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Abstract
Collective Inference (CI) is a procedure designed
to boost weak relational classifiers, specially for
node classification tasks. Graph Neural Networks
(GNNs) are strong classifiers that have been used
with great success. Unfortunately, most existing
practical GNNs are not most-expressive (univer-
sal). Thus, it is an open question whether one can
improve strong relational node classifiers, such
as GNNs, with CI. In this work, we investigate
this question and propose collective learning for
GNNs —a general collective classification ap-
proach for node representation learning that in-
creases their representation power. We show that
previous attempts to incorporate CI into GNNs
fail to boost their expressiveness because they do
not adapt CI’s Monte Carlo sampling to represen-
tation learning. We evaluate our proposed frame-
work with a variety of state-of-the-art GNNs. Our
experiments show a consistent, significant boost
in node classification accuracy —regardless of the
choice of underlying GNN— for inductive node
classification in partially-labeled graphs, across
five real-world network datasets.

1. Introduction
A large body of work in relational learning focuses on col-
lective classification frameworks for strengthening poorly-
expressive (i.e., local) relational node classifiers (e.g., re-
lational logistic regression, naive Bayes, decision trees
(Neville et al., 2003a)), by incorporating dependencies
among node labels and propagating inferences during clas-
sification to improve performance, particularly in semi-
supervised settings (Koller et al., 2007; Pfeiffer III et al.,
2015; Xiang & Neville, 2008). However, a long-standing
open question is when/if collective inference is needed, par-
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ticularly as more expressive relational graph models become
available, e.g., Graph Neural Networks (GNNs).

Despite the recent success of GNNs at node and graph
classification tasks (Hamilton et al., 2017; Kipf & Welling,
2016; Luan et al., 2019; Xu et al., 2018), these GNNs are
no more powerful than the Weisfeiler-Lehman (WL) graph
isomorphism test, and thus, inherit its shortcomings. In other
words, existing GNNs are not universal (most-expressive)
graph representations (Chen et al., 2019; Morris et al., 2019;
Murphy et al., 2019; Xu et al., 2018). This implies that these
GNNs (which we refer to as WL-GNNs and also includes
GCNs (Kipf & Welling, 2016)) are not expressive enough
for some node classification tasks, since their representation
can provably fail to distinguish non-isomorphic nodes with
different labels.

While recently there has been increasing interest in develop-
ing more expressive WL-GNNs for graph classification tasks
that can differentiate non-isomorphic graphs by considering
higher-order GNNs (e.g. (Maron et al., 2019a; Bouritsas
et al., 2020; Vignac et al., 2020; Azizian & Lelarge, 2021;
Beaini et al., 2020), these methods primarily consider graph-
level representations and, even when they can be adapted
for node-level classification tasks, they would be computa-
tionally expensive to apply. Is there a easy-to-implement
add-on procedure to existing WL-GNNs that can boost their
node classification expressiveness?

To address this question, in this work, we theoretically and
empirically investigate the potential for collective inference
to improve the expressiveness of GNNs. We devise an add-
on training and inference procedure, which we denote col-
lective learning, that incorporates label dependencies among
neighboring nodes via predicted label sampling—akin to
how collective classification improves not-so-expressive
classifiers—and show that it can improve the expressive-
ness of any WL-GNN.

Contributions:

• We propose CL+GNN, an add-on collective learning
framework to GNNs that provably boosts their expres-
siveness for node classification tasks, beyond that of
an optimal WL-GNN∗. CL+GNN uses self-supervised

∗We use the term optimal WL-GNN to refer to the most ex-
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learning and Monte Carlo sampled embeddings to in-
corporate node labels during inductive learning—and
it can be implemented with any component GNN.

• We provide theoretical analysis of CL+GNN.

– Theorem 1 shows that collective classification is
provably unnecessary for GNNs that are most-
expressive.

– Since WL-GNNs are not most-expressive, The-
orem 2 and Proposition 1 show that CL+GNN
boosts the expressiveness of optimal WL-GNN
and practical WL-GNNs.

– Corollary 1 shows that previous attempts to incor-
porate collective inference into WL-GNNs (which
in contrast to CL+GNN do not Monte Carlo sam-
ple embeddings) cannot increase expressivity be-
yond that of an optimal WL-GNN.

• We design and conduct extensive experiments to con-
firm the above theoretical claims. CL+GNN achieves
a consistent improvement of node classification accu-
racy, across a variety of state-of-the-art WL-GNNs,
for tasks involving unlabeled and partially-labeled test
graphs. Our ablation study demonstrates the effective-
ness of our approach incorporating collective learning
in GNNs via self-supervised learning with Monte Carlo
sampling of embeddings.

2. Problem Formulation
We consider the problem of inductive node classification
across partially-labeled graphs, which takes as input a graph
G(tr) = (V (tr), E(tr),X (tr),Y (tr)

L ) for training, where V (tr) is a
set of n(tr) vertices, E(tr) ⊂ V (tr)×V (tr) is a set of edges with
adjacency matrix A(tr), X (tr) is a n(tr) × p matrix containing
node attributes as p-dimensional vectors, and Y (tr)

L is a set of
observed labels (with C classes) of a connected set of nodes
V (tr)
L ⊂ V (tr), where V (tr)

L is assumed to be a proper subset of
V (tr), noting that V (tr)

L 6= ∅. Let Y (tr)
U be the unknown labels

of nodes V (tr)
U = V (tr) \ V (tr)

L . The goal is to learn a joint
model of Y (tr)

U ∼ P (YU |G(tr)) and apply this same model
to predict hidden labels Y (te)

U in another test graph G(te), i.e.,
Ŷ (te)
U = arg maxYU

P (YU |G(te)). The test graph G(te) can
be partially labeled or unlabeled so V (te)

L ⊇ ∅.

