
Grounding Language to Entities and Dynamics for Generalization in Reinforcement Learning

A. Text Manual

Table 5. Example template descriptions. Each underlined word
in the example input indicate blanks that may be swapped in the
template. Each template takes a word for the object being described
(bird, thief, mage), its role (enemy, message, goal) and an adjective
(dangerous, secret, crucial).

Example Input
- The bird that is coming near you is the dangerous enemy.
- The secret message is in the thief’s hand as he evades you.
- The immovable object is the mage who holds a goal that is crucial.

Enemy Descriptions
Adjectives: dangerous, deadly, lethal
Role: enemy, opponent, adversary

Message Descriptions
Adjectives: restricted, classified, secret
Role: message, memo, report

Goal Descriptions
Adjectives: crucial, vital, essential
Role: goal, target, aim

To collect the text manual, we first crowdsource 82 tem-
plates (with 2,214 possible descriptions after filling in the
blanks). Each Amazon Mechanical Turk worker is asked
to paraphrase a prompt sentence while preserving words
in boldface (which become the blanks in our templates).
We have three blanks per template, one each for the entity,
role and an adjective. For each role (enemy, message, goal)
we have three role words and three adjectives that are syn-
onymous (Table 5). Each entity is also described in three
synonymous ways. Thus, every entity-role assignment can
be described in 27 different ways on the same template. Raw
templates are filtered for duplicates, converted to lowercase,
and corrected for typos to prevent confusion on downstream
collection tasks.

To collect the free form text for a specific entity-role assign-
ment, we first sample a random template and fill each blank
with one of the three possible synonyms. The filled template

Table 6. Example descriptions for MESSENGER after the second
round of data collection. Note the use of synonyms flying machine
and airplane, which also needs to be disambiguated from winged
creature (bird). Some descriptions have information divided across
two separate sentences. We do not correct typos (italics). Some
typos (plan instead of plane) render the description useless, forcing
the agent to infer the correct entity form the other descriptions in
the text manual.

- the flying machine remains still, and is also the note of upmost
secrecy.
- the airplane is coming in your direction. that airplane is the pivitol
target.
- the winged creature escaping from you is the vital target.
- the fleeing plan is a critical target.

becomes the prompt that is shown to the worker. For each
prompt, we obtain two distinct paraphrased sentences to
promote response diversity.

On all tasks (template and free-form) we provide an exam-
ple prompt (which is distinct from the one provided) and
example responses to provide additional task clarity. Aside
from lower-casing the free-form descriptions and removing
duplicate responses, we do no further preprocessing.

To ensure fluency in all responses, we limited workers to
those located in the United States with at least 10,000 com-
pleted HITs and an acceptance rate of ≥ 99%. Some rep-
resentative responses of free-form responses are presented
in table 6. We paid our workers US$0.25 for each pair of
sentences, as we found the task was usually finished in ≤
1 min. This translates to a pay of at least $15 per hour per
worker.

B. Environment Details

Table 7. Basic information about our environment MESSENGER.
Each game features 3 out of 12 possible unique non-agent entities,
with up to 5 non-agent entities total. Each entity is assigned a role
of enemy, message or goal.

Entities bird, dog, fish, scientist, queen, thief, air-
plane, robot, ship, mage, sword, orb

Roles enemy, message, goal
Movements chasing, fleeing, immovable
Total games P (12, 3) = 1320

Details about MESSENGER can be found in table 7. On
stage 1 (S1), the three entities start randomly in three out
of four possible locations, two cells away from the agent.
The agent always begins in the center of the grid. It starts
without the message with probability 0.8 and begin with the
message otherwise. When the agent obtains the message,
we capture this information by changing the agent symbol
in the observation.

On stage 2 (S2), the agent and entities are shuffled between
four possible starting locations at the start of each episode.
On S2, the mobile entities (fleeing, chasing) move at half
the speed of the agent. On S2 train, there is always one
chasing, one fleeing and one immovable entity. Test games
can feature any combination of movement dynamics.

On stage 3 (S3), the agent and non-player entities are shuf-
fled between 6 possible starting locations. As with S2, enti-
ties move at half the speed of the agent. The one distractor
description may either reference the enemy as a message or
a goal, with a movement type that is distinct from the true
movement type of the enemy. S3 test games do not feature
unseen movement combinations, since the movements of
the entities are integral to the gameplay in S3.

