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Abstract

This paper provides a statistical analysis of high-
dimensional batch reinforcement learning (RL)
using sparse linear function approximation. When
there is a large number of candidate features, our
result sheds light on the fact that sparsity-aware
methods can make batch RL more sample effi-
cient. We first consider the off-policy evaluation
problem. To evaluate a new target policy, we
analyze a Lasso fitted Q-evaluation method and
establish a finite-sample error bound that has no
polynomial dependence on the ambient dimen-
sion. To reduce the Lasso bias, we further propose
a post model-selection estimator that applies fitted
Q-evaluation to the features selected via group
Lasso. Under an additional signal strength as-
sumption, we derive a sharper instance-dependent
error bound that depends on a divergence function
measuring the distribution mismatch between the
data distribution and occupancy measure of the
target policy. Further, we study the Lasso fitted
Q-iteration for batch policy optimization and es-
tablish a finite-sample error bound depending on
the ratio between the number of relevant features
and restricted minimal eigenvalue of the data’s
covariance. In the end, we complement the re-
sults with minimax lower bounds for batch-data
policy evaluation/optimization that nearly match
our upper bounds. The results suggest that having
well-conditioned data is crucial for sparse batch
policy learning.
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1. Introduction

‘We consider batch reinforcement learning (RL), where the
problem is to evaluate a target policy or to learn a good
policy based on a given dataset (Szepesvari, 2010; Lange
et al., 2012; Levine et al., 2020). While in online RL the
central question is how to sequentially interact with the en-
vironment to balance exploration and exploitation, in batch
RL the dataset is given a priori and the focus is typically on
learning a near-optimal policy or evaluating a given target
policy.

To handle RL systems with large or even infinite state spaces,
we focus on the use of linear function approximation (Bell-
man et al., 1963; Schweitzer and Seidmann, 1985; Bertsekas
and Tsitsiklis, 1996), that is, using a weighted linear combi-
nation of available features (aka basis functions) to represent
high-dimensional transition/value functions. Results from
the supervised learning literature show that the sample size
needed to get accurate policy evaluations or near-optimal
policies must scale at least linearly with d, the number of
features (e.g., Example 15.14 of Wainwright, 2019).

We leverage the idea of sparse approximation and focus
on situations when a smaller number of unknown relevant
features is sufficient for solving the RL problem. Sparse
regression has proved to be a powerful method for high-
dimensional statistical learning with limited data (Tibshi-
rani, 1996; Chen et al., 2001; Bunea et al., 2007; Bickel
et al., 2009; Rish and Grabarnik, 2014), and we will borrow
techniques from the sparse learning literature to improve
the sample efficiency of batch RL, an idea with a consider-
able history in RL as witnessed by our literature review that
follows below.

Contribution. We make several contributions:

e First, we consider the problem of off-policy evalua-
tion (OPE). To promote sparse solutions, we iteratively
fits state-action value functions using linear regression
with /;-regularization which we call this procedure
as Lasso fitted Q-evaluation (Algorithm 1). We estab-



Sparse Feature Selection Makes Batch Reinforcement Learning More Sample Efficient

lish the first finite-sample error bound for Lasso fitted
Q-evaluation that depends linearly on the number of
relevant features and the restricted minimal eigenvalue.
Importantly, the bound has no polynomial dependence
on d. This appears to be the first theoretical bound for
sparse batch policy evaluation.

e Second, to reduce the Lasso bias, we propose an im-
proved post model-selection estimator (Algorithm 2)
that applies fitted Q-evaluation with a smaller feature
set that is selected using group Lasso. Under an addi-
tional separability assumption, we derive a sharper and
nearly minimax-optimal error bound that is instance-
dependent. The error bound is determined by a diver-
gence function measuring the distribution mismatch,
restricted over the reduced feature space, between the
data distribution and the occupancy distribution of the
target policy. This divergence defined over the reduced
feature space is significantly smaller than its coun-
terpart over the full d-dimensional space. In other
words, sparse feature selection reduces the distribution
mismatch. We also provide a nearly-matching lower
bound, and these two results sharply characterize the
statistical limits of sparse off-policy evaluation.

e Third, we extend our analysis to the batch policy op-
timization problem.We analyze the Lasso fitted Q-
iteration (Algorithm 3) and show that the /,.-norm of
policy error depends linearly on the ratio between the
number of relevant features and the restricted minimal
eigenvalue of the dataset’s covariance matrix. Finally,
we establish a minimax lower bound for sparse batch
policy learning and show that the lower bound also
depends on the aforementioned ratio. This is the first
lower bound result, to the authors’ best knowledge,
demonstrating the critical role played by the minimal
eigenvalue of the dataset’s covariance matrix and the
construction is highly non-trivial. The upper and lower
bounds validate the belief that well-conditioned data is
crucial for sample-efficient policy learning.