Graph Neural Networks (GNNs), which aggregate node
attribute information to produce node representations, have
been successfully used for this task. At the same time,
relational machine learning (RML) methods, which use
collective inference to boost the performance of local node

pressive version of a GNN–one that has the same distinguishing
power as a Weisfeiler-Lehman test. Note this is not a universal
graph representation.

classifiers via (predicted) label dependencies, have also been
successfully applied to this task.

Since state-of-the-art GNNs are not most-expressive for
node classification (Morris et al., 2019; Xu et al., 2018),
collective classification ideas may help to improve the ex-
pressiveness of GNNs. In particular, collective inference
methods often sample predicted labels (conditioned on ob-
served labels) to improve the local representation around
nodes and approximate the joint distribution P (YU |G(te)).
We also know from recent research that sampling random-
ized features can boost GNN expressiveness (Murphy et al.,
2019). This leads to the key conjecture of this work Hypoth-
esis 1, which we prove theoretically in Section 4 and validate
empirically by extensive experimentation in Section 5.

Hypothesis 1. Since current Graph Neural Networks (e.g.
GCN, GraphSAGE, TK-GCN) cannot produce most expres-
sive graph representations, collective learning (which takes
label dependencies into account via Monte Carlo sampling)
can improve the accuracy of node classification by produc-
ing a more expressive graph representation.

Why? Because WL-GNNs can extract more information
about local neighborhood dependencies via sampling (Mur-
phy et al., 2019), and sampling predicted labels allows
GNNs to pay attention to the relationship between node
attributes, the graph topology, and label dependencies in
local neighborhoods. With collective learning, GNNs will
be able to incorporate more information into the estimated
joint label distribution. Next, we describe our collective
learning framework.

3. Proposed Framework: Collective Learning

In this section, we outline CL+GNN. It is a general frame-
work to incorporate any GNN, and combines self-supervised
learning approach and Monte Carlo embedding sampling
in an iterative process to improve inductive learning on
partially labeled graphs.

Specifically, given a partially labeled training graph G(tr) =
(V (tr), E(tr),X (tr),Y (tr)

L ) with adjacency matrix A(tr) and a
partially-labeled test graph G(te) = (V (te), E(te),X (te),Y (te)

L )
with adjacency matrix A(te). The goal of inductive node
classification task is to train a joint model on G(tr) to learn
P (YU |G(tr)) and apply it to G(te) by replacing the input
graph G(tr) with G(te). Suppose the graphs G(tr) and G(te),
we can define Y (tr)

L as a binary (0-1) matrix of dimension
|V (tr)| × C, and Y (te)

L of dimension |V (te)| × C, where the
rows corresponding to the one-hot encoding of the (avail-
able) labels.

(Background) GNN and representation learning. Given
a partially labeled graphs G(tr), WL-GNNs generate node
representation by propagating feature information through-
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Figure 1: CLGNN model framework. Each iteration consists of four steps: (Step 1) Sample a random mask; (Step 2) Obtain
predicted label distribution using the WL-GNN structure; (Step 3) Sample predicted labels for whatever nodes are masked,
use again as input to the WL-GNN and average representations over the sampled predicted labels; (Step 4) Perform one
optimization step by minimizing a negative log-likelihood upper bound.

out the graph. Specifically, ∀v ∈ V (tr),

P (Yv|X (tr),Y (tr)
L ,A(tr)) = σ(WZv + b), (1)

where Zv = GNN(X (tr),A(tr); Θ)v is the GNN represen-
tation of node v, σ(·) is the softmax activation, and Θ, W
and b are model parameters, which are learned by minimiz-
ing the cross-entropy loss between true labels Y (tr)

L and the
predicted labels.

The collective learning framework. Following Hypothe-
sis 1, we propose Collective Learning GNNs (CL+GNN),
which includes label information as input to GNNs to pro-
duce a more expressive representation. The overall frame-
work follows four steps: (Step 1) Sample a random binary
mask to include true labels (if available) in the input; (Step
2) Obtain predicted label distribution using the WL-GNN
structure; (Step 3) Sample predicted labels for whatever
nodes are masked, combine with available true labels (if
any), and use again as input to the WL-GNN; finally average
representations of the WL-GNN over the sampled predicted
labels; (Step 4) Perform one optimization step by minimiz-
ing a negative log-likelihood upper bound. These steps are
shown in Figure 1. Collective learning for WL-GNNs then
consists of iterating over Steps 1-4 for t = 1, . . . , T itera-
tions. Finally, once optimized, we perform inference via
Monte Carlo estimates.

CL+GNN loss and its representation averaging. The in-
put to GNNs is typically the full graph G(tr). If we included
the observed labels Y (tr)

L directly in the input, then it would
be trivial to learn a model that predicts part of the input.
Instead, we either (scenario test-unlabeled) mask all label
inputs if the test graph G(te) is expected to be unlabeled;
or (scenario test-partial) if G(te) is expected to have partial
labels, we apply a mask to the labels we wish to predict in
training so they do not appear in the input Y (tr)

L .

