
Diversity Actor-Critic: Sample-Aware Entropy Regularization for Sample-Efficient Exploration

A. A Simple Example of Efficiency of Sample-Aware Entropy Maximization

Here, we provide a toy example showing the effectiveness of maximizing the sample-aware entropy defined as the entropy
of a mixture distribution qπ,αmix = απ + (1 − α)q, where q is the sample action distribution of the replay buffer. For this
simple toy example, we consider a discrete MDP case in order to show the intuition of sample-aware entropy maximization.

Let us consider a simple 1-step MDP in which s0 is the unique initial state, there exist Na actions (A =
{A1, · · · , ANa}), s1 is the terminal state, and r is a deterministic reward function. Then, there exist Na state-
action pairs in total. Let us assume that we already have Na − 1 state-action samples in the replay buffer as
R = {(s0, A1, r(s0, A1)), · · · , (s0, ANa−1, r(s0, ANa−1))}. In order to estimate the Q-function for all state-action pairs,
the policy should sample the last action ANa (Then, we can reuse all samples infinitely to estimate Q). Here, we will
compare two exploration methods.

1) First, if we consider the simple entropy maximization, the policy that maximizes its entropy will choose all actions with
equal probability 1/Na (uniformly). Then, Na samples should be taken on average by the policy to visit the action ANa .

2) Second, consider the sample-aware entropy maximization. Here, the sample action distribution q in the buffer becomes
q(a0|s0) = 1/(Na − 1) for a0 ∈ {A1, · · · , ANa−1} and q(ANa |s0) = 0, the mixture distribution becomes qπ,αmix =
απ+(1−α)q, and we set α = 1/Na. Then, the policy that maximizes the sample-aware entropy is given by π(ANa |s0) = 1
because this policy makes qπ,αmix uniform and the sample-aware entropy is maximized. In this case, we only need one sample
to visit the action ANa . In this way, the proposed sample-aware entropy maximization can enhance sample-efficiency
for exploration by using the previous sample distribution and choosing a proper α. With this motivation, we propose the
sample-aware entropy regularization for off-policy RL and an α-adaptation method.

Diversity Actor-Critic: Sample-Aware Entropy Regularization for Sample-Efficient Exploration

B. Proofs
B.1. Proof of Theorem 1

To prove Theorem 1, we first provide two lemmas. For a fixed policy π, Qπ can be estimated by repeating the Bellman
backup operator, as stated in Lemma 1 below. Lemma 1 is based on usual policy evaluation but has a new ingredient of the
ratio function in the proposed sample-aware entropy case.

Lemma 1 (Diverse Policy Evaluation) Define a sequence of diverse Q-functions as Qk+1 = T πQk, k ≥ 0, where π is a
fixed policy and Q0 is a real-valued initial Q. Assume that the action space is bounded, and Rπ,α(st, at) ∈ (0, 1) for all
(st, at) ∈ S ×A. Then, the sequence {Qk} converges to the true diverse state-action value Qπ .

Proof. Let rπ,t := 1
β rt + γEst+1∼P [Eat+1∼π[α logRπ,α(st+1, at+1) − α logαπ(at+1|st+1)] + (1 −

α)Eat+1∼q[logRπ,α(st+1, at+1)− logαπ(at+1|st+1)]]. Then, we can rewrite the modified Bellman equation (11) into the
standard Bellman equation form for the true Qπ as follows:

T πQ(st, at) = rπ,t + γEs+1∼P, at+1∼π [Q(st+1, at+1)] (B.1)

Under the assumption of a bounded action space and Rπ,α ∈ (0, 1), the reward rπ,t is bounded and the convergence is
guaranteed as the usual policy evaluation (Sutton & Barto, 1998; Haarnoja et al., 2018a). �

Lemma 2 is about diverse policy improvement.

Lemma 2 (Diverse Policy Improvement) Let πnew be the updated policy obtained by solving πnew = arg max
π

Jπold(π),

where Jπold(π) is given in (13). Then, Qπnew(st, at) ≥ Qπold(st, at), ∀ (st, at) ∈ S ×A.

Proof. Since πnew = arg max
π

Jπold(π), we have Jπold(πnew) ≥ Jπold(πold). Expressing Jπold(πnew) and Jπold(πold) by

using the definition of Jπold(π) in (13), we have

Jπold(πnew(·|st)) = Eat∼πnew [Qπold(st, at) + α logRπnew,α(st, at)− α logαπnew(at|st)]
+ (1− α)Eat∼q[logRπnew,α(st, at)− logαπnew(at|st)]

≥ Jπold(πold(·|st))
= Eat∼πold [Qπold(st, at) + α logRπold,α(st, at)− α logαπold(at|st)]

+ (1− α)Eat∼q[logRπold,α(st, at)− logαπold(at|st)]
= V πold(st) (B.2)

by the definition of V π(st) in (12). Then, based on (B.2), we obtain the following inequality:

Qπold(st, at) =
1

β
rt + γEst+1∼P [V

πold(st+1)]

(a)

≤ 1

β
rt + γEst+1∼P {Eat+1∼πnew [Qπold(st+1, at+1)︸ ︷︷ ︸

= 1
β
rt+1+γEst+2∼P [V πold (st+2)]

+α logRπnew,α(st+1, at+1)− α logαπnew(at+1|st+1)]

+ (1− α)Eat+1∼q[logR
πnew,α(st+1, at+1)− logαπnew(at+1|st+1)]}

...
≤ Qπnew (st, at), for each (st, at) ∈ S ×A, (B.3)

where Inequality (a) is obtained by applying Inequality (B.2) on V πold(st+1), andQπold(st+1, at+1) in the RHS of Inequality
(a) is expressed as 1

β rt+1 + γEst+2∼P [V πold(st+2)] and Inequality (B.2) is then applied on V πold(st+2); this procedure is
repeated to obtain Inequality (B.3). By (B.3), we have the claim. This concludes proof. �

Diversity Actor-Critic: Sample-Aware Entropy Regularization for Sample-Efficient Exploration

Now, we prove Theorem 1 based on the previous lemmas.