2. Preliminaries
2.1. Problem definition

A finite, infinite-horizon discounted Markov decision
process (DMDP) can be described by the tuple M =
(X, A, P,r~). Here, X is a finite set of states, A is a
finite set of actions, P : X x A — Ay is the transition
probability function, r : X x A — [0, 1] is the reward func-
tion and v € (0, 1) is the so-called discount factor. In this

paper, for the sake of simplicity, we stick to finite DMDPs.
However, our results can be extended to more general cases
with routine work.

We define a (stationary) policy = as a X — A4 map,
mapping states to distributions over actions. A pol-
icy, a distribution £y over X and a DMDP M together
give rise to a probability measure P™ over the set of in-
finitely long state-action histories: for a history of form
T1,A1,71,22,02,7T2,..., ]Pm(l‘l) = 50(1‘1) and for t =
1,2,...,P™(a¢]z1, a1, ..
P™(ziq1]21, 01, s i1, Gp—1, T, ap) = P(xpp1|ae, ar).
We denote by E™ the corresponding expectation operator.
The value of policy 7 given the initial state distribution & is
vf = BT[> ' (2, ar)], where E™ depends on & but
just this dependence is not shown. We define v™ : X — R,
the value function of policy , by letting v™ (x) denote the
value of m when it is started from state x.

S T—1, a1, @) = 7(a¢|z:) and

A nonstationary policy is a sequence of maps from histories
to probability distributions over actions and such a policy
similarly induces a probability measure P™ and an underly-
ing expectation operator E™. An optimal policy m* maxi-
mizes the value from every state: v™ (z) = max, v™ (z) for
any x € X where the maximum is over all policies, includ-
ing nonstationary ones. As is well known, for finite DMDPs,
a stationary optimal policy always exist (e.g., Szepesvari,
2010). The value function shared by optimal policies is
called the optimal value function and is denoted by v*.

We consider the following learning and optimization prob-
lems. The learner knows the state space X and action space
A. The reward function r is given in the form of a black
box, which the learner can use to evaluate r(x, a) for any
pair of (z,a) € X x A. The only unknown is the transi-
tion probability function P. The learner is given a random
dataset D = {(x,,, a,,x’,)}N_, generated by using a (pos-
sibly nonstationary and unknown) behavior policy 7 in the
DMDP M starting from some initial distribution which may
be different from &;. We study two fundamental batch RL
tasks:

e Off-policy policy evaluation: given D and black box
access to a target policy T, £y and r, estimate the value,
vgo, of m;

e Batch policy optimization: given D and black box
access to r, find an optimal policy.

Bellman operators. By slightly abusing the notation, we
will view the transition probability kernel P as a left linear
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operator, mapping from R? to RY*4:

(Pv)(z,a) = Z P2 |z, a)v(x).

The Bellman optimality operator T : R® — R? is defined
as
[Tv](z) = maj((r(x,a) +~Pu(z,a)), Vo € X.
ac
The function v* € R* is the unique solution to the Bellman

optimality equation v = 7T v. The state-action value function
of a policy 7 is defined as

Q™ (x,a) =r(z,a) + YPU™ (z,a).

We also introduce the Bellman operator 7 : RY — R¥ for
policy 7 as:

[Txv](x) = Z w(alx) (r(z,a) + vPv(z,a)) , Vo € X.
acA

The function v™ is the unique solution to the Bellman equa-
tion v™ = T v".

Linear function approximation. Let¢ : X x A — R?
be a feature map which assigns to each state-action pair a
d-dimensional feature vector. A feature map combined with
a parameter vector w € R? gives rise to the linear func-
tion g, : X x A — R defined by g,,(z,a) = ¢(z,a) " w,
(x,a) € X x A, and the linear function class Gy = {guw :
w € R?}. When little a priori information is available on
how to choose the features, agnostic choices often lead to di-
mensions which can be as large as the number of samples 7.
However, effective learning with many more features than
the sample-size is possible when only s < d features are
relevant. Thus, we further consider a sparse linear function
class Gy s = {guw : w € R, wiee = 0,|K| < s}

Fix a feature map ¢. For f : X x A > R, let f*: X - R
be defined by f"(x) = >, 7(alz)f(x,a). We present
a representation condition for G i s that ensures sample-
efficient estimation.