Grounding Language to Entities and Dynamics for Generalization in Reinforcement Learning

Figure 7. An S3 game on the interface used to collect human
playthroughs. A0 represents the agent and other entities are repre-
sented by the first two letters of the entity name in Table 7.

Since there are only 4 single-combination (SC) training
games and 40 multi-combination (MC) training games, we
sample the games non-uniformly at the start of each episode
to ensure that there is enough interaction with SC entities
to induce an entity grounding. On all stages we sample
an SC game with probability 0.25 and an MC game other-
wise. Not all descriptions have movement type information
(e.g. ‘chasing’). We also collect unknown type descriptions
with no movement type information. During training, in S1
and S2, each description is independently an unknown type
description with probability 0.15. On S3, we do not pro-
vide any description with no movement information, since
this would render disambiguation via movement differences
impossible.

Human Playthroughs We collect expert human
playthroughs using the interface presented in Figure 7.
The human expert has access to the manual, navigation
commands, and a text-rendered grid observation. The grid
observation uses the first two letters of the entity name from
Table 7 to represent each entity. Thus, human performance
does not reflect the challenge of grounding entities by
playing the environment; rather it quantifies the difficulty
of completing the task with entity groundings provided
upfront.

Terminal Rewards On S2, we provide an intermediate
scalar reward of 0.5 for obtaining the message. To assess
whether only terminal rewards is sufficient for EMMA to
learn a good policy on MESSENGER, we evaluate EMMA
on S2 using ±1 terminal rewards in Figure 8. Intermediate
rewards help EMMA converge to a higher win rate slightly
faster, but EMMA can converge to the same win rate using
just terminal rewards.

Negation We procedurally generate the negated text by
negating existential words (e.g. ‘is an enemy’ becomes ‘is

Figure 8. Win rates of EMMA on MESSENGER with intermediate
rewards (Message + Terminal) and terminal rewards only (Terminal
Only) on S2 games. Results are over three seeds and shaded area
indicates standard deviation.

not an enemy’). We manually negate those descriptions not
captured by the rules. During both training and evaluation,
we provide a complete text manual without any negated
description with 0.75 probability, and randomly select a
description in the manual to negate otherwise. When we
negate an entity description ze to z′e, we also change the role
(‘...is an enemy’ becomes ‘...is not a goal’, for example).
Thus the information present in the manual has not changed,
but the agent must look at the remaining two descriptions to
deduce the role of e with description z′e.

Transfer Learning We test transfer by introducing two
new entities – a trap and a gold which provide rewards
of −1 and 1 respectively. Both collectables are randomly
shuffled between two possible starting locations at the start
of each episode and do not move. We train the models in
this new setting in a multi-task fashion on the 32 validation
games. After the agent encounters either the trap or gold,
the collected item disappears. Neither item terminates the
episode and the agent can still win or lose the current episode
regardless of whether it has picked up the gold or trap.

B.1. Comparison with RTFM

The main novelty of our work (both the MESSENGER envi-
ronment and our model) is in specifically tackling the issue
of entity grounding without any prior knowledge. To do
this, MESSENGER in contrast to RTFM (1) does not have
any signal connecting entities to text references, (2) features
much richer language, and (3) requires interaction in the
environment to ground entities to text. We describe these in
more detail:

1. RTFM’s observation space consists of a grid of text in
which entity names are identical to their correspond-

Grounding Language to Entities and Dynamics for Generalization in Reinforcement Learning

ing references in the manual. Thus, both the text in
the manual and the observation are embedded into the
same space (e.g. using the same word vectors), es-
sentially providing models with the entity grounding
upfront. In contrast, our environment has a separate
set of symbols for the entities with no relation to the
text in our manual. Thus, the entities and text are
embedded into different spaces, and learning to map
between these two spaces is the key challenge in our
environment that has not been explored before.

2. RTFM features only 32 total rule-based templates for
the text, and each entity can only be referred to in a
single way (goblin is always ‘goblin’). In contrast,
we crowdsourced thousands of completely free-form
descriptions in two rounds using Amazon Mechanical
Turk. After obtaining the seed templates from the first
round, we intentionally inject multiple synonyms for
each entity to construct each prompt for the second
round. Workers often further paraphrased these syn-
onyms, resulting in 5, 6 or often more ways to describe
the same entity (e.g. ‘airplane’, ‘jet’, ‘flying machine’,
‘aircraft’, ‘airliner’ all describe plane.). The need to
map these different text references to the same entity
symbol further complicates the entity grounding prob-
lem in our case and more closely mirrors the challenges
of grounding entities in the real world. We believe
MESSENGER provides a much closer approximation to
natural language compared to RTFM.

