2021), took an approach based on a suitable
adaptation of the Hedge/EXP3 algorithms to bandits with a
continuum of arms and established the method’s no-regret
properties under relatively mild regularity conditions.
However, in full generality, sampling from continuous
Gibbs distributions can be quite challenging, so it is not
a-priori clear how to implement these methods without a
sampling oracle in place.

Another approach, manifesting in the recent works of
Agarwal et al. (2019) and Suggala & Netrapalli (2019),
is the classical Follow-the-Perturbed-Leader algorithm
with access to an offline non-convex optimization oracle,
which was shown to enjoy a polynomial regret bound.
Simplifying assumptions that render a non-convex problem
tractable, were also considered in the literature in more
particular cases such as the principal component analysis
model; see Garber (2019) and references therein for
additional examples.

Complementing this literature in an orthogonal direction,
Hazan et al. (2017) took a more direct, “pure-strategy”,
approach based on a “smoothed” inner-loop / outer-
loop version of projected gradient descent. In this
general framework, a straightforward extension of Cover’s
impossibility result shows that the minimization of
standard regret measures is unattainable. On account
of this, Hazan et al. (2017) considered instead a local
regret measure based on a sliding evaluation window and a
suitable measure of stationarity (as opposed to optimality).
When faced with a stream of Lipschitz smooth functions,
the algorithm of Hazan et al. (2017) enjoys a local regret
bound that scales with the horizon T of the process and the
size w of the sliding window as O(T/w2), with projection
calls complexity O(Tw); as a result, sublinear (local)
regret is possible as long as w = ω(1). Importantly, Hazan
et al. (2017) also showed that the local regret bound is
unimprovable from a min-max perspective, so the proposed
algorithm is optimal in this regard. For unconstrained
problems with stochastic gradient observations, Hazan
et al. (2017) further showed that a suitable variant of their
method achieves similar guarantees in expectation.

Our contributions. Our goals in this paper are twofold:
First, we seek to treat online problems that are potentially
non-smooth, covering e.g., the case of L1-regularization.
Second, in line with the above, we also wish to
account for problems with stochastic oracle feedback,
simultaneously with constraints and regularization, thus
including problems subjected to both random and seasonal

fluctuations. To achieve the desiderata, we consider a
general composite non-convex online framework in which
each loss function encountered consists of a smooth and
non-smooth part; this study is the first to provide methods
with theoretical guarantees to address this scenario.
Concisely, our main contributions are

• Assuming access to only a stochastic first-order
oracle, we introduce a smoothed prox-grad method
to handle stochastic, constrained, non-smooth, non-
convex online optimization problems with tight regret
guarantees of O(T/w2) in expectation and stochastic
first-order oracle calls bound of O(Tw2). This
represents a significant step forward relative to the
literature, mainly, compared to the online stochastic
method proposed by (Hazan et al., 2017), as the latter
can only address the basic smooth unconstrained case.

• Relaxing the feedback assumptions to a perfect first-
order oracle, we also present a simpler method
that can simultaneously tackle online non-convex
optimization problems with both constraints and
regularization, and obtain tight regret guarantees
O(T/w2) with prox-grad calls complexity O(Tw) in
the process.

• As a by-product, but of an independent interest and a
contribution of its own, we derive from our methods
new schemes for stochastic offline optimization under
the online framework assumptions with the best
known guarantees, achievable only via variance
reduction techniques – see Arjevani et al. (2019) and
references therein.

2. Problem setup

2.1. Statement of the problem and blanket assumptions

We consider the class of online non-convex, nonsmooth,
composite problems over a finite and discrete time horizon
T ≥ 1 of the form

min{`t(x) = ft(x) + g(x) : x ∈ Rn}, t ∈ [T ], (P)

where

1. g : Rn → R+ ∪ {∞} is a proper, convex, lower
semicontinuous (l.s.c) function.

2. For any t ∈ [T ], the function ft : Rn → R is L-
smooth (L > 0 ) over dom g, i.e.,

‖∇ft(x)−∇ft(y)‖ ≤ L‖x− y‖ ∀x,y ∈ dom g.
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3. There exists M > 0 such that for any x ∈ dom g and
t ∈ [T ], it holds that |ft(x)| ≤M .