Assumption 2.1 (Policy completeness). For some feature
map ¢, Gy .5 is closed under the operators f — P f™ for
any policy 7 of the DMDP.

Policy completeness requires function class Gy ks can well
capture Bellman operator. It is crucial for estimation consis-
tency of fitted-Q-iteration type algorithm (Le et al., 2019;
Duan and Wang, 2020) and implies the realizability condi-
tion regarding Q™. Recently, Wang et al. (2020) has derived
a lower bound to show that Q™ realizability condition only

is not sufficient for a sample-efficient estimation of OPE
with linear function approximation. More discussions re-
garding those conditions in batch policy learning could refer
Chen and Jiang (2019).

Our second assumption concerns the dataset:

Assumption 2.2. The dataset D consists of N = KL
samples from K independent episodes 71, ...,7x. Each
episode 71 has L consecutive transitions generated by some
unknown behavior policy 7 giving rise to a sample path

(k) (k) (k) (k) (k)'
0 »To L )-

= ( (k)
T = xo ,a ,...,IL_l,a —1’1:L—1

3. Sparsity-Aware Off-Policy Evaluation

In this section we consider OPE problem, i.e., to estimate
the value of a target policy 7 from logged experiences D
generated using unknown behavior policies. We propose
two sparsity-aware algorithms to approximate state-action
functions using sparse parameters.

3.1. Lasso fitted Q-evaluation

We propose a straightforward modification of the fitted Q-
evaluation method (Le et al., 2019; Duan and Wang, 2020) to
account for sparsity. Fort = 1,2,...,T — 1, the algorithm
produces w;, 1 using Lasso-regularized regression. To make
the errors of different steps independent, the dataset D is
split into T" nonoverlapping folds Dy, ..., Dr, so that all
folds have R = K/T episodes in them and only data from
fold ¢ is used in step t. To define the algorithm, it is useful
to introduce QQ,, = 7 + g, where w € R?. Fora < b,
we also define the operator IIf, ;; : R — [a, b] that projects
its input to [a, b], i.e., [, 3 (*) = max(min(x, b), a). The
pseudocode is given as Algorithm 1. In the last step, m = N
samples are used to produce the final output to guarantee
that the error introduced by the Monte-Carlo averaging is
negligible compared to the rest.

Remark 3.1. The last step Monte Carlo averaging is only
for numerical integration, where the samples are newly
drawn inside the algorithm (independent from batch data),
so there is no bias here. We set m = N to simplify the the-
ory but it could be much larger than N for a more accurate
approximation.

3.2. Post model-selection fitted Q-evaluation

Sparse regularization is known to induce a small bias in re-
gression. However, this bias could get compounded through
the iterative procedure of Algorithm 1. To avoid such bias
and improve the accuracy, we aim to identify the set of rel-
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Algorithm 1 Lasso fitted Q-evaluation

Algorithm 2 Post model-selection fitted Q-evaluation

1: Input: Initial distribution &, target policy 7, T" folds
of dataset {D;}7_; of overall size N, regularization
parameter \; > 0, m := N, Wy = 0 € R%.

2: fort=1,2,...,T do

3:  Calculate regression targets for (x;, a;, z}) € Dy:

yi =y _mlalt})Qa,_, (},a).

a

4:  Fit w; through sparse linear regression w; =

argmin {)\1 |lwll1+
w

1
o] 2

(z4,a4,x;)ED;
5: end for
6: Output: 07, = L 1 Mo 1/1))( Qe (Fas )

with T, ~ &o, @y ~ 7(:|Zu).

evant features KC before evaluating the policy based on the
following proposition.

Proposition 3.2. Under Assumption 2.1, there exists a dxd
matrix K™ such thatV (z,a) € X x A

E:z:’~P(-|a:,a) [¢ﬂ(x/)T ‘ z, CL] = ¢(x7 a)TKﬂa 3.1
where ¢"(z) = > m(a|r)¢(x,a) and all but s rows of
KT are identically zero.