Theorem 1 (Diverse Policy Iteration) By repeating iteration of the diverse policy evaluation and the diverse policy
improvement, any initial policy converges to the optimal policy π∗ s.t. Qπ

∗
(st, at) ≥ Qπ

′
(st, at), ∀ π′ ∈ Π, ∀ (st, at) ∈

S ×A. Also, such π∗ achieves maximum J , i.e., Jπ∗(π∗) ≥ Jπ(π) for any π ∈ Π.

Proof. Let Π be the space of policy distributions and let {πi, i = 0, 1, 2, · · · | πi ∈ Π} be a sequence of policies generated
by the following recursion:

πi+1 = arg max
π∈Π

Jπi(π) with an arbitrary initial policy π0, (B.4)

where the objective function Jπi(π) is defined in (13).

Proof of convergence of the sequence {πi, i = 0, 1, 2, · · · } to a local optimum is for arbitrary state space S. On the other
hand, for proof of convergence of {πi, i = 0, 1, 2, · · · } to the global optimum, we assume finite MDP, as typically assumed
for convergence proof in usual policy iteration (Sutton & Barto, 1998).

For any state-action pair (s, a) ∈ S ×A, each Qπi(s, a) is bounded due to the discount factor γ (see (8)), and the sequence
{Qπi(s, a), i = 0, 1, 2, · · · } is monotonically increasing by Lemma 2. Now, consider two terms Jπi+1

(πi+1(·|s)) and
Jπi(πi+1(·|s)), which are expressed by the definition of Jπold(π) in (13) as follows:

Jπi+1
(πi+1(·|s)) = β{Ea∼πi+1

[Qπi+1(s, a) + α(logRπi+1,α(s, a)− logαπi+1(a|s))]
+ (1− α)Ea∼q [logRπi+1,α(s, a)− logαπi+1(a|s)]} (B.5)

Jπi(πi+1(·|s)) = β{Ea∼πi+1
[Qπi(s, a) + α(logRπi+1,α(s, a)− logαπi+1(a|s))]

+ (1− α)Ea∼q [logRπi+1,α(s, a)− logαπi+1(a|s)]}. (B.6)

Note in (B.5) and (B.6) that all the terms are the same for Jπi+1(πi+1(·|s)) and Jπi(πi+1(·|s)) except βEa∼πi+1 [Qπi+1(s, a)]
in Jπi+1(πi+1(·|s)) and βEa∼πi+1 [Qπi(s, a)] in Jπi(πi+1(·|s)). Because {Qπi(s, a), i = 0, 1, 2, · · · } is monotonically
increasing by Lemma 2, comparing (B.5) and (B.6) yields

Jπi+1(πi+1(·|s)) ≥ Jπi(πi+1(·|s)). (B.7)

Furthermore, we have for any s ∈ S,
Jπi(πi+1(·|s)) ≥ Jπi(πi(·|s)) (B.8)

by the definition of πi+1 in (B.4). Combining (B.7) and (B.8), we have

Jπi+1
(πi+1(·|s)) ≥ Jπi(πi+1(·|s)) ≥ Jπi(πi(·|s)) (B.9)

for any state s ∈ S. Therefore, the sequence {Jπi(πi(·|s)), i = 0, 1, 2, · · · } is monotonically increasing for any s ∈ S.
Furthermore, note from (B.5) that Jπi(πi(·|s)) is bounded for all i, because the Q-function and the entropy of the mixture
distribution are bounded. (Note that the RHS of (B.5) except the term Ea∼πi+1

[Qπi+1(s, a)] is nothing but the entropy of
the mixture distributionH(q

πi+1,α
mix). Please see (10) for this.) Note that Jπi(πi), which is obtained by setting πold = πi and

π = πi in (13), is nothing but J(πi) with the desired original J defined in (3). Hence, by (B.9) and the boundedness of
the sequence {Jπi(πi)}, convergence to a local optimum of J by the sequence {πi, i = 0, 1, 2, · · · } is guaranteed by the
monotone convergence theorem.

Now, consider convergence to the global optimum. By the monotone convergence theorem, {Qπi(s, a), i = 0, 1, 2, · · · } and
{Jπi(πi(·|s)), i = 0, 1, 2, · · · } pointwisely converge to their limit functions Q∗ : S ×A → R and J∗ : S → R, respectively.
Here, note that J∗(s) ≥ Jπi(πi(·|s)) for any i because the sequence {Jπi(πi(·|s)), i = 0, 1, 2, · · · } is monotonically
increasing by (B.9). By the definition of pointwise convergence, for any s ∈ S, for any ε > 0, there exists a sufficiently
large N(s)(> 0) depending on s such that Jπi(πi(·|s)) ≥ J∗(s) − ε(1−γ)

γ for all i ≥ N(s). When S is finite, we set
N̄ = maxsN(s). Then, we have

Jπi(πi(·|s)) ≥ J∗(s)−
ε(1− γ)

γ
, ∀s ∈ S, ∀i ≥ N̄ (B.10)