Our blanket assumptions are fundamental in the study of
online learning, even when the objective function is convex
(see e.g., Hazan, 2016). We also note that ft is assumed to
beL-smooth and bounded only over the domain of g. Thus,
if dom g is bounded and ft is continuously differentiable
over dom g, then the model’s assumptions trivially hold
true.

2.2. Motivating applications

Examples of (P) are ubiquitous in theoretical computer
science, operations research, and many other fields where
online decision-making is the norm. For concreteness, we
shortly describe next a few conceptual examples; further
details are provided in the supplement.

• Non-convex games: A multi-player non-convex
game can be modeled by simultaneously optimizing
several copies of (P), where all share the same
function ft, and (un-shared) penalty functions may be
utilized to induce stability (e.g., risk aversion) in the
choices of each of the players independently; see e.g.,
Hazan et al. (2017) and Agarwal et al. (2019).

A particularly interesting instance of a two-player
non-convex game in which the objective function
is accessible through a stochastic oracle, is the
generative adversarial network (GAN) model; GANs
were already considered via an online framework by
Grnarova et al. (2017) and Agarwal et al. (2019) for
example.

• Online path planning with splittable traffic
demands: The online traffic assignment problem is a
hallmark path planning problem that requires the full
capacity of our model, and whose formulation further
applies to learning perfect matchings, multitask
bandits, spanning tree exploration, etc. Referring
to Bertsekas & Gallager (1992) and Shakkottai &
Srikant (2008) for an introduction to the topic, the
key objective in traffic assignment problems is the
optimal allocation of traffic over a given network
with variable traffic inflows. The feasibe set here
is compact, the cost functions are smooth yet non-
convex, and a sparsity-inducing L1 term is typically
included to “robustify” solutions by minimizing the
overall number of paths employed; we provide a fully
detailed formulation in the supplement.

• Stochastic (offline) optimization: Stochastic
optimization, which follows naturally from online

optimization by restricting the adversarial behavior
accordingly, plays a prominent role in modern
applications, such as the training of neural networks.

2.3. Local regret minimization

In the online non-convex framework of (P), there are
two key issues with the standard definition of the regret
as Reg(T ) = maxx∈dom g

∑T
t=1[`t(xt) − `t(x)]: First,

the global minimization of a non-convex objective is
intractable in general, so using the best fixed action in
hindsight as a comparator is too ambitious. Second, as
we explain below, even if one uses a proxy for stationarity
in lieu of a global minimizer, an informed adversary can
still impose Reg(T ) = Ω(T ), so the notion of regret
minimization must also be re-examined in this setting.

We address both of these issues by a combined approach,
leveraging optimality criteria and measures from (offline)
non-convex analysis, together with smoothing of the online
part of the objective function. This generalizes the
proposed framework of Hazan et al. (2017) from a gradient
projection scheme into a complete methodology that can
be applied “off-the-shelf” to possibly non-smooth / non-
convex problems.

Due to the of impossibility of finding a global optimizer
for a non-convex problem in polynomial time (see also
Kleinberg, 2004, on a similar result for multi-armed bandit
algorithms), optimization schemes are analyzed and tested
with different optimality measures and figures of merit.
Typically, optimality measures are scheme-dependent,
see, e.g., Beck (2017, Section 10.3 on the proximal
gradient, and Section 13.2 on the conditional gradient).
Complementing the latter, smoothing (i.e., averaging) is
a common practice when dealing with uncertainty and
fluctuations, e.g., in the fields of statistics, stochastic
optimization, finance, and others. Indeed, intuitively, in
the face of a time-varying non-convex objective function
with possibly no behavioral pattern, a rational approach
for the decision maker is to stabilize the decision-making
protocol, so that, on average, the best possible decisions
will be made.

In light of the above, and in the spirit of Hazan et al. (2017),
define for allw ∈ [T ] the sliding average of the smooth part
of the objective function, namely

St,w(x) =
1

w

t∑
i=t−w+1

fi(x),

with the convention ft ≡ 0 for t ≤ 0. To stabilize
the optimization protocol’s behavior, the decision maker
determines her actions based on a smoothed objective
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function St,w(x)+g(x) instead of the real objective ft(x)+

g(x). This way, the adversary’s ability to manipulate the
decision maker’s decisions by increasing the variability of
her choices is reduced. This was formally established by
Hazan et al. (2017) for the projected-gradient framework.

