
Bootstrapping Fitted Q-Evaluation for Off-Policy Inference

A. Proofs of Main Theorems

A.1. Full Algorithm of General FQE

Algorithm 2 Fitted Q-Evaluation (Le et al., 2019)
input Dateset D = {D1, . . . ,DK}, target policy π, function class F , initial state distribution ξ0.

1: Initialize Q̂πH+1 = 0.
2: for h = H,H − 1, . . . 1 do
3: Compute regression targets for any k ∈ [K], h′ ∈ [H]:

ykh,h′ = rkh′ +

∫
a

Q̂πh+1(skh′+1, a)π(a|skh′+1)da.

4: Build training set {(skh′ , akh′), ykh,h′}k∈[K],h′∈[H].
5: Solve a supervised learning problem:

Q̂πh = argmin
f∈F

{
1

K

K∑
k=1

1

H

H∑
h′=1

(
f(skh′ , a

k
h′)− ykh,h′

)2
+ λρ(f)

}
,

where ρ(f) is a proper regularizer.
6: end for

output v̂π =
∫
s

∫
a
Q̂π1 (s, a)ξ1(s)π(a|s)dsda.

We restate the full algorithm of FQE in Algorithm 2. Here we simply assume the initial state distribution ξ1 is known. In
practice, we always have the access to sample from ξ1 and thus we can approximate it by Monte Carlo sampling.

A.2. Equivalence between FQE and model-based plug-in estimator

We show that the FQE in Algorithm 2 with linear function class F is equivalent to a plug-in estimator. This equivalence is
helpful to derive the asymptotic normality of FQE and bootstrapping FQE. Define

M̂π = Σ̂−1
N∑
n=1

φ(sn, an)φπ(sn+1)>, R̂ = Σ̂−1
N∑
n=1

rnφ(sn, an), Σ̂ =

N∑
n=1

φ(sn, an)φ(sn, an)> + λId, (A.1)

where φπ(s) =
∫
a
φ(s, a)π(a|s)da, sN+1 is the terminal state and λ is the regularization parameter. Choosing ρ(f) = λI ,

the FQE is equivalent to, for h = H, . . . , 1, Q̂h(s, a) = φ(s, a)>ŵπh with

ŵπh = Σ̂−1
N∑
n=1

φ(sn, an)
(
rn +

∫
a

Q̂πh+1(sn+1, a)π(a|sn+1)da
)

= Σ̂−1
N∑
n=1

φ(sn, an)
(
rn +

∫
a

φ(sn+1, a)>ŵπh+1π(a|sn+1)da
)

= Σ̂−1
N∑
n=1

φ(sn, an)rn + Σ̂−1
N∑
n=1

φ(sn, an)φπ(sn+1)>ŵh+1

= R̂+ M̂πŵ
π
h+1.

This gives us a recursive form of ŵπh . Denoting ŵπH+1 = 0 and νπ1 = Es∼ξ1,a∼π(·|s)[φ(s, a)], the FQE estimator can be
written into

v̂π =

∫
s

∫
a

Q̂1(s, a)ξ1π(a|s)dads = (νπ1 )>ŵπ1 = (νπ1 )>
H−1∑
h=0

(M̂π)hR̂. (A.2)
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On the other hand, from Condition 4.1, there exists some wr, wπh ∈ Rd such that Qπh(·, ·) = φ(·, ·)>wπh for each h ∈ [H]

and r(·, ·) = φ(·, ·)>wr and there exists Mπ ∈ Rd×d such that φ(s, a)>Mπ = E[φπ(s′)>|s, a]. From Bellman equation
and Condition 4.1,

Qπh(s, a) = r(s, a) + E
[ ∫

a

Qπh+1(s′, a)π(a|s′)da|s, a
]

= φ(s, a)>wr + φ(s, a)>E[φπ(s′)>|s, a]wπh+1 = φ(s, a)>
(
wr +Mπw

π
h+1

)
= φ(s, a)>

H−h∑
h=0

(Mπ)hwr.

(A.3)

Therefore, the true scalar value function can be written as

vπ = Es∼ξ1,a∼π(·|s)

[
Qπ1 (s, a)

]
= (νπ1 )>

H−1∑
h=0

(Mπ)hwr,

which implies Eq. (A.2) is a plug-in estimator.