Diversity Actor-Critic: Sample-Aware Entropy Regularization for Sample-Efficient Exploration

Furthermore, we have

Jπi(πi(·|s)) ≥ Jπi(π′(·|s))−
ε(1− γ)

γ
, ∀s ∈ S, ∀i ≥ N̄ , ∀π′ ∈ Π. (B.11)

(B.11) is valid by the following reason. Suppose that (B.11) is not true. Then, there exist some s′ ∈ S and some π′ ∈ Π
such that

Jπi(π
′(·|s′))

(b)
> Jπi(πi(·|s′)) +

ε(1− γ)

γ

(c)

≥ J∗(s′), (B.12)

where Inequality (b) is obtained by negating (B.11) and Inequality (c) is obtained by (B.10). Moreover, we have

Jπi+1
(πi+1(·|s′))

(d)

≥ Jπi(πi+1(·|s′)) = max
π

Jπi(π(·|s′))
(e)

≥ Jπi(π
′(·|s′)), (B.13)

where Inequality (d) is valid due to (B.7) and Inequality (e) is valid by the definition of πi+1 given in (B.4). Combining
(B.12) and (B.13) yields

Jπi+1
(πi+1(·|s′)) ≥ Jπi(πi+1(·|s′)) ≥ Jπi(π′(·|s′)) > Jπi(πi(·|s′)) +

ε(1− γ)

γ
≥ J∗(s′). (B.14)

However, this contradicts to the fact that J∗(s′) is the limit of the monotone-increasing sequence Jπi(πi(·|s′)). Therefore,
(B.11) is valid.

Based on (B.11), we have the following inequality regarding Qπi(st, at): For any (st, at), for all i ≥ N̄ ,

Qπi(st, at) =
1

β
rt + γEst+1∼P [V πi(st+1)]

=
1

β
rt + γEst+1∼P [Jπi(πi(·|st+1))]

(f)

≥ 1

β
rt + γEst+1∼P

[
Jπi(π

′(·|st+1))− ε(1− γ)

γ

]
, ∀π′ ∈ Π,

(g)
=

1

β
rt + γEst+1∼P {Eat+1∼π[Qπi(st+1, at+1) + α logRπ

′,α(st+1, at+1)− α logαπ′(at+1|st+1)]

+ (1− α)Eat+1∼q[logRπ
′,α(st+1, at+1)− logαπ′(at+1|st+1)]} − ε(1− γ)

...
(h)

≥ Qπ
′
(st, at)− ε, ∀π′ ∈ Π, (B.15)

where Inequality (f) is valid due to (B.11); Equality (g) is obtained by explicitly expressing Jπi(π
′) using (13); we express

Qπi(st+1, at+1) as Qπi(st+1, at+1) = 1
β rt+1 + γEst+2∼P [V πi(st+2)] and repeat the same procedure on V πi(st+2) =

Jπi(πi(·|st+2)); and we obtain the last Inequality (h) by repeating this iteration. Here, the resulting constant term is
−ε(1−γ)−εγ(1−γ)−εγ2(1−γ)−· · · = −ε, as shown in the RHS of Inequality (g). Note that the uniformity condition ”∀s ∈
S” in the Inequality (B.11) is required because we need to express Jπi(πi(·|st+1)), Jπi(πi(·|st+2)), Jπi(πi(·|st+3)), · · ·
in terms of Jπi(π

′(·|st+1)), Jπi(π
′(·|st+2)), Jπi(π

′(·|st+3)), · · · , respectively, by using (B.11) in the above recursive
procedure and the support of each element of the sequence st+1, st+2, st+3, · · · is S in general. Since ε > 0 is arbitrary in
the above, by taking i→∞ on both sides of (B.15), we have

Qπ∞(s, a) ≥ Qπ
′
(s, a), ∀π′ ∈ Π, ∀ (s, a) ∈ S ×A (B.16)

since the sequence {Qπi(s, a), i = 0, 1, 2, · · · } is monotonically increasing.

Now, let us compare Jπ′(π′(·|s)) and Jπ∞(π′(·|s)). These two terms can be expressed in similar forms to (B.5) and
(B.6), respectively. Then, only Qπ∞(s, a) and Qπ

′
(s, a) are different in the expressed forms. Comparing Jπ′(π′(·|s)) and

Jπ∞(π′(·|s)) as we did for (B.7), we have

Jπ∞(π′(·|s)) ≥ Jπ′(π′(·|s)) (B.17)

Diversity Actor-Critic: Sample-Aware Entropy Regularization for Sample-Efficient Exploration

due to Inequality (B.16). In addition, we have Jπi(πi(·|s)) ≥ Jπi(π′(·|s))−
ε(1−γ)
γ due to (B.11). Since ε > 0 is arbitrary,

by taking i→∞, we have
Jπ∞(π∞(·|s)) ≥ Jπ∞(π′(·|s)). (B.18)

Finally, combining (B.17) and (B.18) yields

Jπ∞(π∞(·|s)) ≥ Jπ∞(π′(·|s)) ≥ Jπ′(π′(·|s)), ∀ π′ ∈ Π, ∀ s ∈ S. (B.19)

Recall that Jπ(π), which is obtained by setting πold = π and π = π in (13), is nothing but J(π) of the desired original J
defined in (3). Therefore, π∞ is the optimal policy π∗ maximizing J , and {πi} converges to the optimal policy π∗. This
concludes the proof. �

Remark: Note that what we actually need for proof of convergence to the global optimum is the uniform convergence
of Jπi(πi(·|s)) → J∗(s) as functions of s to obtain (B.11). The finite state assumption is one sufficient condition for
this. In order to guarantee convergence to global optimum in non-finite MDP (e.g. continuous state-space), we need more
assumption as considered in (Puterman & Brumelle, 1979; Santos & Rust, 2004). Here, we do not further detail. In this
paper, we just consider function approximation for the policy and the value functions to implement the diverse policy
iteration in continuous state and action spaces, based on the convergence proof in finite MDP.