Thus we propose to estimate the set of relevant features
K using group lasso (Yuan and Lin, 2006). Once the rele-
vant feature set is identified, any regular policy evaluation
method can be used over the learned feature set K. In Al-
gorithm 2, for the ease of comparability with the previous
method, we consider vanilla fitted Q-evaluation.

Remark 3.3. One may wonder whether it is necessary to
refit the iterative regression and why not simply use the
estimated K™ to get a plug-in estimator. This is because
refitting typically performs strictly better than direct reg-
ularized learning and has less bias, as long as the feature
selection succeeds (Belloni et al., 2013).

4. Performance Bounds For Sparse Off-Policy
Evaluation

We study the finite-sample estimation error of Algorithms
1, 2. All the technical proofs are deferred to the Appendix.
Let X be the expected uncentered covariance matrix of the

(Mjo,1/ (1= ¥i — (4, ai)Tw)Q} -

1: Input: initial distribution &, target policy 7, dataset D
of size N, m := N, number of iterations T, Ao, A3 > 0.
2: Estimate K™ through: K™ =

d

argmin {)\2 Z | K. 1]2

Ke d><d j 1 (32)
Z |67 @)™ = (wn,an) K3 }-

Find K = {j € [d] : | K} |>
of relevant features. Here, K J’T refers to the jth row of
Initialize: W, = 0 € RIXI.

fort=1,2,...,Tdo

6:  Calculate regression targets for n € [N]:

e

# 0}, the estimated set

woR

Yn = 1{@n, an) +y Y wlalzl)[B(a),, a)g] T @

7: Update w; through @W;41 =

1 N
argmin { x> (vn — [B(@n, an)g] "0)? + Asllullf}

weRIK n=1
8: end for
9: Output: 0% = = 3" Mo 1/(1—)) (Qaoy (Tu, Gu))

with Ty, ~ o, @y ~ 7(-|F0).

batch data, given by

L-1

1
72 oy e ai) T

h=0

Y =E 4.1

where L is the length of one episode.

Remark 4.1. Our analysis applies to multiple behavior poli-
cies and our algorithms do not require the knowledge of
the behavior policy. For example, if we have M behavior
policies {1, ..., 7} and one policy is selected following
distribution p,: at the beginning of each episode to collect
data, we could define ¥ similarly but the expectation will
take also w.r.t the randomness with p,.

We need a notion of restricted eigenvalue that is common in
high-dimensional statistics (Bickel et al., 2009; Biihlmann
and Van De Geer, 2011).

Definition 4.2 (Restricted eigenvalue). Given a positive
semi-definite matrix Z € R?*¢ and integer s > 1, define
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the restricted minimum eigenvalue of Z as Ciyin(Z, s) :=

(B,28)

min min
8c[d],8<saeﬂ<<d{ 18s3

Bl < 3||Bs|1} |

4.1. Finite-sample error bounds of Algorithm 1

We first provide a statistical error bound for the Lasso fitted
Q-evaluation (Algorithm 1).

Theorem 4.3 (OPE error bound for Algorithm 1).
Suppose Assumptions 2.1, 2.2 hold and Ciin(X,s) >
0. Let Algorithm 1 take N samples satisfying N 2>
s2log(d/6)L(1 — ) ~! /Ciin(Z, s). Set the number of it-
erations T = O(log(N/(1 — v))/(1 — ~)) and Ay =

(1—~)~ty/Tlog(2d/5)/N. Then, with probability at least
1—26,

1 s2log(d/d)
N(1—=7)5"

4.2)

Theorem 4.3 shows that the OPE error depends linearly on
$/Cin (2, s). For comparison, when the sparsity is not
considered, Duan and Wang (2020) proved the error bound
(using our notations) of the form

07 — ™| S Vd/(Cunin(E,d)N (1 = 7)).

From the Definition 4.2, Cyin (2, d) < Cin(Z, s). Com-
paring the two results (setting § = 1/N), we expect
the new error bound to be significantly tighter , i.e.,
Chin (%, d)gﬂ‘fw < C2%. (X, s)d, when there is a high
level of sparsity (s < d).