A.3. Proof of Theorem 4.2: Asymptotic normality of FQE

Recall νπh = Eπ[φ(xh, ah)|x1 ∼ ξ1] and denote (ν̂πh )> = (νπ1 )>
(
M̂π

)h−1
. We follow Lemma B.3 in Duan & Wang (2020)

to decompose the error term into following three parts:
√
N(vπ − v̂π) = E1 + E2 + E3,

where

E1 =
1√
N

N∑
n=1

H∑
h=1

(νπh )>Σ−1φ(sn, an)
(
Qπh(sn, an)−

(
rn + V πh+1(sn+1)

))
,

E2 =

H∑
h=1

(
N(ν̂πh )>Σ̂−1 − (νπh )>Σ−1

)( 1√
N

N∑
n=1

φ(sn, an)
(
Qπh(sn, an)−

(
rn + V πh+1(sn+1)

)))
,

E3 = λ
1√
N

H∑
h=0

(ν̂πh )>Σ̂−1wπh .

To prove the asymptotic normality of
√
N(vπ − v̂π), we will first prove the asymptotic normality of E1 and then show both

E1 and E2 are asymptotically negligible.

For n = 1, 2, . . . , N , we denote

en =
1√
N

H∑
h=1

(νπh )>Σ−1φ(sn, an)
(
Qπh(sn, an)−

(
rn+1 + V πh+1(sn+1)

))
.

Then E1 =
∑N
n=1 en. Define a filtration

{
Fn
}
n=1,...,N

with Fn generated by (s1, a1, s2), . . . , (sn−1, an−1, sn) and
(sn, an). From the definition of value function, it is easy to see E

[
en
∣∣Fn] = 0 that implies that {en}n∈[N ] is a martingale

difference sequence. To show the asymptotic normality, we use the following martingale central limit theorem for triangular
arrays.

Theorem A.1 (Martingale CLT, Corollary 2.8 in (McLeish et al., 1974)). Let {Xmn;n = 1, . . . , km} be a martingale
difference array (row-wise) on the probability triple (Ω,F , P ). Suppose Xmn satisfy the following two conditions:

max
1≤n≤km

|Xmn|
p→ 0, and

km∑
n=1

X2
mn

p→ σ2,

for km →∞. Then
∑km
n=1Xmn

d→ N (0, σ2).
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Recall that the variance σ2 is defined as

σ2 =

H∑
h=1

(νπh )>Σ−1Ωh,hΣ−1νπh + 2
∑
h1<h2

(νπh1
)>Σ−1Ωh1,h2

Σ−1νπh2
, (A.4)

and for any h1 ∈ [H], h2 ∈ [H],

Ωh1,h2
= E

[ 1

H

H∑
h′=1

φ(s1
h′ , a

1
h′)φ(s1

h′ , a
1
h′)
>ε1

h1,h′ε
1
h2,h′

]
,

where ε1
h1,h′

= Qπh1
(s1
h′ , a

1
h′)− (r1

h′ + V πh1+1(s1
h′+1)). To apply Theorem A.1, we let km = N , Xmn = en and we need to

verify the following two conditions:

max
1≤n≤N

∣∣∣ H∑
h=1

(νπh )>Σ−1

(
1√
N
φ(sn, an)

(
Qπh(sn, an)−

(
rn+1 + V πh+1(sn+1)

))) ∣∣∣ p→ 0, as N →∞, (A.5)

and
N∑
n=1

( 1√
N

H∑
h=1

(νπh )>Σ−1φ(sn, an)
(
Qπh(sn, an)−

(
rn+1 + V πh+1(sn+1)

)))2 p→ σ2, as N →∞. (A.6)

Verify Condition A.5: Since r ∈ [0, 1], we have rn + V πh+1(sn+1) ∈ [0, H − h]. For any n ∈ [N ], we have∣∣∣∣∣
H∑
h=1

(νπh )>Σ−1

(
1√
N
φ(sn, an)

(
Qπh(sn, an)−

(
rn+1 + V πh+1(sn+1)

)))∣∣∣∣∣
≤ 1√

N

H∑
h=1

∣∣∣(νπh )>Σ−1φ(sn, an)
∣∣∣∣∣∣Qπh(sn, an)−

(
rn + V πh+1(sn+1)

)∣∣∣
≤ 1√

N

H∑
h=1

(H − h+ 1)
∣∣∣(νπh )>Σ−1φ(sn, an)

∣∣∣.
Note that (νπh )>Σ−1φ(sn, an) is independent of N . Then for fixed d,H , Condition A.5 is satisfied when N →∞.