The characteristics of optimality measures in non-convex
optimization can be summarized as a) dependency in the
method at hand; b) positive-definiteness; and c) zero
value only at points that satisfy the first-order optimality
conditions (stationarity) This reflects the fact that a
reasonable and tractable objective for the optimizer in non-
convex learning is to find a point having zero optimality
measure. Now, denote by Salg(x;St,w, g) an optimality
measure associated with an underlying method alg, at the
point x, for minz St,w(z) + g(z). Then, the notion of local
regret of a policy xt up to time T with window length w is
defined via Salg as

Regw(T ) =

T∑
t=1

Salg(xt;St,w, g). (1)

Hence, for the decision maker to achieve no-regret,
1
T Regw(T ) must go to zero as the time horizon T goes
to infinity; this is in line with the original notion of regret
(Hazan, 2016), and with the definition of local regret as
pioneered by Hazan et al. (2017). Indeed, in the offline
case, the requirement that 1

T Regw(T ) → 0, is translated
to convergence of the optimality measure to zero, which is
the desired goal.

This paper focuses on the proximal-gradient framework,
and thus we use the corresponding prox residual (also
called the gradient mapping) optimality measure, see Beck
(2017, Section 10.3). To do so, we begin by defining the
proximal mapping of g along the search direction d ∈ Rn
with step-size η > 0 as

T gη (x;d) ≡ proxηg (x− ηd)

= arg minz∈Rn{ηg(z) + 1
2‖x− ηd− z‖2},

(2)
where ‖ · ‖ stands for the Euclidean norm, and the
corresponding prox residual as

Pgη (x;d) =
1

η

(
x− T gη (x;d)

)
. (3)

Remark 2.1. We note that the purpose behind the use of
a general vector d in Eq. (2) and Eq. (3) is to be able to
accommodate for stochastic gradients later on in Section 4.

As an illustration, let us set d = ∇f(x) and examine
Eq. (2) and Eq. (3) in the smooth unconstrained and
constrained scenarios. If g ≡ 0, then Eq. (2) is the gradient

descent operator and Eq. (3) reduces to Pgη (x;∇f(x)) =

∇f(x). Likewise, if g ≡ δK for some closed convex subset
K of Rn, we get the projected gradient descent in Eq. (2)
and its corresponding projection residual Pgη (x;∇f(x)) =

η−1(x− projK(x− η∇f(x))).

The norm of the prox residual Resgη(x) ≡
‖Pgη (x;∇f(x))‖2 ≥ 0 is the standard optimality measure
for the analysis of proximal gradient-based schemes for
non-convex optimization: ‖Pgη (x;∇f(x))‖ = 0 if and
only if x is a stationary point of (P). This makes the
following definition of regret the most natural choice to
quantify the regret of an online policy xt at time T ,

Reg(T ) ≡
T∑
t=1

Resgη(xt) =

T∑
t=1

∥∥Pgη (xt;∇ft(xt)
∥∥2 .

(4)
However, as was shown by Hazan et al. (2017), it is
not difficult for the adversary to impose linear regret
by providing a sequence of “spiked” non-convex loss
functions with large ‖∇ft(xt)‖ and small gradient away
from each xt (for completeness, we provide a simple
example in the supplement). Perhaps more intuitively,
one may consider a dynamical system with a time varying
function that is only accessible via a stochastic oracle (e.g.
GAN as a two-players game), in which case, attaining
stationarity through the classical use of Eq. (4) seems
impossible.

Because of this, as we informally stated before, it is
more reasonable to consider a smoothed, local version
of the regret that averages the sequence of loss functions
encountered over a sliding window of w consecutive time
periods. Building on the notion of regret proposed by
(Hazan et al., 2017), the local regret of a policy xt up to
time T with window leghth w is then defined as

Regw(T ) =

T∑
t=1

∥∥Pgη (xt;∇St,w(xt))
∥∥2 . (5)

In the above, the sliding window w can be seen as
an ”effective time unit”: essentially, instead of working
with the stream of (potentially volatile) loss functions ft
directly, we work with the average loss over a window
of length w. In practice, the sliding window w acts
as a ”stabilizer” controlling the effects of the noise and
variability of the function on the decision making of the
optimization protocol; this will become apparent in the
sequel.