Remark 4.4. The restricted eigenvalue Cypin (2, s) quan-
tifies how well the behavior policy covers the state-action
feature space. We need Cpin (X, s) > 0 meaning that the
data is well-conditioned or the behavior policy provides
good coverage over relevant features. In the tabular case,
where ¢(z, a) is a basis vector in RI¥>IAL then Chin =
ming o 4" (z,a) > 0 implies that the behavior policy vis-
its all state-action pairs with positive probability, where
1™ (x, a) is the visitation distribution under policy 7 and ini-
tial distribution &: ™ (z,a) = + ﬁ;& E™ [I((zn,an) =

(z, a))] .

To ensure the success of policy evaluation/optimization with
linear function approximation, similar assumptions regard-
ing Y in RL literature also appear in Abbasi-Yadkori et al.
(2019), Duan and Wang (2020), Lazic et al. (2020). In addi-
tion, Agarwal et al. (2020) showed how to design a policy
that can collect data that satisfies this condition.

4.2. Finite-sample error bounds of Algorithm 2

Next, we give a result for the post-selection model estimator
for OPE (Algorithm 2). We will show that this algorithm
provides a more accurate estimate under the additional con-
dition that every relevant feature plays a nontrivial role.
Assumption 4.5 (Minimal signal strength). For some
given § > 0, the minimum signal strength satisfies

— 64v2s  [2log(2d?/5)
i AL ) A

where K7 is the jth row of K™ defined in Eq. (3.1).

Then we provide a critical lemma showing that the group
lasso step in Algorithm 2 is guaranteed to identify a suffi-
ciently sparse feature set including all the relevant features
with high probability.

Lemma 4.6 (Feature screening). Suppose Assumptions
2.1, 4.5 hold and Ciyin (X, s) > 0. Set the regularization pa-
rameter Ay = 4/2log(2d2/5)/(Nd) for some § > 0 and
let the sample size satisfy N > Ls?log(d/§)/C2,, (%, s).
Then with probability at least 1 — §, the size of learned
relevant feature set K satisfies || < s and K O K where
K is the true relevant feature set of M.

The detailed proof of Lemma 4.6 is deferred to Appendix
B.2. This lemma implies the model group lasso selected is
sufficiently sparse and can identify all the important features
with high probability. Thus, we have |K| =< s.

Now we analyze the policy evaluation error of Algorithm 2.
According to Cramer-Rao lower bound for tabular OPE
(Jiang and Li, 2016) and the minimax lower bound for OPE
with linear function approximation (Duan and Wang, 2020),
we expect the optimal OPE error to depend on the distribu-
tion mismatch between the target policy and the behavior
policy that generated the data. To define the notion of dis-
tribution mismatch, we first need the notion of occupancy
measures:

Definition 4.7 (Occupancy measures). Let i1 be the ex-
pected occupancy measure of observations {(x,, a,)}N_;:
a(x,a) = 25:1 Pz, = z,a, = a)/N and u™ be
the discounted occupancy distribution of (z, aj) under
policy 7 and initial distribution §,: p™(z,a) = (1 —
NE™ Y re o Lz = z,a, = a)],V z,a.

Inspired by Theorem 5 of Duan and Wang (2020), we
will measure the distribution mismatch using restricted chi-
square divergences between [ and pu™.

Definition 4.8 (Restricted chi-square divergence). Let G
be a set of real-valued functions over X and let p; and ps be
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probability distributions over X. We define the G-restricted
chi-square divergence (or X% -divergence) between p; and

p2 as

Xé(]?l,m) = sup w —1.

re Ep, [f(2)?]

By using the feature screening Lemma 4.6, and a similar
analysis as by Duan and Wang (2020), we obtain the fol-
lowing instance-dependent error bound for sparse off-policy
evaluation.

Theorem 4.9 (Instance-dependent error bound for
sparse OPE). Suppose Assumptions 2.1, 2.2 and 4.5
hold and Ciin(X,s) > 0. Let § € (0,1) and assume
that Algorithm 2 is fed with N samples satisfying
N > Llog(d?/8)s*/C?..(%,s) + v*Llog(s/8)s/(1 —
'y)z. Set Ao = 44/2log(2d?/0)/Nd, A3 =
Amin(E) log(12|/K|/6)LIK|.  Letting the number of
iterations 7" — oo, the following holds with probability at
least 1 — 34,

log 1/(5

[0F —v™| < 1+X 4, 4.3)

where [ is the data generating distribution, G (I%) is the
reduced feature space.