Verify Condition A.6: Recall the definition of σ2 in Eq. (A.4) and let σ2 = σ2
1 + σ2

2 for

σ2
1 =

H∑
h=1

(νπh )>Σ−1Ωh,hΣ−1νπh ,

σ2
2 = 2

∑
h1<h2

(νπh1
)>Σ−1Ωh1,h2

Σ−1νπh2
.

Using the following decomposition,

N∑
n=1

( 1√
N

H∑
h=1

(νπh )>Σ−1φ(sn, an)
(
Qπh(sn, an)−

(
rn+1 + V πh+1(sn+1)

)))2

=

N∑
n=1

1

N

H∑
h=1

(νπh )>Σ−1φ(sn, an)φ(sn, an)>Σ−1νπh

(
Qπh(sn, an)− (rn + V πh+1(sn+1))

)2

+

N∑
n=1

1

N
2
∑
h1<h2

(νπh1
)>Σ−1φ(sn, an)(νπh2

)>Σ−1φ(sn, an)

·
(
Qπh1

(sn, an)−
(
rn+1 + V πh1+1(sn+1)

))(
Qπh2

(sn, an)−
(
rn+1 + V πh2+1(sn+1)

))
.

We denote the first term as I1, the second term as I2 and separately bound I1 − σ2
1 and I2 − σ2

2 as follows:
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• We rewrite I1 in terms of episodes as

I1 =

H∑
h=1

(νπh )>Σ−1/2
( 1

K

K∑
k=1

1

H

H∑
h=1

Σ−1/2φ(skh′ , a
k
h′)φ(skh′ , a

k
h′)
>(εkhh′)

2Σ−1/2
)

Σ−1/2νπh .

Moreover, denote

Zh = Σ−1/2E
[ 1

H

H∑
h′=1

φ(s1
h′ , a

1
h′)φ(s1

h′ , a
1
h′)
>(ε1

hh′)
2
]
Σ−1/2 ∈ Rd×d.

Then we have

|I1 − σ2
1 | =

H∑
h=1

(νπh )>Σ−1/2
( 1

K

K∑
k=1

1

H

H∑
h′=1

Σ−1/2φ(skh′ , a
k
h′)φ(skh′ , a

k
h′)
>(εkhh′)

2Σ−1/2 − Zh
)

Σ−1/2νπh

≤
H∑
h=1

∥∥∥(νπh )>Σ−1/2
∥∥∥2

2

∥∥∥ 1

K

K∑
k=1

( 1

H

H∑
h′=1

Σ−1/2φ(skh′ , a
k
h′)φ(skh′ , a

k
h′)
>(εkhh′)

2Σ−1/2 − Zh
)∥∥∥

2
,

where the last inequality is from Cauchy–Schwarz inequality. From Lemma B.7, we reach I1
p→ σ2

1 as K →∞.

• We rewrite I2 as

I2 = 2
∑
h1<h2

(νπh1
)>Σ−1/2

( 1

K

K∑
k=1

1

H

H∑
h′=1

Σ−1/2φ(skh′ , a
k
h′)φ(skh′ , a

k
h′)
>εkh1h′ε

k
h2h′Σ

−1/2
)

Σ−1/2νπh2
,

and denote

Zh1h2 = Σ−1/2E
[ 1

H

H∑
h′=1

φ(s1
h′ , a

1
h′)φ(s1

h′ , a
1
h′)
>ε1

h1h′ε
1
h2h′

]
Σ−1/2 ∈ Rd×d.

Then we have

|I2 − σ2
2 | = 2

∑
h1<h2

(νπh1
)>Σ−1/2

( 1

K

K∑
k=1

1

H

H∑
h′=1

Σ−1/2φ(skh′ , a
k
h′)φ(skh′ , a

k
h′)
>εkh1h′ε

k
h2h′Σ

−1/2 − Zh1h2

)
Σ−1/2νπh2

≤ 2
∑
h1<h2

∥∥∥(νπh1
)>Σ−1/2

∥∥∥
2

∥∥∥(νπh2
)>Σ−1/2

∥∥∥
2

∥∥∥ 1

K

K∑
k=1

( 1

H

H∑
h′=1

Σ−1/2φ(skh′ , a
k
h′)φ(skh′ , a

k
h′)
>εkh1h′ε

k
h2h′Σ

−1/2 − Zh1h2

)∥∥∥
2
.