In the non-composite case, when g is the indicator of
a closed convex set, the local regret measure Eq. (5)
is quantified by the minimax bound of Hazan et al.
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(2017) who showed that an informed adversary can impose
Regw(T ) = Ω(T/w2). This bound becomes sublinear in
T if w = ω(1), so this definition provides the required
flexibility for a tractable measure of regret.

To further substantiate the motivation for our smoothing
approach, we provide four prototypical scenarios in which
Eq. (5) generalizes standard measures in simpler models:

• In the offline case ft ≡ f , we immediately recover the
classical measure of Eq. (4).

• If g ≡ 0, we readily obtain Regw(T ) =

(1/w2)
∑T
t=1 ‖

∑t
i=t−w+1∇fi(xt)‖2, i.e., the

original definition of Hazan et al. (2017) for
unconstrained online non-convex problems.

• If additionally ft = F (·, ωt) where F is
a stochastic objective with E(F ) = f , and
ωt is an i.i.d sequence of random seeds, then
choosing an output iteration t uniformly leads to
E (Regw(T )) /T ≥ Et ‖∇f(xt)‖2, meaning that
local regret minimization leads to stationarity in
expectation in unconstrained stochastic models; we
will return to this example in Section 3.

• More generally, as discussed in detail in Section 4.2,
if each ft is drawn from an underlying stationary
distribution with expectation f , and a stopping time t∗
is selected uniformly at random from [T ], we will have
E
[ ∥∥Pgη (xt∗ ;∇f(xt∗))

∥∥2 ] ≤ E (Regw(T )) /T , i.e.,
local regret minimization implies average stationarity
in composite (offline) stochastic problems.

We close this section by introducing a measure of variation
of the loss functions encountered by the optimizer, and
which will be particularly useful in the sequel:

Definition 2.1 (Sliding window variation). The sliding
window variation of a sequence of loss functions ft is

Vw[T ] = sup
x∈domg

{
T∑
i=1

‖∇fi(x)−∇fi−w(x)‖2
}
. (6)

An immediate observation is that if the gradients of the
functions are bounded (e.g., if ft is Lipschitz continuous),
we automatically have Vw[T ] = O(T ); as such, any regret
guarantee stated in terms of Vw[T ] automatically translates
to O(T ) in this context.

The main reason that we introduce this variation measure
instead of working with a more uniform hypothesis, such as
the standard Lipschitz continuity of the objective function,
is to account for cases where this quantity is naturally

small. For example, in the routing problem mentioned
in Section 2.2 and detailed in the supplemental, Vw[T ]

corresponds to the variability of the encountered traffic
demands at a time-scale of w. As such, if the sliding
window w is attuned to the seasonal variability of the
process (e.g., an hour, a day or a week, depending on
granularity), Vw[T ] could be considerably smaller than
T , so the obtained regret bounds would be considerably
sharper as a result.

We should also note that, when w = 1, Vw[T ] boils
down to the “gradual variation” measure of Chiang et al.
(2012) – and, indirectly, to the variation budget of Besbes
et al. (2015). The above suggests an interesting interplay
between our analysis and regret minimization relative to a
dynamic comparator; this is also part of the reason that we
state our results in terms of Vw[T ] in the sequel.

3. The time-smoothed online prox-grad
method

Assuming perfect first-order oracle, we introduce the
Time-Smoothed Online Prox-Grad Descent method, cf.
Algorithm 1, which generalizes the time-smoothed online
gradient descent method of (Hazan et al., 2017).

Algorithm 1: Time-smoothed online prox-grad descent
Input. x1 ∈ Rn, η ∈ (0, 1/L), w ∈ [T ], δ > 0.
General step. For any t = 1, . . . , T do:

1. ft : Rn → R is determined;

2. Set xt+1 ← xt;

3. While
∥∥Pgη (xt+1;∇St,w(xt+1))

∥∥ > δ/w do:

(a) Update xt+1 ← arg minz∈Rn g(z) +

〈∇St,w(xt+1), z− xt+1〉+ 1
2η‖z− xt+1‖2;

As we show below, Algorithm 1 achieves an optimal regret
bound of O

(
T
w2

)
when Vw[T ] is bounded by O(T ), and

executes O(Tw) prox-grad operations.

Theorem 3.1 (Local regret minimization). Algorithm 1
enjoys the local regret bound

Regw(T ) ≤ 2

w2

(
Tδ2 + Vw[T ]

)
.