Remark 4.10 (Reduced distribution mismatch via
sparse feature selection.). The OPE error bound of The-
orem 4.9 depends on the statistics Xé ® (1™, ) that quan-
tifies the distribution mismatch between data and the tar-
get policy. This result implies the uncertainty for evalu-
ating a new policy from batch data crucially and jointly
depends on the two distributions as well as the function
class used for fitting. When K is a small subset of [d], we
have Xé ®) < Xé([ Q) Therefore our instance-dependent
error bound is expected to be significantly smaller than its
counterpart that does not exploit sparsity.

4.3. Minimax lower bound for sparse OPE

To complete the picture, we provide a minimax lower bound
of off-policy evaluation using sparse linear function approx-
imation. The proof is an adaptation of the respective lower
bound proof for linear case (Theorem 3 in Duan and Wang
(2020)). It implies the bound in Theorem 4.9 is nearly
minimax-optimal.

Theorem 4.11. There exists a DMDP instance with feature
map ¢(-, ) € R satisfying ||¢(x, a)||oo < 1forall (z,a) €
X x A and Assumption 2.1 such thatif N > sL(1 —~)71,

then

inf sup
U™ g MeMy o (X, A7)

/1 1
I 2 T 5 ) > =

where ¢ € (R¥)**4, Py, is the probability measure un-
der the DMDP instance M and v™(-) sweeps through all
algorithms that estimate values based on data D.

Pas (J77(D) - 07| 2

Remark 4.12. It is worth to mention that in Theorem 4.11,
the distribution mismatch term 1 + Xé( x) (1™, i) may also
contain a 1 — «y term in the worse case. Thus the lower
bound of sparse OPE also has a 4/1/(1 — )3 dependency
in the worse case that matches the result for the lower
bound of sparse batch policy optimization in Theorem 5.2.
This matches the result in Yin and Wang (2020) (Theo-
rem 3.1&Remark 3.3) since they define n as the number of
episodes while we define N as the number of total sample
pairs.

S. Sparsity-Aware Batch Policy Optimization

We extend our analysis to batch policy learning problem
with sparse linear function approximation. Consider the
Lasso fitted Q-iteration (see Algorithm 3) that has been
studied in Calandriello et al. (2014) as a special case of an
algorithm for sparse multi-task RL. It resembles Algorithm
1 except for that it calculates the regression target with an
additional “max’ operation.

Algorithm 3 Lasso-regularized fitted Q-iteration

1: Input: T folds of dataset {D;}7_,, regularization pa-
rameter \q, Wy = 0 € R,
2: Repeat:
3: fort=1,2,...,T do
4:  Calculate regression targets: for (x;,a;,x}) € Dy,
Yi = maxge A Qu,_, ('T a).
5: Based on {(Ijo,1/(1—)1¥i> (@i, @i)) } (2,a:,
fit w, through Lasso as in Algorithm 1.
6: end for
7: Output: policy 7r(-|z)
X.

z;)EDy>

= maxged Qur(x,a),Vr €

The next theorem proves the approximate optimality of the
learned policy using Lasso fitted Q-iteration.

Theorem 5.1. Suppose Assumptions 2.1-2.2 holds and
Cmin(Z,8) > 0. Let N 2 s2L(1 — 7)1 /Crain (%, 5).
Let Algorithm 3 take T’ = ©(log(N/(1 —+))/(1 —+)) and
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A1 = (1 —~)~t/Tlog(2d/5)/N. Then, with probability

atleast 1 — 6,

< s log(d/d)
0~ Crin(E,8) || N(1—~)7

H,U?FT —u*

5.1

Theorem 5.1 suggests that the sample size needed to get
a good policy depends mainly on the number of relevant
features s, instead of the large ambient dimension d, pro-
vided that the data is well-conditioned. This result is not
surprising: Calandriello et al. (2014) gave a similar upper
bound for sparse FQI for the setting of generative model.
Le et al. (2019) provided a generalization theory for policy
evaluation/learning with a general function class and their
error bound depends on the VC-dimension of the class, but
it requires a stronger coefficient concentration condition.

5.1. Minimax lower bound for policy optimization

In the end, we study the fundamental limits of sparse batch
policy learning. We establish an information-theoretic min-
imax lower bound that nearly match the aforementioned
upper bound.