From Lemma B.7, we reach I2
p→ σ2

2 as K →∞.

Putting the above two steps together, we have verified Condition A.6. Then applying Theorem A.1 we obtain that
E1

d→ N (0, σ2).

On the other hand, according to Lemmas B.6, B.10 in (Duan & Wang, 2020),

|E2| ≤ 15
√

(νπ0 )>(Σπ)−1νπ0 ·
∥∥(Σπ)1/2Σ−1/2

∥∥
2
·
√
C1κ1(2 + κ2) · ln(8dH/δ)dH3.5

√
N

|E3| ≤
√

(νπ0 )>(Σπ)−1νπ0 ·
∥∥(Σπ)1/2Σ−1/2

∥∥
2
· 5 ln(8dH/δ)C1dH

2

√
N

,

with probability at least 1− δ and κ1, κ2 are some problem-dependent constants that do not depend on N . When N →∞,
both |E2|, |E3| converge in probability to 0. By Slutsky’s theorem, we have proven the asymptotic normality of

√
N(vπ−v̂π).

�



Bootstrapping Fitted Q-Evaluation for Off-Policy Inference

A.4. Proof of Theorem 4.5: Efficiency bound

Influence function. Recall that our dataset D consists of K i.i.d. trajectories, each of which has length H . Denote

τ : =
(
s1, a1, r1, s2, a2, r2, . . . , sH , aH , rH , sH+1

)
.

For simplicity, we assume that the reward rh is deterministic given (sh, ah), i.e. rh = r(sh, ah) for some reward function r.
The distribution of τ is given by

P(dτ ) =ξ̄1(ds1,da1)P(ds2

∣∣ s1, a1)π̄(da2 | s2)P(ds3 | s2, a2)

. . .P(dsH | sH−1, aH−1)π̄(daH | sH)P(dsH+1 | sH , aH).

Define Pη : = P + η∆P where ∆P satisfies
(∆P)F ⊆ F

under condition 4.1. Denote score functions

g(τ ) : =
∂

∂η
logPη(dτ ) and g(s′ | s, a) : =

∂

∂η
logPη(ds′ | s, a).

Note that

g(τ ) =

H∑
h=1

g(sh+1 | sh, ah).

We consider the pointwise estimation. The objective function ψξ1 is defined as

ψξ1(Pη) : = E

[
H∑
h=1

rη(sh, ah)

∣∣∣∣∣ (s1, a1) ∼ ξ1,Pη, π

]
.

We calculate the derivative ∂
∂ηψξ1(Pη) and have

∂

∂η
ψξ1(Pη) =

∂

∂η

[
H∑
h=1

∫
(S×A)h

r(sh, ah)ξ1(ds1,da1)

h−1∏
j=1

Pη(dsj+1 | sj , aj)π(daj+1 | sj+1)

]

=

H∑
h=1

∫
(S×A)h

r(sh, ah)

( h−1∑
j=1

g(sj+1 | sj , aj)
)
ξ1(ds1,da1)

h−1∏
j=1

Pη(dsj+1 | sj , aj)π(daj+1 | sj+1).

By using Q-functions Qπη,j(sj , aj) := E
[∑H

h=j rη(sh, ah)
∣∣ (sj , aj),Pη, π

]
for j = 1, 2, . . . ,H , Qη,H+1 := 0, we find

that

∂

∂η
ψξ1(Pη) =

∫
(S×A)H

H−1∑
j=1

g(sj+1 | sj , aj)
H∑

h=j+1

rη(sh, ah)ξ1(ds1,da1)

H−1∏
i=1

Pη(dsi+1 | si, ai)π(dai+1 | si+1)

=

∫
(S×A)H

H−1∑
j=1

g(sj+1 | sj , aj)ξ1(ds1,da1)

j∏
i=1

Pη(dsi+1 | si, ai)π(dai+1 | si+1)