Specifically, at the t-th step of our optimization —these
steps can be coarser than a gradient step — we either (sce-
nario test-partial) sample a mask M (t) ∼ Uniform(M)
or (scenario test-unlabeled) set M (t) = 0. For now,
we assume we can sample Ŷ(t−1) = (Ŷ

(t−1)
v )v∈V (tr)

from an estimate of the distribution P (Y (tr)
v |X (tr),Y (tr)

L �
M (t),A(tr)) —we will come back to this assumption soon.
Let X (tr)

Y (tr)
L ,Ŷ (t−1),M(t)

be the matrix concatenation between

Y (tr)
L �M (t) + Ŷ (t−1) �M

(t)
and X (tr), where again

M := 1−M is the bitwise negated matrix of M . Let

Z(t)
v (M (t);Θ)=EŶ (t−1)

[
GNN(X (tr)

Y (tr)
L ,Ŷ (t−1),M(t)

,A(tr);Θ)v
]
,

(2)

where GNN represents an arbitrary graph neural network
model and Zt

v is the CL+GNN’s representation obtained for
node v ∈ V (tr) at step t ≥ 1.
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Our optimization is defined over the expectation of
Z

(t)
v (M (t)) w.r.t. to the sampled predicted labels Ŷ (t−1)

(Equation (2)) and over a loss averaged over all sampled
masks (noting that the case where M (t) = 0 is trivial):

Θt,Wt,bt = arg max
Θ,W,b

EM(t)

[ ∑
v∈V (tr)

L

M
(t)

v

× log σ(WZ(t)
v (M (t); Θ) + b)y(tr)

v

]
,

(3)

where again, σ(·) is the softmax activation function, and
V (tr)
L are the labeled nodes in training graph.

Stochastic optimization of Equation (3). Equation (3) is
based on a pseudolikelihood, where the joint distribution of
the labels {Y (tr)

v : v ∈ V (tr)
L s.t. M

(t)

v = 1} is decomposed
as marginal distributions resulting in the sum over V (tr)

L .

(Step 1) Sample a binary mask In (scenario test-partial),
where G(te) is expected to have some observed labels, we
randomly sample a binary mask M ∼ Uniform(M) from
a set of masks, where M is a |V (tr)|×C binary (0-1) matrix
with the same |V (tr)|-dimensional vector in each column.
By applying the mask on the observed labels Y (tr)

L , the
set of true labels is effectively partitioned into two parts,
where part of the true labels Y (tr)

L �M are used as input
to CL+GNN, and the other part Y (tr)

L �M are used as
optimization target. Here M := 1 −M is the bitwise
negated matrix of M .

(Step 2) Obtaining Ŷ(t−1). Note that in Equation (2), we
first need to obtain the predicted label distribution Ŷ(t−1)

with mask M (t) to sample labels from. At iteration t, we
use the learned CL+GNN model parameter Θt−1 to obtain
Z

(t−1)
v according to Equation (2) and use the CL+GNN

model parameters Wt−1,bt−1 to obtain the label prediction
recursively, i.e. ∀v ∈ V (tr),

Ŷ (t−1)
v ∼ Categorical(σ(Wt−1Z

(t−1)
v (M (t); Θt−1)+bt−1)),

(4)

where

Z(t−1)
v (M (t);Θt−1)=GNN(X (tr)

Y (tr)
L ,0,M(t)

,A(tr);Θt−1)v

(5)

Note that Z(t−1)
v (M (t);Θ) does not use any predicted labels

in the GNN input, i.e. it uses the true labels for masked
nodes or all-zero labels for unmasked nodes.

In order to optimize Equation (3), we compute gradient
estimates w.r.t. Θ and b using the following sampling pro-
cedure.

(Step 3) We first need to compute an unbiased estimate
of {Z(t−1)

v }v∈V (tr)
L

in Equation (2) using K i.i.d. samples

Ŷ (t−1) from the model obtained at time step t − 1 (as

describe above), i.e.

Z̃(t)
v (M (t);Θt)=

1

K

K∑
k=1

GNN(X (tr)
Y (tr)

L ,Ŷ
(t−1)
k ,M(t)

,A(tr);Θt)v,

(6)

where again X (tr)
Y (tr)

L ,Ŷ (t−1),M(t)
is the matrix concatenation

between X (tr) and Y (tr)
L �M (t) + Ŷ (t−1) �M

(t)
.

Note that the time/space complexity of the CL+GNN is K
times the time/space complexity of the corresponding GNN
model as we have to compute K representations for each
node at each stochastic gradient step.

(Step 4) Next, we need an unbiased estimate of the ex-
pectation over mask M (t) in Equation (3). In (scenario
test-partial) the unbiased estimates are obtained by sam-
pling M (t) ∼ Uniform(M) at each gradient step, in the
(scenario test-unlabeled) the value obtained is exact since
M (t) = 0. The mask M (t) is used, along with the estimate
Z̃ from Equation (6), to compute the loss function as in
Equation (3) and perform a gradient descent step. Proposi-
tion 2 shows that the above procedure is a proper surrogate
upperbound of the loss function.

Inference with learned model.

Once the CL+GNN parameters ΘT ,WT , bT are learned
according to Equation (3) on the training graph G(tr), given
an any-size attributed graph G(te), we sample J masks M
of size |V (te)|, either (scenario test-partial) sampling M ∼
Uniform(M) or (scenario test-unlabeled) set M = 0. For
each mask, we apply the same procedure as in (Step 2) and
(Step 3) to obtain predicted label distribution Ŷ(tmp), and
then sample K labels {Ŷ(tmp)

1 , · · · , Ŷ(tmp)
K } from it and pass

to the learned model. The node representations for v ∈ V (te)

are obtained using M and Ŷ(tmp)
1,··· ,K :

Z̃v(M ; ΘT )=
1

K

K∑
k=1

GNN(X (te)
Y (te)

L ,Ŷ (tmp)
k ,M

,A(te); ΘT )v,

where

(Ŷ (tmp)
k )v ∼ Categorical(σ(WTZ

(tmp)
v (M ; ΘT ) + bT )),

and

Z(tmp)
v (M ;ΘT )=GNN(XY (te)

L ,0,M (te) ,A
(te);ΘT )v.