3. RTFM features all possible combinations of entities
during training which provides an additional signal that
may simplify the grounding problem.

4. Each entity in RTFM only moves in a single way,
whereas in MESSENGER, each entity may have differ-
ent dynamics such as fleeing, chasing, and immovable
entities (and this is also described in the text). This
also allows us to test our model’s ability to generalize
to unseen dynamics with unseen entity movement com-
binations, whereas in RTFM the evaluation on unseen
games is essentially state-estimation.

MESSENGER shares many aspects with RTFM (e.g. grid-
world with different entities and goals). That said, there
are numerous reasons why we were not able to adapt the
original RTFM environment to meet our requirements. We
enumerate them here:

1. The dynamics in RTFM make entity grounding (the
primary focus of our work) difficult. MESSENGER
requires much simpler reasoning than RTFM, and it
is already too difficult to ground entities directly in
MESSENGER without a curriculum. RTFM sidesteps
the issue by providing this grounding beforehand.

2. Obtaining enough crowdsourced descriptions is hard
with RTFM because of the more complicated dynam-
ics. In RTFM, there are monsters, weapons, elements,
modifiers, teams, variable goals and different weak-
nesses between entity types that need to be specified.
Collecting enough descriptions that are entirely human
written would be challenging. (RTFM sidesteps this
issue by using templates to generate their text manual).
In contrast, there are only entities, 3 roles, and a fixed
goal in MESSENGER, making the text-collection task
much more tractable.

3. The entities in our MESSENGER environment are care-
fully chosen to make entity grounding harder. In
RTFM, each entity is referred to in a single way, and
it is not clear how to refer to them in multiple ways
(e.g. there are not too many other ways to say ‘goblin’).
In contrast, we specifically chose a set of entities that
allowed for multiple ways of description, and actively
encouraged this during data collection.

4. The combination of entities that appear during training
in MESSENGER is carefully designed. This is so that
we can introduce single-combination games and the
associated grounding challenges that come with it.

5. We have different movement types for each entity.
These different movements are referred to in our text
manual and significantly increase the richness and va-
riety of descriptions we collected, and also allow us to
test generalization to unseen movement combinations.
In RTFM, the entity movements are the same and fixed
for all entities.

6. Each entity’s attribute is referenced in the observa-
tion in RTFM, e.g. the grid has entries such as fire
goblin. We could add to the cell an extra symbol for
fire, but this further obfuscates the entity grounding
problem we are focusing on, because we would also
need to obtain a grounding for all the attributes such as
fire.

C. Implementation and Training Details
All models are end-to-end differentiable and we train them
using proximal policy optimization (PPO) (Schulman et al.,
2017) and the Adam optimizer (Kingma & Ba, 2015) with
a constant learning rate of 5 × 10−5. We also evaluated
learning rates of 5× 10−4 and unroll lengths of 32 and 64
steps by testing on the validation games. On S1, S2 and S3
we limit each episode to 4, 64, and 128 steps respectively
and provide a reward of −1 if the agent does not complete
the objective within this limit. Note that the computation
of random agent performance is also subject to these step
constraints.

Grounding Language to Entities and Dynamics for Generalization in Reinforcement Learning

For all experiments we use d = 256. When multiple entities
E′ overlap in the observation, we fill the overlapping cell
with the average of the entity representations 1

|E′|
∑

e∈E′ xe.
The convolutional layer consists of 2× 2 kernels with stride
1 and 64 feature maps. The FFN in the action module is
fully-connected with 3 layers and width of 128. To give the
Mean-BOS and G-ID baselines (Fig. 9) the ability to handle
the additional conditioning information, we introduce an
additional layer of width 512 at the front of the FFN for
those baselines only. Between each layer, we use leaky
ReLU as the activation function.

Figure 9. G-ID model

We pretrain BAM on 1.5×106 episodes. If two descriptions
map to the same entity, we take the one with higher P (e|z),
and If an entity receives no assignment we represent it with
a learned default embedding Emb(e). txt2π is trained using
10-12 actors, a model dimension of 128, and a learning rate
of 0.0002.

We train models for up to 12 hours on S1, 48 hours on S2
and 72 hours on each S3. We use the validation games to
save the model parameters with the highest validation win
rate during training and use these parameters to evaluate the
models on the test games. All experiments were conducted
on a single Nvidia RTX2080 GPU.