Theorem 3.2 (Oracle queries). Let τt be the number of
prox-grad operations at time t ∈ [T ]. The total number
of oracle queries τ =

∑T
t=1 τt made by Algorithm 1 is

bounded as

τ ≤ 2Tw(g(x1) + 3M)

(2− ηL) ηδ2
= O(Tw).
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We conclude this section by examining the theoretical
guarantees of Algorithm 1 when ft is an unbiased
stochastic approximation of f , so that, implicitly, ∇ft
is generated via an unbiased SFO. It should be noted
that the SFO must satisfy that Vw[T ] is O(T ), which
effectively bounds the variability of the stochastic gradient;
this assumption is different than the standard variance
bound in stochastic gradient analysis (cf. Definition 4.1).

Corollary 3.1. Suppose that g ≡ 0, E(∇ft(x)−∇f(x)) =

0 for any x ∈ Rn, and that Vw[T ] ≤ cT for some c > 0.
Let ε > 0, and t∗ ∈ [T ] be chosen uniformly from {w,w +

1, . . . , T}. If T = 2w and w =
⌈
2
√

(δ2 + c)/ε
⌉

. Then

Algorithm 1 achieves E
(
‖∇f(xt∗)‖

2
)
≤ ε with at most

O(ε−1) prox-grad operations and O(ε−3/2) SFO calls.

Note that the complexities reported in Corollary 3.1 match
those obtained for the state-of-the-art Prox-SpiderBoost
method proposed by Wang et al. (2019), but under
a different procedure using more stringent assumptions
(boundedness of f and that Vw[T ] is O(T )). We
stress that the Prox-SpiderBoost method is only applicable
to stochastic problems, and as such, it has no online
guarantees, unlike Algorithm 1.

The proofs of Theorems 3.1 and 3.2, and of Corollary 3.1,
are deferred to the supplemental.

4. Stochastic time-smoothed online prox-grad
method

4.1. Method and Analysis

Moving forward from the deterministic guarantees of
Algorithm 1, we proceed to consider a more flexible
framework that only posits access to a stochastic first-order
oracle (SFO). Specifically, following Nemirovski et al.
(2009), we assume that it is possible to generate an i.i.d.
sequence of random seeds ζ1, ζ2, . . . , that are concurrently
used as input to an SFO as follows:

Definition 4.1 (Stochastic first-order oracle). A stochastic
first-order oracle (SFO) is a function Sσ such that, given
a point x ∈ Rn, a random seed ζ, and a smooth function
h : Rn → R satisfies:

1. Sσ(x; ζ, h) is unbiased relative to ∇h(x):
E (Sσ(x; ζ, h)−∇h(x)) = 0;

2. Sσ(x; ζ, h) has variance bounded by σ2 > 0:
E
(
‖Sσ(x; ζ, h)−∇h(x)‖2

)
≤ σ2.

With all this in hand, the heuristics of the proposed
stochastic prox-grad method are as follows: (i) ft is

determined; (ii) successive SFO queries generate a noisy
descent process in an inner loop until a δ/w-stationary
point is reached. The pseudocode of the algorithm is shown
in Algorithm 2:

Algorithm 2: Time-smoothed online stochastic prox-grad
method
Input. x1 ∈ Rn, η ∈ (0, 1/L), w ∈ [T ], δ > 0.
Initialization. ∇̃Si,w(x1) = 0 for all i ≤ 0.
General step. For any t = 1, 2, . . . , T do:

1. Function is updated to ft : Rn → R;

2. Sample ∇̃ft(xt)← Sσ/w(xt; ζ, ft);

3. Set ∇̃St,w(xt) = ∇̃St−1,w(xt) + 1
w (∇̃ft(xt) −

∇̃ft−w(xt));

4. Set y1
t = xt, G1

t = ∇̃St,w(xt), k = 1;

5. While
∥∥Pgη (ykt ;Gkt

)∥∥ > δ/w do:

(a) Update yk+1
t = arg minz∈Rn g(z) + 〈Gkt , z −

ykt 〉+ 1
2η‖z− ykt ‖2;

(b) Sample ∇̃fi(yk+1
t ) ← Sσ/w(yk+1

t ; ζ, fi) for
any i = t− w + 1, . . . , t;

(c) Set Gk+1
t = 1

w

∑t
i=t−w+1 ∇̃fi(y

k+1
t );

(d) Set k ← k + 1;

6. Set xt+1 = ykt and ∇̃St(xt+1) = Gkt .

The process of Algorithm 2 might be better understood
by comparing it to offline stochastic variance reduction
methods (SVR); see e.g., (Fang et al., 2018, Metel &
Takeda, 2019, Wang et al., 2019, Yurtsever et al., 2019),
and references therein. For these methods, which usually
implement a non-diminishing step-size policy in the non-
convex setting, a batch-size variance relation is required in
order to achieve the methods’ guarantees.