B.2. Proof of Theorem 2

Remark: We defined Jπold(π) as (13), which is restated below:

Jπold(π(·|st)) := β{Eat∼π [Qπold(st, at) + α(logRπ,α(st, at)− logαπ(at|st))]
+ (1− α)Eat∼q [logRπ,α(st, at)− logαπ(at|st)]}, (B.20)

where π in the Rπ,α terms inside the expectations is the optimization argument. As mentioned in the main part of the paper,
this facilitates proof of Lemma 2 and proof of Theorem 1, especially in Steps (B.2), (B.3), (B.5), (B.6), and (B.7). However,
as explained in the main part of the paper, implementing the function Rπ,α(st, at) with optimization argument π is difficult.
Hence, we replaced Jπold(π) with J̃πold(π) in (14) by considering the ratio function Rπold,α(st, at) for only the current
policy πold. Now, we prove the gradient equivalence of Jπold(π) and J̃πold(π) at θ = θold for parameterized policy πθ.

Lemma 3 For the ratio function Rπ,α(st, at) defined in (9), we have the following:

logRπ,α(st, at)− logαπ(at|st) = log(1−Rπ,α(st, at))− log((1− α)q(at|st)) (B.21)

Proof. From the definition of the ratio function:

Rπ,α(st, at) =
απ(at|st)

απ(at|st) + (1− α)q(at|st)
, (B.22)

we have

1−Rπ,α(st, at) =
(1− α)q(at|st)

απ(at|st) + (1− α)q(at|st)
. (B.23)

Hence, we have

log
1

απ(at|st) + (1− α)q(at|st)
= logRπ,α(st, at)− log(απ(at|st)) (B.24)

= log(1−Rπ,α(st, at))− log((1− α)q(at|st)). (B.25)

This concludes proof. �

Theorem 2 Consider the new objective function for policy improvement J̃πold(π(·|st)) in (14), where the ratio function
inside the expectation in (14) is the ratio function for the given current policy πold. Suppose that the policy is parameterized
with parameter θ. Then, for parameterized policy πθ, the two objective functions Jπθold (πθ(·|st)) and J̃πθold (πθ(·|st)) have
the same gradient direction for θ at θ = θold for all st ∈ S, where θold is the parameter of the given current policy πold.

Diversity Actor-Critic: Sample-Aware Entropy Regularization for Sample-Efficient Exploration

Proof. With the parameterized πθ, the two objective functions are expressed as

Jπθold (πθ(·|st)) = β(Eat∼πθ [Qπθold (st, at) + α logRπθ,α(st, at)− α logαπθ(at|st)]
+ (1− α)Eat∼q[logRπθ,α(st, at)− logαπθ(at|st)])
(1)
= β(Eat∼πθ [Qπθold (st, at) + α logRπθ,α(st, at)− α logαπθ(at|st)]
+ (1− α)Eat∼q[log(1−Rπθ,α(st, at))− log(1− α)q(at|st)]) (B.26)

J̃πθold (πθ(·|st)) = βEat∼πθ [Qπθold (st, at) + α logRπθold ,α(st, at)− α log πθ(at|st)], (B.27)

where Step (1) is valid by Lemma 3. Comparing (B.26) and (B.27), we can ignore the common Qπθold and log πθ terms,
and the constant terms w.r.t. θ that yield zero gradient in (B.26) and (B.27). Therefore, we only need to show

∇θ{αEat∼πθ [logRπθ,α] + (1− α)Eat∼q[log(1−Rπθ,α)]} = ∇θEat∼πθ [α logRπθold ,α] (B.28)

at θ = θold. The gradient of the left-hand side (LHS) in (B.28) at θ = θold is expressed as

∇θ{αEat∼πθ [logRπθ,α] + (1− α)Eat∼q[log(1−Rπθ,α)]}

= ∇θ
{
α

∫
at

πθ logRπθ,αdat + (1− α)

∫
at

q log(1−Rπθ,α)dat

}
= α

∫
at

(∇θπθ) logRπθ,αdat + α

∫
at

πθ(∇θ logRπθ,α)dat + (1− α)

∫
at

q∇θ log(1−Rπθ,α)dat

= α

∫
at

(∇θπθ)|θ=θold logRπθ,α|θ=θolddat + α

∫
at

πθ(∇θ logRπθ,α)dat + (1− α)

∫
at

q∇θ log(1−Rπθ,α)dat

= α∇θ
∫
at

πθ logRπθold ,αdat + α

∫
at

πθ(∇θ logRπθ,α)dat + (1− α)

∫
at

q∇θ log(1−Rπθ,α)dat

= ∇θEat∼πθ [α logRπθold ,α] + αEat∼πθ [∇θ logRπθ,α] + (1− α)Eat∼q[∇θ log(1−Rπθ,α)]. (B.29)

Here, the gradient of the last two terms in the RHS of (B.29) becomes zero, as shown below:

αEat∼πθ [∇θ logRπθ,α] + (1− α)Eat∼q[∇θ log(1−Rπθ,α)]

= αEat∼πθ
[
∇θRπθ,α

Rπθ,α

]
+ (1− α)Eat∼q

[
∇θ(1−Rπθ,α)