Theorem 5.2. Let v > % and 7 denote an algorithm that
maps dataset D to a policy 7(D). If N > sL(1 —~)~ L,
then for any 7, there always exists a DMDP instance M
with feature map ¢(-,-) € R? satisfying ||¢(z,a)|| < 1

for all (z,a) € X x A and Assumption 2.1, such that

n L+ XG oy (07, 1)
* 7(D) G o
Pua | vg, —vg, " 2 \/ N{ =) >

where p* is the discounted state-action occupancy measure
of 7*. In addition, we have

7 5/Cnin (2, s 1
P (UEO - ”50@) 2 /()) > 6 (5.3)

N1 =)

Theorems 5.1, 5.2 show that the statistical error of
batch policy learning is fundamentally determined by
the ratio s/Chin(2,s). Note that there remains a gap
V/5/Cmin (X, s) between Theorems 5.1 and 5.2, due to the

nature of Lasso regression.

Remark 5.3. Minimax sample complexity lower bound for
solving MDP has been studied in the setting with a genera-
tive model that allows querying any (s, ) for independent
samples. Azar et al. (2013) constructed a hard instance
of tabular MDP and, by reducing policy optimization to
a testing a Bernoulli distribution, proved a lower bound

SA/(1 —~)3 which is known to be sharp. Yang and Wang
(2019) extended the construction to linear MDP and show
that the sample complexity lower bound is d/(1 —+) under
a generative model. There also exists matching upper bound
in the same setting.

Our Theorem 5.2 applies to the setting of batch episodic data
where are highly dependent. Due to this major difference,
we have to use a more intricate proof based on likelihood
test to establish a minimax lower bound. Further, Theorem
5.2 characterizes for the first time that the lower bound
depends on the minimal eigenvalue of the data’s population
covariance.

Remark 5.4. Earlier results such as those of (Munos and
Szepesvari, 2008; Antos et al., 2008; Le et al., 2019) require
stronger forms of concentration condition that the state-
action occupancy measure (or a ratio involving this measure)
is entrywisely bounded across all policies. Such entrywise
bound can be very large if the state-action space X is large.
In contrast, our results only require that the data’s covariance
> is well-conditioned on restricted supports, which is a
much weaker assumption.

Further, one can use the empirical minimal eigenvalue to
get a rough error estimate. Theorem 5.2 further validates
that the minimal eigenvalue indeed determines the statistical
limit of batch policy optimization. The result is the first of
its kind to our best knowledge.

6. Related Work

Off-policy evaluation (OPE). OPE often serves the start-
ing point of batch RL. A direct approach was to fit value
function from data using approximate dynamic program-
ming, e.g., the policy evaluation analog of fitted Q-iteration
(Ernst et al., 2005; Munos and Szepesvari, 2008; Le et al.,
2019) or least square policy iteration (Lagoudakis and Parr,
2003). Another popular class of OPE methods used im-
portance sampling to get unbiased value estimate of a
new policy (Precup et al., 2000) and improved by doubly-
robust technique to reduce the variance (Jiang and Li, 2016;
Thomas and Brunskill, 2016). To alleviate the curse of hori-
zon (Li et al., 2015; Jiang and Li, 2016; Yin and Wang,
2020), marginalized importance sampling was suggested by
estimating state marginal importance ratio without reweight-
ing the entire trajectory (Hallak and Mannor, 2017; Liu et al.,
2018; Xie et al., 2019). In general, estimating marginal-
ized importance ratio could be sample-expensive and even
intractable. Recently, practical duality-inspired methods
were developed for estimating this ratio using function ap-
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proximation (Nachum et al., 2019; Uehara and Jiang, 2019;
Zhang et al., 2020a;b; Yang et al., 2020).

On the theoretical side, Uehara and Jiang (2019); Yin and
Wang (2020); Kallus and Uehara (2020) established asymp-
totic optimality and efficiency for OPE in the tabular setting.
Duan and Wang (2020) showed that fitted Q-evaluation with
linear function approximation is minimax optimal and pro-
vided matching upper and lower bounds that depend on a
distribution mismatch term. Another closely related work
was by Le et al. (2019) who studied batch policy evaluation
and optimization with more general function approxima-
tion. They showed the complexity of batch RL depends
on the complexity of the function class, assuming a “con-
centration coefficient” condition (Munos and Szepesvari,
2008) that the state-action visitation density is bounded en-
trywisely across policies. More recently, Uehara and Jiang
(2019) provided theoretical investigations into OPE using
general function approximators for marginalized importance
weights and value functions but did not show the statistical
optimality.