Algorithm 2 takes a different approach in this context
by, instead of stating this connection in the analysis, it
explicitly links the batch-size (i.e., w mimics the role of
the batch-size) to the variance of the SFO in the scheme
itself. The affinity of Algorithm 2 to SVR methods is
further expressed when considering its guarantees in the
offline scenario of ft ≡ f . Then, Algorithm 2 achieves
the best known SFO complexity as that obtained by SVR
methods; see our Section 4.2 for additional details. We
stress however that Algorithm 2 is stated as a general-form
schematics, without any assumption on the sampling
procedure itself, or on the variance reduction mechanism,
and their particular implementation.
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Before stating Algorithm 2’s guarantees, let us first define
the algorithm’s natural filtration: For all t ≥ 1, the filtration
Ft includes all gradient feedback up to, but not including,
the execution of step 2 at stage t. In particular, it includes
ft, xt and ∇̃St−1(xt), but it does not include ∇̃ft(xt).

With all this in hand, we now state our main results,
accompanied by a summarized version of the proofs;
detailed proofs are deferred to the supplementary. Denote
by τt the number of times the condition in step 5 at t-
th iteration is checked, that is the number of prox-grad
operations at the t-th iteration, and let τ =

∑
t∈[T ] τt.

We begin by establishing that Algorithm 2 almost surely
executes a finite number of prox-grad operations provided
that δ is not too small.

Theorem 4.1 (Oracle queries). Let t ∈ [T ] and let the
filtration Ft be given. Suppose that the inputs δ and η

satisfy that
δ2 > 2σ2 (η (1− ηL))

−1
. (7)

Then τt and τ are almost surely finite, and ∀K ≥ 1

P(τt > K) ≤ (h1t +M)w2

2 (η (1− ηL) δ2 − 2σ2)K
= O(1/K).

Proof sketch. Recall that y1
t = xt,y

τt
t = xt+1, and for

any k ∈ [τt− 1] we have that yk+1
t = arg minz∈Rn g(z) +

〈Gkt , z−ykt 〉+ 1
2η‖z−y

k
t ‖2.Denote hkt := St(y

k
t )+g(ykt ).

By combining the descent lemma (cf. Lemma C.1 entailed
in supplementary) and the stopping criteria of the inner
loop, we have that for any k ∈ [τt − 1] (assuming that
Ft is given), hkt − hk+1

t ≥ 〈Gkt − ∇St(ykt ),yk+1
t −

ykt 〉 + 1
2

(
η − η2L

)
δ2w−2. Applying expectation to the

latter, using the law of total expectation, the technical
result of Lemma E.2 in the supplementary, and relation
(7), we obtain that for any k ∈ [τt − 1] it holds that
E
(
hkt − hk+1

t

)
≥ 2w−2

(
η (1− ηL) δ2 − 2σ2

)
> 0. Set

α := 2
(
η (1− ηL) δ2 − 2σ2

)
/w2 > 0. From the former,

for any K ≥ 1 we have that

h1t +M ≥ E
(
h1t − hK+1

t

)
= E

(
K∑
k=1

(hkt − hk+1
t )

)

=

K∑
k=1

E
(
hkt − hk+1

t |τt ≥ k + 1
)
P(τt ≥ k + 1)

≥ α
K∑
k=1

P(τt > K) = αKP(τt > K).

Consequently, we must have that τt is almost surely finite,
which in turn implies that τ must be almost surely finite as
it is the finite sum of almost surely finite variables.

Next we provide a tight bound on the expected local
regret in terms of Vw[T ]; recall that under the standard
assumptions of bounded feasible domain or Lipschitz
continuity of ft, Vw[T ] is bounded by O(T ), in which case
we have that E [Regw(T )] achieves the optimal local regret
bound of O

(
T
w2

)
.