(1−Rπθ,α)

]
= αEat∼πθ

[
∇θRπθ,α

Rπθ,α

]
− (1− α)Eat∼q

[
∇θRπθ,α

(1−Rπθ,α)

]
= αEat∼πθ

[
∇θRπθ,α

Rπθ,α

]
− (1− α)Eat∼q

[
απθ + (1− α)q

(1− α)q
· ∇θRπθ,α

]
= αEat∼πθ

[
∇θRπθ,α

Rπθ,α

]
− Eat∼q

[
απθ + (1− α)q

q
· ∇θRπθ,α

]
(2)
= αEat∼πθ

[
∇θRπθ,α

Rπθ,α

]
− Eat∼πθ

[
πθ + (1− α)q

πθ
· ∇θRπθ,α

]
= αEat∼πθ

[
∇θRπθ,α

Rπθ,α

]
− αEat∼πθ

[
πθ + (1− α)q

απθ
· ∇θRπθ,α

]
= αEat∼πθ

[
∇θRπθ,α

Rπθ,α

]
− αEat∼πθ

[
∇θRπθ,α

Rπθ,α

]
= 0, (B.30)

where we used an importance sampling technique (i.e., measure change) Eat∼q[f(st, at)] = Eat∼πθ
[
q(at|st)
πθ(at|st)f(st, at)

]
for

Step (2). By (B.29) and (B.30), Jπθold (πθ(·|st)) and Jπθold (πθ(·|st)) have the same gradient at θ = θold. This concludes
proof. �

Diversity Actor-Critic: Sample-Aware Entropy Regularization for Sample-Efficient Exploration

C. Detailed DAC Implementation

We defined the target value V̂ (st) = Eat∼πθ [Qφ(st, at) + α logRαη (st, at) − α logαπθ(at|st)] + (1 −
α)Eat∼D[logRαη (st, at)− logαπθ(at|st)] in (22). However, the probability of π for actions sampled from D can have high
variance, so we clip the term inside the expectation over at ∼ D by action dimension for stable learning. Thus, the final
target value is given by

V̂ (st) = Eat∼πθ [Qφ(st, at) + α logRαη (st, at)− α logαπθ(at|st)]
+ (1− α)Eat∼D[clip(logRαη (st, at)− logαπ(at|st);−d, d)], (C.1)

where d = dim(A) is the action dimension and clip(x;−d, d) is the clipping function to fit into the range [−d, d]. We use
(C.1) for actual implementation.

In addition, we require Rπθ,α ∈ (ε, 1− ε) in the proofs of Theorems 1 and 2 so that logRπθ,α and log(1−Rπθ,α) appearing
in the proofs do not diverge. For practical implementation, we clipped the ratio function Rα as (ε, 1− ε) for small ε > 0
since some q values can be close to zero before the replay buffer stores a sufficient amount of samples. However, π is always
non-zero since we consider Gaussian policy.

To compute the gradient of Ĵπ(θ) in (17), we use the reparameterization trick proposed by (Kingma & Welling, 2013;
Haarnoja et al., 2018a). Note that the policy action at ∼ πθ is the output of the policy neural network with parameter θ.
So, it can be viewed as at = fθ(εt; st), where f is a function parameterized by θ and εt is a noise vector sampled from
spherical normal distribution N . Then, the gradient of Ĵπ(θ) is represented as∇θĴπ(θ) = Est∼D, εt∼N [∇a(Qφ(st, a) +
α logRαη (st, a)− α log πθ(a|st))|a=fθ(εt;st)∇θfθ(εt; st)− α(∇θ log πθ)(fθ(εt; st)|st)].

C.1. Detailed Implementation of the α-Adaptation

In order to learn α, we parameterize α as a function of st using parameter ξ, i.e., α = αξ(st), and implement αξ(st) with a
neural network. Then, ξ is updated to minimize the following loss function of α obtained from (23):

L̂α(ξ) = Est∼D[H(q
πθ,αξ
mix)− αξc] (C.2)

In the α adaptation case, all the updates for diverse policy iteration are the same except that α is replaced with αξ(st). The
gradient of L̂α(ξ) with respect to ξ can be estimated as below:

∇ξL̂α(ξ) = ∇ξEst∼D[H(q
πθ,αξ
mix)− αξc]

=∇ξEst∼D[αξEat∼πθ [− log(αξπθ + (1− αξ)q)− c] + (1− αξ)Eat∼q[− log(αξπθ + (1− αξ)q)]]
=Est∼D[(∇ξαξ)(Eat∼πθ [− log(αξπθ + (1− αξ)q)− c]− Eat∼q[− log(αξπθ + (1− αξ)q)])]

+ Est∼D[αξEat∼πθ [−∇ξ log(αξπθ + (1− αξ)q)] + (1− αξ)Eat∼q[−∇ξ log(αξπθ + (1− αξ)q)]]
=Est∼D[(∇ξαξ)(Eat∼πθ [− logαξπθ + logRπθ,αξ − c]− Eat∼q[logRπθ,αξ − logαξπθ])]

+ Est∼D
[∫

at∈A
(αξπθ + (1− αξ)q)[−∇ξ log(αξπθ + (1− αξ)q)︸ ︷︷ ︸

=0

]

]

=Est∼D[(∇ξαξ)(Eat∼πθ [− logαξπθ + logRπθ,αξ − c]− Eat∼q[logRπθ,αξ − logαξπθ])] (C.3)

Note that Rπθ,αξ can be estimated by the ratio function Rαξη . Here, we use the same clipping technique as used in (C.1) for
the last term of (C.3). For α-adaptation, we used regularization for α learning and restricted the range of α as 0.5 ≤ α ≤ 0.99
for α adaptation in order to maintain a certain level of entropy regularization and prevent saturation of Rαη .