Sparse learning in RL. The use of feature selection by
regularization in RL has been explored in a number of
prior works. Kolter and Ng (2009); Geist and Scherrer
(2011); Hoffman et al. (2011); Painter-Wakefield and Parr
(2012) studied on-policy evaluation with ¢, -regularization
for temporal-difference (TD) learning but none of them
come with a theoretical analysis. Liu et al. (2012) stud-
ied off-policy evaluation by regularized TD learning but
only provided algorithmic convergence guarantee without
statistical error analysis.

Ghavamzadeh et al. (2011); Geist et al. (2012) proposed
Lasso-TD with finite-sample statistical analysis for esti-
mating the value function in Markov reward process. In
particular, they derived in-sample prediction error bound
O((slog(d)/vn)/?) under -minimum eigenvalue condi-
tion on the empirical feature gram matrix. Although this
bound also has no polynomial dependency on d, in-sample
prediction error generally can not be translated to the esti-
mation error of target policy in the OPE problem and their
bound can not characterize the distribution mismatch be-
tween behavior policy and target policy. On the other hand,
no minimax lower bound has been investigated so far.

In addition, Farahmand et al. (2008; 2016) considered #5-
regularization in fitted Q-iteration/policy iteration for policy
optimization in a reproducing kernel Hilbert space, and
finite-sample performance bounds for these algorithms were
proved built on a coefficient concentration condition. Calan-

driello et al. (2014) developed Lasso fitted Q-iteration for
sparse multi-task reinforcement learning and assumed a gen-
erative model (Kakade et al., 2003) for sampling transitions.
Ibrahimi et al. (2012) derived a O(pv/T) regret bound in
high-dimensional sparse linear quadratic systems where p
is the dimension of the state space. More recently, Hao et al.
(2020) studied the hardness of online reinforcement learning
in fixed horizon, sparse linear Markov decision process.

Sparse linear regression. Sparse regression receives con-
siderable attention in high-dimensional statistics in the past
decade. Lasso (Tibshirani, 1996), is arguably the most
widely used method to conduct sparse regression. Theoreti-
cal analysis of Lasso is well-studied in Zhao and Yu (2006);
Bickel et al. (2009); Wainwright (2009). For a thorough
review of Lasso as well as high-dimensional statistics, we
refer the readers to Hastie et al. (2015); Wainwright (2019);
Biihlmann and Van De Geer (2011). However, extending
existing analysis from regression to batch RL is much more
involved due to the complex optimization structure, non-i.i.d
data collection, and covariate shift.

7. Experiment

We conducted experiments with a mountain car example.
We use 800 radial basis functions for linear value func-
tion approximation. The number of episodes collected
by behavior policies ranges from 2 to 100. We com-
pare our Lasso-FQE with the standard FQE with /5 ridge
regularization. For each algorithm we report the perfor-
mance for the best regularization parameter \ in the range
{0.02,0.05,0.1,0.2,0.5}. We pick a near-optimal pol-
icy as the target, and we measure the estimation error by
|o — v*|/|v*|. All the results are averaged over 20 runs.

The left panel of Figure 7 shows that our Lasso-FQE clealy
has smaller estimation error compared with FQE, proving
the sparse feature selection is effective in a practical RL
example. The right panel of Figure 7 demonstrates how
the distribution mismatch (x2-divergence term) affects OPE
error (with sample size fixed). We constructed multiple be-
havior policies with varying levels of e-greedy noise, and
plot their OPE error against their (restricted) y2-divergence
from the target policy. The results confirm our theorems
(Theorem 4.9&4.11) that the (restricted) chi-square diver-
gence sharply determines the (sparse) OPE error.
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(1). MountainCarvo: effect of episodes . (2). MountainCarvo: effect of policy mismatch

100 068 564 102 238 6056 7634

i 20 0 3
Number of Episodes Restricted Chi-Square

— FQE  — LassoFQE — FQE — LassofQE

8. Conclusion

In this work we focus on high-dimensional batch RL us-
ing sparse linear function approximation. While previous
work in RL recognized the possibility of bringing tools from
sparse learning to RL, they lacked a clean theoretical frame-
work and formal results. By building on the strength of the
linear DMDP framework, our result show that learning and
planning in linear DMDPs can be done in the “feature space”
even in the presence of sparsity and when only batch data is
available.
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