The final node representation is computed as the average
over all sampled masks:

Z̃v =
1

J

J∑
j=1

Z̃v(Mj ; ΘT ),

where J and K are hyperparameters, J is the number of
masks for our Monte Carlo average and K is the number
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of Monte Carlo samples of Ŷ(tmp). Then the label predic-
tions are obtained using the learned CL+GNN parameters
WT , bT :

Ŷ (te)
v ∼ Categorical(σ(WT Z̃v + bT )v), ∀v ∈ V (te). (7)

4. Collective Learning Analysis
Is collective classification able to better represent target
label distributions than node representation learning? The
answer to this question is both yes (for WL-GNNs) and no
(for most-expressive representations). Theorem 1 shows that
a most-expressive graph representation (Murphy et al., 2019;
Maron et al., 2019b; Srinivasan & Ribeiro, 2019) would not
benefit from a collective learning boost. All proofs can be
found in the Appendix.

Theorem 1 (Collective classification can be unnecessary).
Consider the task of predicting node labels when no la-
bels are available in test data. Let Γ?(v,G(te)) be a most-
expressive representation of node v ∈ V (te) in graph G(te) .
Then, for any collective learning procedure predicting the
class label of v ∈ V (te), there exists a classifier that takes
Γ?(v,G(te)) as input and predicts the label of v with equal
or higher accuracy.

While Theorem 1 shows that the most-expressive graph
representation does not need collective classification, WL-
GNNs are not most-expressive (Morris et al., 2019; Murphy
et al., 2019; Xu et al., 2018). Indeed, Theorem 2 and Propo-
sition 1 show that CL+GNN boosts the expressiveness of
optimal WL-GNN and practical WL-GNNs, respectivelly.
Then, we show that the stochastic optimization in Step 3
optimizes a loss surrogate upper bound.

4.1. Expressive power of CL+GNN

Morris et al. (2019) and Xu et al. (2018) show that
WL-GNNs are no more powerful in distinguishing non-
isomorphic graphs and nodes as the standard Weisfeiler-
Lehman graph isomorphism test (1-WL or just WL test).
Two nodes are assumed isomorphic by the WL test if they
have the same color assignment in the stable coloring. The
node-expressivity of a parameterized graph representation Γ
(with parameter Γ(·;W )) can then be determined by the set
of graphs for which Γ can identify non-isomorphic nodes:

G(Γ) = {G : ∃W ?
G, s.t. ∀u, v ∈ VG,Γ(G;W ?

G)v

= Γ(G;W ?
G)u iff u, v are isomorphic, G ∈ G},

where G is the set of all any-size attributed graphs, VG is
the set of nodes in graph G. We call G(Γ) the identifiable
set of graph representation Γ.

The most expressive graph representation Γ? has an identi-
fiable set of all any-size attributed graphs, i.e. G(Γ?) = G.

We refer to the WL-GNN that is equally expressive as WL
test as the optimal WL-GNN (or WLGNN?), which is at
least as expressive as all other WL-GNNs.

In this section we show that collective learning can boost the
optimal WLGNN?, i.e., the identifiable set of WLGNN? is a
proper subset of collective learning over WLGNN? (denoted
CL+GNN?)

G(WLGNN?) ( G(CL+GNN?).

Theorem 2 (CL+GNN? expressive power). Let WLGNN?

be an optimal WL-GNN. Then, the collective learning rep-
resentation of Equation (2), using WLGNN? as the GNN
component, (denoted CL+GNN?) is strictly more expres-
sive than this WLGNN? representation model applied to the
same tasks.

Theorem 2 answers Hypothesis 1, by showing that by in-
corporating collective learning and sampling procedures,
CL+GNN can boost the expressiveness of WL-GNNs, in-
cluding the optimal WLGNN?.

Corollary 1. Consider a graph representation learning
method that, at iteration t, replaces Ŷ (t−1), in Equations (2)
and (4) with a deterministic function over Z(t−1), e.g., a
softmax function that outputs (P (Ŷ

(t−1)
v |Z(t−1)))v∈V (tr) .

Then, such method will be no more expressive than the opti-
mal WLGNN? and, hence, less expressive than CL+GNN?.

Corollary 1 proves that existing collective approaches are no
different than current GNN methods (hence, no boosting).
More specifically, it shows that existing graph representa-
tion methods that —on the surface— may even look like
CL+GNN, but do not perform the crucial step of sampling
(Ŷ

(t−1)
v )v∈V (tr) , unfortunately, are no more expressive than

WL-GNNs. Examples of such methods include (Fan &
Huang, 2019; Moore & Neville, 2017; Qu et al., 2019; Vi-
jayan et al., 2018).

Next, we show the practical benefits of collective learning
are even greater when the WL-GNN has limited expressive
power due to limited message-passing layers.

4.2. How CL+GNN further expands the power of
few-layer WL-GNNs

A d-layer (d > 1) WL-GNN will only aggregate neigh-
borhood information within d hops of any given node (i.e.,
over a d-hop egonet, defined as the graph representing the
connections among all nodes that are at most d hops away
from the center node). In practice —mostly for computa-
tional reasons— WL-GNNs have many fewer layers than
the graph’s diameter D, i.e., d < D. For instance, GCN
(Kipf & Welling, 2016) and GraphSAGE (Hamilton et al.,
2017) both used d = 2 in their experiments. Hence, they
cannot differentiate two non-isomorphic nodes that are iso-
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morphic within their d-hop neighborhood. We now show
that CL+GNN can gather 2d-hop neighborhood information
with a d-layer WL-GNN.