Diversity Actor-Critic: Sample-Aware Entropy Regularization for Sample-Efficient Exploration

D. Simulation Setup

We here provide the detailed simulation setup of DAC, SAC baselines, RND, and MaxEnt(State). For fair comparison, we
use the common hyperparameter setup for DAC and SAC baselines except for the parts regarding entropy or divergence.

The hyperparameter setup basically follows the setup in (Haarnoja et al., 2018a), which is given by Table D.1. Here, the
entropy coefficient β is selected based on the ablation study in Section F. For the policy space Π, we considered a Gaussian
policy set widely considered in usual continuous RL. Also, we provide Table D.2, which shows the environment description,
the corresponding entropy control coefficient β, threshold for sparse Mujoco tasks, and reward delay D for delayed Mujoco
tasks.

SAC / SAC-Div DAC
Learning rate δ 3 · 10−4

Discount factor γ 0.99 (0.999 for pure exploration)
Horizon N 1000
Mini-batch size M 256
Replay buffer length 106

Smoothing coefficient of EMA for Vψ̄ 0.005
Optimizer Adam
Num. of hidden layers (all networks) 2
Size of hidden layers (all networks) 256
Policy distribution Independent Gaussian distribution
Activation layer ReLu
Output layer for πθ, Qφ, Vψ , Vψ̄ Linear
Output layer for αξ, Rαη · Sigmoid
Regularize coefficient for αξ · 10−3

Control coefficient c for α-adaptation · −2.0 · dim(A)

Table D.1: Hyperparamter setup

State dim. Action dim. β Threshold
SparseHalfCheetah-v1 17 6 0.02 5.0
SparseHopper-v1 11 3 0.04 1.0
SparseWalker2d-v1 17 6 0.02 1.0
SparseAnt-v1 111 8 0.01 1.0

State dim. Action dim. β Delay D
HumanoidStandup-v1 376 17 1 ·
DelayedHalfCheetah-v1 17 6 0.2 20
DelayedHopper-v1 11 3 0.2 20
DelayedWalker2d-v1 17 6 0.2 20
DelayedAnt-v1 111 8 0.2 20

Table D.2: State and action dimensions of Mujoco tasks and the corresponding β

In addition, we also compared the performance of DAC to two recent state-based exploration methods, RND (Burda et al.,
2018) and MaxEnt(State) (Hazan et al., 2019), in Section 6. State-based exploration methods aim to find rare states to
enhance exploration performance.

In order to explore rare states, RND adds an intrinsic reward based on prediction error rintt = ||f̂(st+1)− f(st+1)||2 to
the extrinsic reward rextt so that the total reward becomes rt = rextt + cintrintt , where f̂ is a prediction network and f is a
randomly fixed target network. Then, the agent goes to rare states since rare states have higher prediction errors. For our
simulation, we considered MLP with 2 ReLu hidden layers of size 256 with 20-dimensional output for both networks of
RND, and we used cint = 5 that performed well for considered tasks.

On the other hand, MaxEnt(State) aims to maximize the entropy of state mixture distribution H(dπ
mix

) to explore rare

Diversity Actor-Critic: Sample-Aware Entropy Regularization for Sample-Efficient Exploration

states, where dπ is the state distribution of a trajectory generated from π. In order to do that, MaxEnt(State) uses the reward
rMaxEnt(State)(s) = −(log dπmix(s) + cs), where cs is a smoothing constant. MaxEnt(State) mainly considers large
or continuous state space, so dπmix is computed by projection/Kernel density estimation. Then, MaxEnt(State) explores
the state space better than a simple random policy on various tasks in continuous state spaces. For our simulation, we
use previous 100K states stored in the buffer to estimate dπmix . Note that MaxEnt(State) is originally designed for pure
exploration, but we use its reward functional as an intrinsic reward in order to learn sparse-rewarded tasks. In this case, we
found that cint = 0.02 worked well for the considered tasks. For both RND and MaxEnt(State), we basically consider the
same simulation setup with DAC and SAC baselines but use Gaussian policy with fixed standard deviation σ = 0.3 for both
RND and MaxEnt(State) to make fair comparison between action-based exploration and state-based exploration.

Diversity Actor-Critic: Sample-Aware Entropy Regularization for Sample-Efficient Exploration

E. More Results on Performance Comparison

We provide more numerical results in this section. In Appendix E.1, we provide the remaining learning curves and max
average return tables for the performance comparisons in the main paper. In Appendix E.2, we provide the performance
comparison between DAC and RND/MaxEnt(State) on SparseMujocot tasks. In Appendix E.3, we compare the DAC with α
adaptation to other general RL algorithms on HumanoidStandup and DelayedMujoco tasks.

E.1. Performance Comparison with the SAC Baselines

In this subsection, we provide more performance plots and tables for the performance comparison between DAC and SAC
baselines. Fig. E.1 shows the divergence Dα

JS curve (α = 0.5) and Fig. E.2 shows the mean number of discretized state
visitation curve for remaining SparseMujoco tasks. Table. E.1 shows the corresponding max average return performance
on sparse Mujoco tasks. Fig. E.3 shows the scaled version of the performance plots in Fig. E.2, and Table E.2 shows the
corresponding max average return performance.