·

(
H∑

h=j+1

rη(sh, ah)

H−1∏
i=j+1

Pη(dsi+1 | si, ai)π(dai+1 | si+1)

)

=

H−1∑
j=1

∫
(S×A)j+1

g(sj+1 | sj , aj)Qπη,j+1(sj+1, aj+1)ξ1(ds1,da1)

j∏
i=1

Pη(dsi+1 | si, ai)π(dai+1 | si+1)

=

H∑
h=1

E
[
g(sh+1 | sh, ah)V πη,h+1(sh+1)

∣∣ (s1, a1) ∼ ξ1,Pη, π
]
.
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It follows that

∂

∂η
ψξ1(Pη)

∣∣∣∣
η=0

=E

[
H∑
h=1

g(sh+1 | sh, ah)V πh+1(sh+1)

∣∣∣∣∣ (s1, a1) ∼ ξ1,P, π

]
.

Define wh(s, a) : = φ(s, a)>Σ−1νπh = φ(s, a)>Σ−1E
[
φ(sh, ah)

∣∣ (s1, a1) ∼ ξ1,P, π
]

for h = 1, 2, . . . ,H . Let H For
any f ∈ H with f(s, a) = φ(s, a)>wf , we have

E
[
f(sh, ah)

∣∣ (s1, a1) ∼ ξ1,P, π
]

=E
[
φ(sh, ah)>wf

∣∣ (s1, a1) ∼ ξ1,P, π
]

=E
[
φ(sh, ah)>Σ−1E(s,a)∼µ̄[φ(s, a)φ(s, a)>]wf

∣∣ (s1, a1) ∼ ξ1,P, π
]

=E(s,a)∼µ̄

[
E
[
φ(sh, ah)

∣∣ (s1, a1) ∼ ξ1,P, π
]>

Σ−1φ(s, a)φ(s, a)>wf

]
=E(s,a)∼µ̄

[
wh(s, a)f(s, a)

]
,

where µ̄ is the distribution of dataset D. Since the mapping (s, a) 7→ E
[
g(s′ | s, a)V πh (s′)

∣∣ s, a] belongs to H, therefore,

∂

∂η
ψξ1(Pη)

∣∣∣∣
η=0

=E(s,a)∼µ̄

[
H∑
h=1

wh(s, a)g(s′ | s, a)V πh+1(s′)

]
.

Note that E
[
g(s′ | s, a)

∣∣ s, a] = 0, therefore,

∂

∂η
ψξ1(Pη)

∣∣∣∣
η=0

= E(s,a)∼µ̄

[
H∑
h=1

wh(s, a)g(s′ | s, a)
(
V πh+1(s′)− E

[
V πh+1(s′)

∣∣ s, a])].
By definition of µ, we have

∂

∂η
ψξ1(Pη)

∣∣∣∣
η=0

=
1

H

H∑
j=1

E

[
H∑
h=1

wh(sj , aj)g(sj+1 | sj , aj)
(
V πh+1(sj+1)− E

[
V πh+1(sj+1)

∣∣ sj , aj])
∣∣∣∣∣ (s1, a1) ∼ ξ̄1,P, π̄

]
.

We use the property E
[
g(s′ | s, a)

∣∣ s, a] = 0 again and derive that

∂

∂η
ψξ1(Pη)

∣∣∣∣
η=0

=
1

H

H∑
j=1

E

[
H∑
h=1

wh(sj , aj)

( H∑
l=1

g(sl+1 | sl, al)
)(

V πh+1(sj+1)− E
[
V πh+1(sj+1)

∣∣ sj , aj])
∣∣∣∣∣ (s1, a1) ∼ ξ̄1,P, π̄

]

=
1

H
E

[
g(τ )

H∑
h=1

H∑
j=1

wh(sj , aj)
(
V πh+1(sj+1)− E

[
V πh+1(sj+1)

∣∣ sj , aj])
∣∣∣∣∣ (s1, a1) ∼ ξ̄1,P, π̄

]
.

We can conclude that

ψ̇P(τ ) : =
1

H

H∑
h=1

H∑
h′=1

wh′(sh, ah)
(
V πh′+1(sh+1)− E

[
V πh′+1(sh+1)

∣∣ sh, ah]),
is an influence function.