Proposition 1. Let Gd
v be the d-hop egonet of a node v

in graph G with diameter D > d. Let v1 and v2 be two
non-isomorphic nodes whose d-hop egonets are isomorphic
(i.e., Gd

v1 is isomorphic to Gd
v2) but 2d-hop egonets are not

isomorphic. Then, a WL-GNN representation with d layers
will generate identical representations for v1 and v2 while
CL+GNN is capable of giving distinct node representations.

Proposition 1 shows that collective learning has yet another
benefit: CL+GNN further boosts the power of WL-GNNs
with limited message-passing layers by gathering neigh-
borhood information within a larger radius. Specifically,
CL+GNN built on a WL-GNN with d layers can enlarge
the effective neighborhood radius from d to 2d in Equa-
tion (2) , while WL-GNN would have to stack 2d layers to
achieve the same neighborhood radius, which in practice
may cause optimization challenges (i.e., d = 2 is a common
hyperparameter value in the literature).

4.3. Optimization of CL+GNN

Proposition 2. If ∀v ∈ V (tr)
L , ∇Θ(WZ

(t)
v (M (t); Θ))y(tr)

v

is bounded (e.g., via gradient clipping), then the opti-
mization in Equation (3), with the unbiased sampling of
{Z(t−1)

v }v∈V (tr) and M (t) described above, results in a
Robbins-Monro (Robbins & Monro, 1951) stochastic opti-
mization algorithm that optimizes a surrogate upper bound
of the loss in Equation (3).

Since the optimization objective in Equation (3) is compu-
tationally impractical, as it requires computing all possible
binary masks and label predictions, Proposition 2 shows
that the sampling procedures used in CL+GNN that consid-
ers K samples of label predictions and a random mask at
each gradient step is a feasible approach of estimating an
unbiased upper bound of the objective.

5. Experiments
5.1. Experiment Setup
Datasets. We use datasets of Cora, Pubmed, Friendster,
Facebook, and Protein. The largest dataset (Friendster (Teix-
eira et al., 2019)) has 43,880 nodes, which is a social net-
work of users where the node attributes include numerical
features (e.g number of photos posted) and categorical fea-
tures (e.g. gender, college, etc.) encoded as binary one-hot
features. The node labels represent one of the five age
groups. Please refer to Appendix E for more details.

Train/Test split. Since most datasets used to test GNNs
consist of a single graph, we apply Louvain community
detection algorithm (Blondel et al., 2008) to split each single
graph into three clusters for training, validation, and testing
respectively, and remove the edges across clusters —shown

train test

Random split

validation

Connected split

Test

Validation

Train

Figure 2: Different data splits between our inductive con-
nected split (left) and conventional GNN random split (right)

in Figure 2 (left). This mimics the inductive within-graph
scenario that often occurs in real world settings, where a
connected subgraph is used to learn a model to generalize
the remainder of the graph —e.g., Facebook would train a
model on Iceland or New Zealand and then apply it to the
rest of the world, see methodology in (Bakshy et al., 2014).

Our train/test data split is different than previous GNN
works, which have adopted random node split between train
and test —shown in Figure 2 (right)— and can put test nodes
close to the training nodes, making it much easier to lever-
age test node attributes during training. Our use of a hard
split between train and test (connected split) is the reason
why the model performance reported in our paper is not di-
rectly comparable with the reported results in previous GNN
papers, even though we used the same implementations and
hyper-parameter search procedures. In our experiments, we
tested two different label rates in test graph: 0 (unlabeled)
and 50% (reveal 50% testing labels and evaluate on the rest).
We run five trials for all the experiments, and in each trial
we randomly pick a connected subgraph within the training
cluster and reveal their labels for training.

As our method can be applied to any GNN models, we use
four representative GNNs as examples:

• GCN (Kipf & Welling, 2016) which includes two graph
convolutional layers. Here we implemented an inductive
variant of the original GCN model for our tasks.

• Supervised GraphSage (Hamilton et al., 2017) (denoted
by GS) with Mean pooling aggregator. We use sample
size of 5 for neighbor sampling.

• Truncated Krylov GCN (Luan et al., 2019) (denoted by
TK), a recent GNN model that leverages multi-scale in-
formation in different ways and are scalable in depth.
The TK has stronger expressive power and achieved state-
of-the-art performance on node classification tasks. We
implemented Snowball architecture which achieved com-
parable performance with the other truncated Krylov ar-
chitecture according to the original paper.
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Coraconnect Pubmedconnect Friendster Facebook Protein

# train labels: 85 (3.21%) 300 (1.52%) 641 (1.47%) 80 (1.76%) 7607 (30%)

% labels in G(te): 0% 50% 0% 50% 0% 50% 0% 50% 0% 50%

Random 14.28 (0.00) 14.28 (0.00) 33.33 (0.00) 33.33 (0.00) 20.00 (0.00) 20.00 (0.00) 50.00 (0.00) 50.00 (0.00) 50.00 (0.00) 50.00 (0.00)