Here, in order to show the tendency of state visitation in Fig. E.2, we discretized the state of each SparseMujoco task. For
discretization, we simply consider 2 components of observations for each task: x, y axis position for SparseAnt, and x, z
axis position for the other SparseMujoco tasks. We discretize the position by setting the grid spacing per axis to 0.01 in the
range of (−10, 10). For SAC/SAC-Div, the ratio function R is estimated separately by the same way with DAC.

(a) SparseHopper-v1 (b) SparseWalker-v1 (c) SparseAnt-v1

Figure E.1: α-skewed JS symmetrization of KLD Dα
JS for DAC and SAC/SAC-Div

(a) SparseHopper-v1 (b) SparseWalker2d-v1 (c) SparseAnt-v1

Figure E.2: The number of discretized state visitation on sparse Mujoco tasks

Diversity Actor-Critic: Sample-Aware Entropy Regularization for Sample-Efficient Exploration

(a) HumanoidStandup-v1 (b) Del.HalfCheetah-v1 (c) Del.Hopper-v1

(d) Del.Walker2d-v1 (e) Del.Ant-v1

Figure E.3: Performance comparison on HumanoidStandup and DelayedMujoco tasks

DAC (α = 0.5) SAC SAC-Div
SparseHalfCheetah 915.90±50.71 386.90±404.70 394.70±405.53
SparseHopper 900.30±3.93 823.70±215.35 817.40±253.54
SparseWalker2d 665.10±355.66 273.30±417.51 278.50±398.23
SparseAnt 935.80±37.08 963.80±42.51 870.70±121.14

Table E.1: Max average return of DAC algorithm and SAC baselines on SparseMujoco tasks

DAC (α = 0.5) DAC (α = 0.8) DAC (α-adapt.) SAC SAC-Div

HumanoidS 202491.81
±25222.77

170832.05
±12344.71

197302.37
±43055.31

167394.36
±7291.99

165548.76
±2005.85

Del. HalfCheetah 6071.93±1045.64 6552.06±1140.18 7594.70±1259.23 3742.33±3064.55 4080.67±3418.07
Del. Hopper 3283.77±112.04 2836.81±679.05 3428.18±69.08 2175.31±1358.39 2090.64±1383.83
Del. Walker2d 4360.43±507.58 3973.37±273.63 4067.11±257.81 3220.92±1107.91 4048.11±290.48
Del. Ant 4088.12±578.99 3535.72±1164.76 4243.19±795.49 3248.43±1454.48 3978.34±1370.23

Table E.2: Max average return of DAC algorithms and SAC baselines on HumanoidStandup and DelayedMujoco tasks

Diversity Actor-Critic: Sample-Aware Entropy Regularization for Sample-Efficient Exploration

E.2. Comparison to State-based Exploration Methods on Sparse Mujoco Tasks

We compared the performance of DAC (α = 0.5) with RND/MaxEnt(State) on SparseMujoco tasks, and the performance of
DAC (α-adapt.) with RND/MaxEnt(State) on DelayedMujoco tasks. Fig. E.5 shows the performance learning curve, and
the corresponding max average return table in Table E.3. From the results, it is seen that DAC has better performance than
RND/MaxEnt(State) on most Sparse/DelayedMujoco tasks. DAC has superiority not only in pure exploration but also in
learning sparse rewarded tasks as compared to recent state-based exploration methods.

(a) SparseHalfCheetah-v1 (b) SparseHopper-v1

(c) SparseWalker2d-v1 (d) SparseAnt-v1

Figure E.4: Performance comparison to RND/MaxEnt(State) on SparseMujoco tasks

DAC (α = 0.5) RND MaxEnt(State) SAC
SparseHalfCheetah 915.90±50.71 827.80±85.61 800.20±127.11 386.90±404.70
SparseHopper 900.30±3.93 648.10±363.75 879.50±30.96 823.70±215.35
SparseWalker2d 665.10±355.66 663.00±356.39 705.30±274.88 273.30±417.51
SparseAnt 935.80±37.08 920.60±107.50 900.00±70.02 963.80±42.51

DAC (α-adapt.) RND MaxEnt(State) SAC
Del.HalfCheetah 7594.70±1259.23 7429.94±1383.75 6823.37±882.25 3742.33±3064.55
Del.Hopper 3428.18±69.08 2764.06±1220.86 3254.10±30.75 2175.31±1358.39
Del.Walker2d 4067.11±257.81 3514.97±1536.04 4430.61±347.02 3220.92±1107.91
Del.Ant 4243.19±795.49 1361.36±704.69 1246.80±323.50 3248.43±1454.48

Table E.3: Max average return of DAC, RND, and MaxEnt(State)

Diversity Actor-Critic: Sample-Aware Entropy Regularization for Sample-Efficient Exploration

(a) Del.HalfCheetah-v1 (b) Del.Hopper-v1

(c) Del.Walker2d-v1 (d) Del.Ant-v1

Figure E.5: Performance comparison to RND/MaxEnt(State) on DelayedMujoco tasks

E.3. Comparison to Recent General RL Algorithms

We also compare the performance of DAC with α-adaptation to other state-of-the-art RL algorithms. Here, we consider
various on-policy RL algorithms: Proximal Policy Optimization (Schulman et al., 2017b) (PPO, a stable and popular
on-policy algorithm), Actor Critic using Kronecker-factored Trust Region (Wu et al., 2017) (ACKTR, actor-critic that
approximates natural gradient by using Kronecker-factored curvature), and off-policy RL algorithms: Twin Delayed Deep
Deterministic Policy Gradient (Fujimoto et al., 2018) (TD3, using clipped double-Q learning for reducing overestimation);
and Soft Q-Learning (Haarnoja et al., 2017) (SQL, energy based policy optimization using Stein variational gradient descent).
We used implementations in OpenAI baselines (Dhariwal et al., 2017) for PPO and ACKTR, and implementations in author’s
Github for other algorithms. We provide the performance results as Fig. E.6 and Table E.4, and the results show that DAC
has the best performance on all considered tasks among the compared recent RL algorithms.