D. Model Design
The weights uk and uv were introduced to make sure that the
token embeddings for filler words such as ‘the’, ‘and’, ‘or’
do not drown out the words relevant to the task when we take
the average in equations 1 and 2. Qualitatively, we observe
that uk learns to focus on tokens informative for identify-
ing the entity (e.g. mage, sword) while uv learns to focus
on tokens that help identify the entities’ roles (e.g. enemy,
message).

We also found that using a pretrained language model was
critical for success due to the large number of ways to refer
to a single entity (e.g. ‘airplane’, ‘jet’, ‘flying machine’,
‘aircraft’, ‘airliner’ all refer to plane).

D.1. Model Variations

We consider a variation to EMMA. Instead of obtaining
token weights α, β in equations 1 and 2 by taking a softmax

Figure 10. Average episodic rewards on S1 (top) and S2 (bottom)
on training (thick line) and validation (thin line) games, as a func-
tion of training steps (x-axis) for both EMMA (solid line) and
EMMA-S (dotted line). Both models are able to perform well,
however, EMMA is able to obtain a good validation reward faster.
All results are averaged over three seeds and shaded area indicates
standard deviation.

over the token-embedding and vector products uk · t and
uv · t, we consider independently scaling each token using a
sigmoid function. Specifically, we will obtain key and value
vectors kz and vz using:

kz =

n∑
i=1

S(uk · ti)∑n
i=1 S(uk · ti)

Wkti + bk (9)

vz =

n∑
i=1

S(uv · ti)∑n
i=1 S(uv · ti)

Wvti + bv (10)

where S is the logistic sigmoid function, and all other de-
tails are identical to EMMA. We call this model EMMA-S.
We notice that both EMMA and EMMA-S are able to obtain
good training and validation performance, whith EMMA-S
obtaining higher rewards on S2. However, on S1, EMMA
is able to obtain a higher validation reward faster (Fig. 10).
Moreover, EMMA can learn robust groundings even with
neutral entities, while EMMA-S often overfits to a spurious
grounding with neutral entities (Fig. 11). Although the
independent scaling in EMMA-S allows the model to con-
sider more tokens simultaneously, the softmax selection of
EMMA facilitates more focused selection of relevant tokens,
and this may help prevent overfitting.

Grounding Language to Entities and Dynamics for Generalization in Reinforcement Learning

Figure 11. Average episodic rewards on S1 games with negation
(top) and neutral entities (bottom) on training (thick line) and
validation (thin line) games, as a function of training steps (x-axis)
for both EMMA (solid line) and EMMA-S (dotted line). Both
models struggle on negation, but EMMA is able to perform well
with neutral entities. All results are averaged over three seeds and
shaded area indicates standard deviation. Note the shared x-axis.

D.2. Comparison with Transformer

EMMA relies heavily on the dot-product attention mecha-
nism to extract relevant information from the text manual.
To assess the extent that attention alone is sufficient for solv-
ing MESSENGER, we train a Transformer (Vaswani et al.,
2017) on MESSENGER.

Specifically, we use a pretrained BERT-base model (Devlin
et al., 2019) that is identical to the one used by EMMA. We
first concatenate the text descriptions d1, ..., dn to form the
manual string sm. For each entity in the observation, we
generate a string se by indicating the x and y coordinates
for every entity e as follows: ‘e: x, y;’. We then convert the
entire grid observation into a string so by concatenating se
for every entity e in the observation. The final input to BERT
is then sm [SEP] so. We train action and value MLPs on
top of the [CLS] representation in the final layer of the
BERT model. The MLPs are identical to the ones used in
EMMA. The entire model is end-to-end differentiable and
we train it using PPO using an identical setup to the one
used to train EMMA.

The results of training this Transformer baseline on S1 is pre-
sented in Figure 12. While EMMA is able to fit to both train-

Figure 12. Average episodic rewards on S1 games with as a func-
tion of training steps (x-axis) for both EMMA (solid line) and a
baseline agent consisting of a BERT model that ingests the manual
and state observation converted to a string (dotted line). While
EMMA is able to fit to both training and validation games, the
transformer baseline struggles to learn. All results are averaged
over three seeds and shaded area indicates standard deviation.

ing and validation games, the rewards for the Transformer
baseline do not significantly increase even after 1.5× 106

steps. We hypothesize that the difficulty of encoding spa-
tial information in text form makes it very difficult for this
model to learn a performant policy on MESSENGER.