GCN (Kipf & Welling, 2016) - 64.74 (1.51) 66.34 (1.84) 54.56 (2.49) 58.41 (1.27) 25.97 (0.69) 24.26 (0.52) 50.58 (1.38) 51.04 (1.20) 75.86 (1.11) 77.54 (1.09)
+ CL +3.72 (0.40) +12.41 (1.96) +1.95 (0.69) +15.37 (2.01) +0.70 (0.14) +1.99 (0.74) +2.24 (0.81) +8.51 (1.09) +1.22 (0.51) +0.75 (0.33)

GS (Hamilton et al., 2017) - 65.35 (1.19) 67.71 (1.53) 55.56 (2.44) 59.12 (2.02) 26.45 (0.62) 24.75 (0.39) 51.14 (1.24) 52.06 (1.29) 73.85 (1.12) 73.01 (2.28)
+ CL +2.81 (1.02) +9.94(1.04) +1.05 (0.83) +14.71 (2.89) +0.13 (0.41) +1.40 (0.62) +1.77 (0.55) +7.80 (0.84) +0.84 (0.12) +1.47 (0.63)

TK (Luan et al., 2019) - 68.47 (1.31) 69.50 (0.55) 59.05 (2.13) 60.77 (1.53) 25.93 (0.91) 24.42 (1.44) 52.74 (1.62) 53.48 (1.48) 73.65 (1.69) 78.94 (1.50)
+ CL +1.50 (0.61) +7.92 (0.75) +0.23 (0.61) +13.62 (1.84) +1.20 (0.14) +2.34 (0.42) +3.26 (0.98) +4.60 (1.16) +1.31 (0.27) +1.36 (0.94)

GRAND (Feng et al., 2020) - 71.55 (1.07) 73.19 (0.41) 61.82 (6.40) 63.23 (7.22) 28.03 (1.02) 27.02 (0.84) 47.10 (0.27) 48.14 (0.52) 75.43 (1.12) 79.69 (0.29)
+ CL +0.80 (0.31) +2.30 (0.56) +3.79 (1.50) +5.17 (1.44) +0.37 (0.39) +4.21 (0.72) +6.38 (2.29) +5.72 (2.34) +0.51 (0.36) +0.75 (0.20)

Best of CL 72.36 (1.20)∗ 78.31 (0.58)∗ 65.61 (6.60)∗ 74.39 (1.72)∗ 28.40 (0.85)∗ 31.23 (1.05)∗ 56.01 (1.48) 59.86 (0.83) 77.08 (1.03) 80.52 (0.37)

PL-EM (Pfeiffer III et al., 2015) - 20.66 (0.04) 54.22 (0.94) 38.85 (0.03) 65.65 (4.33) 18.13 (0.23) 22.25 (0.87) 50.58 (0.03) 61.17 (1.14) 78.46 (1.45) 77.95 (1.56)
ICA (Lu & Getoor, 2003) - 62.29 (2.18) 65.51 (1.30) 43.93 (6.84) 44.61 (6.24) 26.48 (1.37) 27.80 (1.56) 61.56 (1.10)∗ 62.04 (1.92)∗ 84.88 (3.35)∗ 84.39 (4.08)∗

GMNN (Qu et al., 2019) - 66.35 (3.12) 72.04 (2.45) 57.13 (3.01) 67.94 (4.40) 24.92 (1.20) 26.88 (1.53) 49.56 (0.88) 57.09 (0.78) 76.75 (0.74) 75.96 (0.76)

Table 1: Node classification accuracy with unlabeled and partially-labeled test data. Numbers in bold represent significant
improvement in a paired t-test at the p < 0.05 level, and numbers with ∗ represent the best performing method in each
column. Coraconnect and Pubmedconnect are our processed graphs with the connected split illustrated in Figure 2 (left).

• GRAND (Feng et al., 2020), a recent GNN model us-
ing random propagation strategy to perform graph data
augmentation, in order to mitigate the issues of over-
smoothing and non-robustness. GRAND achieved state-
of-the-art performance on several semi-supervised node
classification tasks.

For each of the GNNs, we compare its baseline performance
(on its own) to the performance achieved using collective
learning in CL+GNN (using that GNN). For a fair compari-
son, we adopt the same hyper-parameter tuning strategy for
the baseline GNNs and CL+GNN, e.g. hidden dimensions,
learning rate, early-stopping procedures. Please refer to
Appendix E for details.

In addition, we also compare to three relational classifiers,
ICA (Lu & Getoor, 2003), PL-EM (Pfeiffer III et al., 2015)
and GMNN (Qu et al., 2019). The first two models apply
collective learning and inference with simple local classi-
fiers —— Naive Bayes for PL-EM and Logistic regression
for ICA. GMNN is the state-of-the-art collective model with
GNNs, which uses two GCN models to model label depen-
dency and node attribute dependency respectively. All the
three models take true labels in their input, thus we use Y (tr)

L

for training and Y (te)
L for testing.

We report the average accuracy score and standard error of
five trials for the baseline models, and compute the absolute
improvement of accuracy of our method over the correspond-
ing base GNN. The best performance among all CL+GNN
is also reported. We compute the balanced accuracy scores
on Friendster dataset as the label is highly imbalanced. To
evaluate the significance of CL+GNN improvements, we
performed a paired t-test with five trials.

5.2. Results

The node classification accuracy of all the models is shown
in Table 1. Our proposed collective learning boost is denoted

as +CL (for Collective Learning) and our model perfor-
mance (absolute % of improvement over the corresponding
baseline GNN) is shown in shaded area. Numbers in bold
represent significant improvement over the baseline GNN
based on a paired t-test (p < 0.05), and numbers with ∗ is
the best performing method in each column.