Diversity Actor-Critic: Sample-Aware Entropy Regularization for Sample-Efficient Exploration

(a) HumanoidStandup-v1 (b) DelayedHalfCheetah-v1 (c) DelayedHopper-v1

(d) DelayedWalker2d-v1 (e) DelayedAnt-v1

Figure E.6: Performance comparison to recent general RL algorithms

DAC PPO ACKTR SQL TD3 SAC

HumanoidS 197302.37
±43055.31

160211.90
±3268.37

109655.30
±49166.15

138996.84
±33903.03

58693.87
±12269.93

167394.36
±7291.99

Del. HalfCheetah 7594.70
±1259.23

2247.92
±640.69

3295.30
±824.05

5673.34
±1241.30

4639.85
±1393.95

3742.33
±3064.55

Del. Hopper 3428.18
±69.08

2740.15
±719.63

2864.81
±1072.64

2720.32
±127.71

2276.58
±1471.66

2175.31
±1358.39

Del. Walker2d 4067.11
±257.81

2859.27
±1938.50

1927.32
±1647.49

3323.63
±503.18

3736.72
±1806.37

3220.92
±1107.91

Del. Ant 4243.19
±795.49

1224.33
±521.62

2956.51
±234.89

6.59
±16.42

904.99
±1811.78

3248.43
±1454.48

Table E.4: Max average return of DAC and other RL algorithms

F. More Ablation Studies

In this section, we provide detailed ablation studies on the DelayedMucoco tasks. First, we focus on the DelayedHalfCheetah
task because the tendencies of performance changes are similar for most environments and the performance changes on the
DelayedHalfCheetah task are most noticeable. Then, we provide more ablation studies for remaining DelayedMujoco tasks
in Appendix F.1.

Control coefficient c in (23): In the proposed α-adaptation (23) in Section 5, the control coefficient c affects the learning
behavior of α. Since H(π) and Dα

JS are proportional to the action dimension, we tried a few values such as 0, −0.5d,
−1.0d and −2.0d, where d = dim(A). Fig. F.1(a) shows the corresponding performance of DAC with α-adaptation on
DelayedHalfCheetah. As seen in Fig. F.1(a), the performance depends on the change of c as expected, and c = −2.0·dim(A)

Diversity Actor-Critic: Sample-Aware Entropy Regularization for Sample-Efficient Exploration

(a) Control coefficient c (b) Entropy coefficient β (c) JS divergence

Figure F.1: Averaged learning curve for ablation study

performs well. We observed that −2.0d performed well for all considered tasks. Hence, we set c = −2.0d in (C.2).

Entropy coefficient β in (3): As mentioned in (Haarnoja et al., 2018a), the performance of SAC depends on β. It is
expected that the performance of DAC depends on β too. Fig. F.1(b) shows the performance of DAC with fixed α = 0.5 for
three different values of β: β = 0.1, 0.2 and 0.4 on DelayedHalfCheetah. It is seen that the performance of DAC indeed
depends on β. Although there exists performance difference for DAC depending on β, the performance of DAC is much
better than SAC for a wide range of β. One thing to note is that the coefficient of pure policy entropy regularization term for
DAC is αβ, as seen in (3). Thus, DAC with α = 0.5 and β = 0.4 has the same amount of pure policy entropy regularization
as SAC with β = 0.2. However, DAC with α = 0.5 and β = 0.4 has much higher performance than SAC with β = 0.2, as
seen in Fig. Fig. F.1(b). So, we can see that the performance improvement of DAC comes from joint use of policy entropy
H(π) and the sample action distribution from the replay buffer via Dα

JS(π||q).

The effect of JS divergence: In order to see the effect of the JS divergence on the performance, we provide an additional
ablation study in which we consider a single JS divergence for SAC-Div by using the ratio function in Section 4.3. Fig.
F.1(c) shows the performance comparison of SAC, SAC-Div(KL), SAC-Div(JS), and DAC. For SAC-Div(JS), we used
δd = 0.5 for adaptive scaling in (Hong et al., 2018). It is seen that there is no significant difference in performance between
SAC-Div with JS divergence and SAC-Div with KL divergence. DAC still shows superiority to both SAC-Div(KL) and
SAC-Div(JS). This shows that DAC has more advantages than simply using JS divergence.

Diversity Actor-Critic: Sample-Aware Entropy Regularization for Sample-Efficient Exploration

F.1. Ablation Studies for Remaining Tasks

Here, we provide more ablation studies for remaining delayed Mujoco tasks in Figure F.2, Figure F.3, and Figure F.4.

Control coefficient c

(a) DelayedHopper-v1 (b) DelayedWalker2d-v1 (c) DelayedAnt-v1

Figure F.2: Ablation study on c

Entropy coefficient β

(a) DelayedHopper-v1 (b) DelayedWalker2d-v1 (c) DelayedAnt-v1

Figure F.3: Ablation study on β

Effect of JS divergence over SAC-Div

(a) DelayedHopper-v1 (b) DelayedWalker2d-v1 (c) DelayedAnt-v1

Figure F.4: Ablation study on SAC-Div with JS divergence