Efficiency bound. For notational convenience, we take shorthands

q(s, a, s′) : =

H∑
h=1

wh(s, a)
(
V πh+1(s′)− E

[
V πh+1(s′)

∣∣ s, a]),
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and rewrite

ψ̇P(τ ) =
1

H

H∑
h=1

q(sh, ah, sh+1).

Since E
[
q(s, a, s′)

∣∣ s, a] = 0, we find that

E
[
ψ̇2
P(τ )

]
=

1

H2
E

[( H∑
h=1

q(sh, ah, sh+1)

)2
∣∣∣∣∣ ξ̄1,P, π̄

]
=

1

H2

H∑
h=1

E
[
q2(sh, ah, sh+1)

∣∣∣ ξ̄1,P, π̄].
It follows that

E
[
ψ̇2
P(τ )

]
=

1

H2
E(s,a)∼µ̄

[
E
[
q2(s, a, s′)

∣∣ s, a]] =
1

H2
E(s,a)∼µ̄

[
E
[
q2(s, a, s′)

∣∣ s, a]]
=

1

H2
E(s,a)∼µ̄

[(
φ(s, a)>Σ−1

H∑
h=1

(
V πh+1(s′)− E

[
V πh+1(s′)

∣∣ s, a])νπh)2
]
,

which coincides with the asymptotic variance of OPE estimator defined in (4.2).

�

A.5. Proof of Theorem 5.1: Distributional consistency of bootstrapping FQE

In order to simplify the derivation, we assume λ = 0 and the empirical covariance matrix
∑N
n=1 φ(sn, an)φ(sn, an)> is

invertible in this section since the effect of λ is asymptotically negligible. For a matrix A ∈ Rm×n, suppose the vec operator
stacks the column of a matrix such that vec(A) ∈ Rmn×1. We use the equivalence form of FQE in Eq. (A.2) such that

v̂π = (νπ1 )>
H−1∑
h=0

(M̂π)hR̂.

M̂π can be viewed as the solution of the following multivariate linear regression:

φπ(sn+1)> = φ(sn, an)>Mπ + ηn,

where ηn = φπ(sn+1)> − φ(sn, an)>Mπ . We first derive the asymptotic distribution of
√
Nvec(M̂π −Mπ) that follows:

√
Nvec(M̂π −Mπ) = vec

(√
N Σ̂−1

N∑
n=1

φ(sn, an)
(
φπ(s′n)> − φ(sn, an)>Mπ

))
= (N Σ̂−1 ⊗ Id)

1√
K

K∑
k=1

vec
( 1√

H

H∑
h=1

φ(skh, a
k
h)
(
φπ(sk

′

h )> − φ(skh, a
k
h)>Mπ

))
,

(A.7)

where ⊗ is kronecker product. Define ξkh = φπ(skh+1)> − φ(skh, a
k
h)>Mπ . From the definition of Mπ , it is easy to see

E[φπ(skh+1)>|skh, akh] =

∫
s

P(s|skh, akh)

∫
a

π(a|s)φ(s, a)>dads = φ(skh, a
k
h)>Mπ.

Again with martingale central limit theorem and independence between each episode, we have as K →∞,

1√
K

K∑
k=1

vec
( 1√

H

H∑
h=1

φ(skh, a
k
h)ξkh

)
d→ N(0,∆), (A.8)

where ∆ ∈ Rd2×d2 is the covariance matrix defined as: for j, k ∈ [d2]

∆jk = E
[
vec
( 1√

H

H∑
h=1

φ(skh, a
k
h)ξkh

)
j
vec
( 1√

H

H∑
h=1

φ(skh, a
k
h)ξkh

)
k

]
. (A.9)
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Next we start to derive the conditional bootstrap asymptotic distribution. For notation simplicity, denote φhk = φ(skh, a
k
h)

and yhk = φπ(skh+1)>. We rewrite the dataset combined with feature map φ(·, ·) such that Dk = {φhk, yhk, rhk}Hh=1.
Recall that we bootstrap D by episodes such that each episode is sampled with replacement to form the starred data
D∗k = {φ∗hk, y∗hk, r∗hk}Hh=1 for k ∈ [K]. More specifically,