Comparison with baseline GNN models. Table 1 shows
that our method improves the corresponding non-collective
GNN models for all the four model architectures (i.e. GCN,
GraphSage, TK and GRAND). Although all the models
have large variances over multiple trials —because different
parts of the graphs are being trained in different trials—
adding CL consistently improves the baseline GNN. The
results from a paired t-test comparing the performance of our
method and the corresponding non-collective GNN shows
that the improvement is almost always significant at p =
0.05 (marked as bold), with only five exceptions.

Comparing the gains on different datasets in Table 1, adding
CL to GNNs achieved smaller gains on Friendster especially
when no test labels were available. This is because Friend-
ster is more sparse than the other graphs (e.g. edge density
of Friendster is 1.5e-4 while Cora is 1.44e-3 (Teixeira et al.,
2019)), which makes it hard for any model to propagate
label information and capture label dependencies.

As expected, comparing the improvement over various
GNNs with different expressive power, we observe that in
general adding CL boosts the gains of simpler GNN models
(i.e. GCN and GS). For example, Table 1 shows that adding
CL to a GCN can boost its accuracy by +12.41% (Cora)
while the boost over TK is smaller at +7.92% in the same
task. This is in line with our assumption in Hypothesis 1 that
collective learning can help weaker GNNs produce a more
expressive representation. As GCN is less expressive than
TK, there is a larger room to increase its expressiveness.

Note that the gains in Table 1 are generally much larger
when we go from 0% to 50% of the labels available in
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test. For example, when combining with GCN, the improve-
ments of our method are 3.72% and 2.24% for unlabeled
Cora and Facebook test sets, but with partially-labeled test
data, the improvements are 12.41% and 8.51% respectively.
This shows the importance of modeling label dependency
especially when the some test data labels are observed.

Comparison with other relational classifiers The two
baseline non-GNN relational models —i.e. PL-EM and
ICA— generally perform worse than the three GNNs, with
exceptions on Protein and Facebook datasets. This could
be because the two dataset has only a few node attributes
(3 for Facebook and 29 for Protein), while the other graphs
have hundreds or thousands of node attributes, which makes
it easier for the more powerful classifier (i.e. GNNs) to
overfit on Facebook and Protein. Moreover, this could
also be because the two non-GNN models generally need
a larger portion of labeled set to train the weak local classi-
fier, whereas GNNs utilize a neural network architecture as
“local classifier”, which is better at representation learning
by transforming and aggregating node attribute information.
However, when the model is trained with a large training set
(e.g. with 30% nodes on Protein dataset), modeling the label
dependency becomes crucial. At the same time, our method
is still able to boost performance on the two datasets.

For GMNN (Qu et al., 2019), a collective GNN model, it
achieves better performance than its non-collective base
model, i.e. GCN on most of the datasets, and we can see
that adding CL to GCN achieved comparable or better per-
formance than GMNN. However, combing CL with other
more powerful GNNs can easily out-perform GMNN (e.g.,
on Cora and Friendster, GRAND+CL significantly outper-
forms GMNN). When the test labels are available, GMNN
is able to out-perform several GNNs by leveraging test label
information, but the best of CL+GNN still out-performs
GMNN consistently.

Ablation studies, comparison to ensembles, and hyper-
parameter sensitivity. We conducted three ablation studies
to investigate the usage of predicted labels (detailed in Ap-
pendix F), which show that (a) adding predicted labels in
model input had extra value comparing to using true labels
only, (b) applying the random masking procedure is crucial
for the model improvements, and (c) the gain of our frame-
work is from using samples of the predicted labels rather
than random one-hot vectors. We also compared with a
baseline ensemble method, which considers an ensemble of
10 GNNs with random initialization. The results (detailed
in Appendix F) show that an ensemble approach is able to
slightly improve the GNN performance, but the gains are
much smaller than the gains observed for CL+GNN.

We also investigated the impact of training labels rates and
sample size K (see Appendix G), and we found that in
general CL+GNN framework achieves a larger improvement

when fewer labels are available in the training graph, and
that with sample size K > 1 there was consistent gain.

Complexity analysis. CL+GNN computes K embeddings
at each stochastic gradient step, therefore, per-gradient step,
CL+GNN is K slower than its component WL-GNN. Over-
all, after T iterations of Steps 1-3, CL+GNN total runtime
increases by T ×K over the original runtime of its compo-
nent WL-GNN. The time and space complexity of CL+GNN
is the same as WL-GNNs, i.e. O(m) where m = |E|.

Note that existing methods trying to boost the GNN expres-
siveness —e.g. PPGN (Maron et al., 2019a), SMP (Vignac
et al., 2020))— are much more computationally expensive
in time (at least Θ(mn)) and space (Θ(n2)), where n and
m are number of nodes and edges in the graph.

We note that we spent nearly no time engineering CL+GNN
for speed or for improving our results. Our interest in this
paper lies entirely on the gains of a direct application of col-
lective learning to GNNs (CL+GNN). We fully expect that
further engineering advances can reduce the computational
burden due to Monte Carlo sampling and increase accuracy
gains. For instance, parallelism can significantly reduce the
time to collect K samples in CL+GNN.

6. Related Work
On collective learning and neural networks. There has
been work on applying deep learning to collective classifi-
cation. For example, Moore & Neville (2017) proposed to
use LSTM-based RNNs for classification tasks on graphs.
They transform each node and its set of neighbors into an
unordered sequence and use an RNN to predict the class
label as the output of that sequence. Pham et al. (2017) de-
signed a deep learning model for collective classification in
multi-relational domains, which learns local and relational
features simultaneously to encode multi-relations.