Theorem 4.2 (Local regret minimization). Algorithm 2
enjoys the average local regret bound

E [Regw(T )] ≤ 2

(
T

w2

)(
δ2 + 7σ2

)
+

6

w2
Vw[T ].

Proof sketch. By simple algebra,

∥∥xt − T gη (xt;∇St(xt))
∥∥2 ≤ 2

∥∥∥xt − T gη (xt; ∇̃St(xt))
∥∥∥2

+ 2
∥∥∥T gη (xt; ∇̃St(xt))− T gη (xt;∇St(xt))

∥∥∥2 .
(8)

Using the nonexpansivity of the prox operator (cf.
Theorem 6.42 in (Beck, 2017)) we have that∥∥∥T gη (xt; ∇̃St(xt))− T gη (xt;∇St(xt))

∥∥∥2
≤η2

∥∥∥∇̃St(xt)−∇St(xt)∥∥∥2 .
Subsequently, we obtain the relation (cf. Lemma E.1)

E
(∥∥∥T gη (xt; ∇̃St(xt))− T gη (xt;∇St(xt))

∥∥∥2)
≤η2E

[
E
(∥∥∥∇̃St(xt)−∇St(xt)∥∥∥2 |Ft)] ≤ η2σ2w−2.

Then, plugging the latter to the expected value of (8) yields

E (Regw(T )) ≤2

T∑
t=1

E
(∥∥∥P(xt; ∇̃St,w(xt))

∥∥∥2)
+ 2Tσ2w−2.

(9)

Setting G1 = ∇̃St−1(xt), G2 = 1
w (∇̃ft(xt) −

∇̃ft−w(xt)), and applying Lemma C.3 together with the
termination rule of the inner loop, then implies that∥∥∥P(xt; ∇̃St(xt))

∥∥∥2 ≤ 2δ2

w2
+

2

w2

∥∥∥∇̃ft(xt)− ∇̃ft−w(xt)
∥∥∥2 .

Using the triangle inequality, the relation (a + b + c)2 ≤
3(a2 + b2 + c2), and by applying expectation and the
law of total expectation together with Definition 4.1, we

can derive that E
(∥∥∥∇̃ft(xt)− ∇̃ft−w(xt)

∥∥∥2) ≤ 6σ2

w2
+
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3E
(
‖∇ft(xt)−∇ft−w(xt)‖2

)
, and consequently

E
(∥∥∥P(xt; ∇̃St(xt))

∥∥∥2)
≤ 2δ2

w2
+

12σ2

w4
+

6

w2
E
(
‖∇ft(xt)−∇ft−w(xt)‖2

)
.

Summing over t ∈ [T ], and plugging Vw[T ] defined

in (6), then yields
∑T
t=1 E

(∥∥∥P(xt; ∇̃St(xt))
∥∥∥2) ≤

2

(
δ2 +

6σ2

w2

)(
T
w2

)
+ 6

w2Vw[T ]. Finally, plugging the

latter into (9), and recalling that w ≥ 1, results with the
desired bound.

The local regret bound established in Theorem 4.2, and
the almost sure termination in finite time proved in
Theorem 4.1, leave the question of the number of prox
operation still unattended. To answer this nontrivial
question, we require more control of the random processes
originating from the SFO in the form of the following
assumption on the noise.

Assumption 1. Given any point (x, ζ) ∈ Rn × Ω and a
function h : Rn → R, the stochastic first-order oracle Sσ
satisfies that ‖Sσ(x; ζ, h)−∇h(x)‖ ≤ σ;

Assumption 1 is not uncommon in the stochastic setting,
even in convex problems, see e.g., (Jain et al., 2019, Kavis
et al., 2019, Li & Orabona, 2019), and references therein.
We emphasize that Theorems 4.1 and 4.2 do not require,
nor assume, that Assumption 1 holds true.

The next theorem states that Algorithm 2 executes O(Tw)

prox operations and O(Tw2) SFO calls.