The closest work to ours is Fan & Huang (2019), which pro-
posed a recurrent collective classification (RCC) framework,
a variant of ICA (Lu & Getoor, 2003) including dynamic
relational features encoding label information. Unlike our
framework, this method does not sample labels Ŷ , opt-
ing for an end-to-end training procedure. Vijayan et al.
(2018) opts for a similar no-sample RCC end-to-end train-
ing method as (Fan & Huang, 2019), now combining a
differentiable graph kernel with an iterative stage. Graph
Markov Neural Network (GMNN) (Qu et al., 2019) is an-
other promising approach that applies statistical relational
learning to GNNs. GMNNs model the joint label distribu-
tion with a conditional random field trained with the vari-
ational EM algorithm. GMNNs are trained by alternating
between an E-step and an M-step, and two WL-GCNs are
trained for the two steps respectively. These studies rep-
resent different ideas for bringing the power of collective
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classification to neural networks. Unfortunately, Corollary 1
shows that, without sampling Ŷ , the above methods are still
WL-GNNs, and hence, their use of collective classification
fails to deliver any increase in expressiveness beyond an op-
timal WL-GNN (e.g., Xu et al. (2018)). In our experiments,
we compared to GMNN as a representative relational GNN
method, and showed that while GMNN outperformed its
component GCN, the best of CL+GNN still consistently
out-performs GMNN.

In parallel to our work, Jia & Benson (2020) considers
regression tasks by modeling the joint GNN residual of a
target set (y − ŷ) as a multivariate Gaussian, defining the
loss function as the marginal likelihood only over labeled
nodes ŷL. In contrast, by using the more general foundation
of collective classification, our framework can seamlessly
model both classification and regression tasks, and include
model predictions over the entire graph Ŷ as CL+GNN’s
input, thus affecting both the model prediction and the GNN
training in inductive node classification tasks.

Higher-order GNNs for more expressive graph repre-
sentation Recently, there has been a few works proposed to
boost the representation power of WLGNN (Morris et al.,
2019; Maron et al., 2019a; 2018; Vignac et al., 2020; Chen
et al., 2019; Maron et al., 2019b). Most of these works
consider representation for the entire graph or node sets by
mimicking higher-order WL tests. However, most of them
provide more theoretical implications for GNNs than practi-
cal usage due to their dependency on order-k tensors Rnk

(n : number of nodes, k > 2) and inability to leverage the
sparsity of the graph structures. Among them PPGN (Maron
et al., 2019a) is relatively scalable with Θ(n3) time com-
plexity and Θ(n2) space complexity to achieve the expres-
sive power of the 2-WL test. A more recent method SMP
(Vignac et al., 2020) proposed a powerful and more scal-
able message-passing framework with time complexity of
Θ(mn) (m : number of edges) and space complexity of
Θ(n2). Our work, on the other hand, focus on node-level
representations rather than (sub)graph-level representations,
and our overall time/space complexity is Θ(m). As these
methods cannot be directly evaluated on node classification
tasks and due to their computational inefficiency, we leave
the assessment of CL+GNN gains if used with these more
powerful GNN variants as future work.

On self-supervised learning and semi-supervised learn-
ing. Self-supervised learning is closely related to semi-
supervised learning. In fact, self-supervised learning can be
seen as a self-imposed semi-supervised learning task, where
part of the input is masked (or transformed) and must be
predicted back by the model (Doersch et al., 2015; Noroozi
& Favaro, 2016; Lee et al., 2017; Misra et al., 2016). Re-
cently, self-supervised learning has been broadly applied to
achieve state-of-the-art accuracy in computer vision (Hénaff

et al., 2019; Gidaris et al., 2019) and natural language pro-
cessing (Devlin et al., 2018) supervised learning tasks. The
use of self-supervised learning in graph representation learn-
ing is intimately related to the use of pseudolikelihood to
approximate true likelihood functions.

For further related work on collective classification, see
Appendix H.

7. Conclusion
A long-standing question is when/if collective inference (CI)
is needed when very expressive graph models are available
(e.g., GNNs) for inductive node classification tasks. This
work solves a few theoretical and empirical questions to-
wards an answer. We show that, with the most expressive
equivariant (node-embedding) GNNs, it is true that there is
no need for collective learning. While the development of
more expressive GNNs generally focuses on changing the
architecture, in this work we ask the question of whether CI
could be a practical way to boost the real-world performance
of a GNN, without changing its underlying architecture.

In this work we propose collective learning (CL), a modi-
fied CI approach for GNN-type classifiers that boosts their
expressiveness, relying on both Monte Carlo sampling of
node embeddings and (self-supervised) random masking in
training. We show that collective learning can be combined
with existing GNNs to improve their expressiveness (and
we prove increased expressiveness with WL-GNNs).

We experimentally confirm our theoretical analysis across
five real-world graphs and four component GNNs, and show
by extensive empirical study that CL+GNN consistently, and
significantly, boosts GNNs performance (up to 26%). One
limitation of our proposed collective learning framework
is the computational cost of using sampled embeddings
during each stochastic gradient step. We leave exploration of
mechanisms to reduce the additional computational burden
(eg. via parallelization and/or more targeted sampling) to
future work.
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Hénaff, O. J., Razavi, A., Doersch, C., Eslami, S., and Oord,
A. v. d. Data-efficient image recognition with contrastive
predictive coding. arXiv preprint arXiv:1905.09272,
2019.

Jensen, D., Neville, J., and Gallagher, B. Why collective
inference improves relational classification. In Proceed-
ings of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 593–598,
2004.

Jia, J. and Benson, A. Outcome correlation in graph neural
network regression, 2020.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.
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