Theorem 4.3 (Iteration bound). Suppose that
Assumption 1 holds true, and that η ∈ (0, 1/(L + 1)),
δ2 > σ2/η(1 − η(L + 1)). Then the number of SFO calls
is O(wτ) with

τ =

T∑
t=1

τt ≤
2Tw(g(x1) + 3M)

(1− η(L+ 1))ηδ2 − σ2
= O(Tw). (10)

Remark 4.1. Under the conditions of Theorem 4.3,
Theorem 4.1, Theorem 4.2 and Theorem 4.3, all hold true.

4.2. Implications to Offline Stochastic Optimization

This section considers the reduction of our model to
an offline stochastic non-convex composite optimization
problem by examining our results when ft ≡ f for
any t ∈ [T ]. In this scenario, where the goal is to
obtain an ε-stationary point x∗ ∈ Rn satisfying that

‖P(x∗;∇f(x∗))‖2 ≤ ε (cf. Chapter 2 in (Beck, 2017)),
our sliding average St,w(x) is reduced to the objective
function itself, and the local regret measure Regw(T )

is reduced to the standard sum of prox-residuals in the
consecutive points generated by the algorithm. Algorithm 2
itself takes the form of a stochastic prox-grad type method
in which w calls to the SFO are used to approximate the
gradient at each iteration. This resulting scheme bare some
resembles to variance reduction techniques appearing in
(Metel & Takeda, 2019, Wang et al., 2019, Yurtsever et al.,
2019), where here, w seemingly takes the role of the batch-
size, and the process of Algorithm 2 enforces the relation
between the SFO’s variance and w.

The connection between Algorithm 2 and SVR methods
is further supported by the O(Mσε−3/2) SFO calls
complexity guarantee for obtaining a ε-stationary point
in expectation, which we will derive shortly. This
complexity is currently the best known (sometimes written
as O(Mσε−3) due to square-difference in the stationarity
definition), and can only be obtained by SVR methods; see
the already mentioned (Arjevani et al., 2019) for details.

Although obtained as a by-product, our offline-related
result are of an independent interest and contribution,
as, apart from providing a new connection between
online learning and offline stochastic optimization, we
also derive a new stochastic method with the best
known guaranteess under different model assumptions and
procedure compared to the SVR literature.

It should be noted though that our assumptions, albeit
standard in online optimization, are more restrictive
compared to the related stochastic (offline) optimization
literature (see e.g., Wang et al., 2019), as the former
facilitates guarantees, first and foremost, for our online
stochastic model. Indeed, methods for stochastic problems
cannot address the adversarial online settings we study
here. Notwithstanding, our complexity results suggest new
scheme’s design directions to explore in the development
of (offline) stochastic methods, encouraging future study
on the matter, that is unfortunately out of the scope of this
paper.

Let us now derive the aforementioned guarantees, proofs
are provided in the supplemental.

Theorem 4.4. Let ε > 0, and t∗ be chosen uniformly from
{w,w + 1, . . . , T}. Suppose that Vw[T ] ≤ cT/6 for some

c > 0. Then E
(
‖P(xt∗ ;∇f(xt∗))‖

2
)
≤ 2T(δ2+7σ2+c)

(T−w)w2 .

From Theorem 4.3 and Theorem 4.4 we obtain the desired
guarantees.

Corollary 4.1. Let ε > 0, and t∗ ∈ [T ] be chosen
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uniformly from {w,w + 1, . . . , T}. Suppose that Vw[T ] ≤
cT/6 for some c > 0. If T = 2w and w =⌈
2
√

(δ2 + 7σ2 + c)/ε
⌉

. Then Algorithm 2 achieves

E
(
‖P(xt∗ ;∇f(xt∗))‖

2
)
≤ ε. Additionally, under the

conditions of Theorem 4.3 with δ2 = 2ησ2/(1−η(L+1)),
Algorithm 2 executes at most O(Mσε−3/2) SFO calls.

5. Conclusions and future work

Our aim in this paper is to develop an online methodology
for stochastic non-convex online optimization problems
with constraints and regularization. Our focus on proximal-
gradient schemes allows us to achieve min-max optimal
bounds in terms of local regret minimization while at the
same time bounding the number of overall operator queries.
From a top-down perspective, this departure from standard
notions of regret suggests various extensions based on
different notions of local regret, ranging from measures
of stationarity in offline non-convex analysis, to proxies
for constraint qualification in problems with sufficient
regularity. Additionally, our reductions to the offline
stochastic setting suggest new and interesting schemes to
address stochastic non-convex optimization problems.
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