φ∗hk =

K∑
k=1

W ∗kφhk, y
∗
hk =

K∑
k=1

W ∗k yhk, r
∗
hk =

K∑
k=1

W ∗k rhk,

where W ∗ = (W ∗1 , . . . ,W
∗
K) is the bootstrap weight. For example, W ∗ could be a multinomial random vector with

parameters (K;K−1, . . . ,K−1) that forms the standard nonparametric bootstrap. Note that for different h ∈ [H], they have
the same bootstrap weight and given the original samples D1, . . . ,DK , the resampled vectors are independent. Define the
corresponding starred quantity M̂∗π , R̂

∗ as

M̂∗π = Σ̂∗−1
K∑
k=1

K∑
h=1

φ∗hky
∗
hk, R̂

∗ = Σ̂∗−1
K∑
k=1

H∑
h=1

r∗hkφ
∗
hk,

where

Σ̂∗ =

K∑
k=1

H∑
h=1

φ∗hkφ
∗>
hk .

We will derive the asymptotic distribution of
√
N(vec(M̂∗π − M̂π)) by using the following decomposition:

√
Nvec(M̂∗π − M̂π) =

√
Nvec

(
Σ̂∗−1

K∑
k=1

H∑
h=1

φ∗hk(y∗hk − φ∗hkM̂π)
)

= (N Σ̂∗−1 ⊗ Id)vec
( 1√

K

K∑
k=1

1√
H

H∑
h=1

φ∗hk(y∗hk − φ∗hkM̂π)
)
.

We denote

Z =
1√
K

K∑
k=1

1√
H

H∑
h=1

φhk(yhk − φhkMπ), Z∗ =
1√
K

K∑
k=1

1√
H

H∑
h=1

φ∗hk(y∗hk − φ∗hkM̂π).

Both Z and Z∗ are the sum of independent d× d random matrices. We prove the bootstrap consistency using the Mallows
metric as a central tool. The Mallows metric, relative to the Euclidean norm ‖ · ‖, for two probability measures µ, ν in Rd is
defined as

Λl(µ, ν) = inf
U∼µ,V∼ν

E1/l(‖U − V ‖l),

where U and V are two random vectors that U has law µ and V has law ν. For random variables U, V , we sometimes write
Λl(U, V ) as the Λl-distance between the laws of U and V . We refer Bickel & Freedman (1981); Freedman et al. (1981) for
more details about the properties of Mallows metric. Suppose the common distribution of original K episodes {D1, . . . ,DK
is µ and their empirical distribution is µK . Both µ and µK are probability in R2Hd+H . From Lemma B.1, we know that
Λ4(µK , µ)→ 0 a.e. as K →∞.

• Step 1. We prove Σ̂∗/N converges in conditional probability to Σ. From the bootstrap design, 1
H

∑H
h=1 φ

∗
khφ
∗>
kh is

independent of 1
H

∑H
h=1 φ

∗
k′hφ

∗>
k′h for any k 6= k′. According to Lemma B.3, we have

Λ1

( K∑
k=1

1

H

H∑
h=1

φ∗khφ
∗>
kh ,

K∑
k=1

1

H

H∑
h=1

φkhφ
>
kh

)
≤

K∑
k=1

Λ1

( 1

H

H∑
h=1

φ∗khφ
∗>
kh ,

1

H

H∑
h=1

φkhφ
>
kh

)
= KΛ1

( 1

H

H∑
h=1

φ∗khφ
∗>
kh ,

1

H

H∑
h=1

φkhφ
>
kh

)
.
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Both sides of the above inequality are random variables such that the distance is computed between the conditional
distribution of the starred quantity and the unconditional distribution of the unstarred quantity. Define a mapping
f : RHd → Rd×d such that for any x1, . . . , xH ∈ Rd,

f(x1, . . . , xH) =
1

H

H∑
h=1

xhx
>
h .

From Lemma B.2 with f , we have as K goes to infinity

Λ1

( 1

H

H∑
h=1

φ∗khφ
∗>
kh ,

1

H

H∑
h=1

φkhφ
>
kh

)
→ 0 .

This implies the conditional law of 1
H

∑H
h=1 φ

∗
khφ
∗>
kh is close to the unconditional law of 1

H

∑H
h=1 φkhφ

>
kh. By the

law of large numbers:
1

K

K∑
k=1

1

H

H∑
h=1

φkhφ
>
kh

p→ Σ. (A.10)

This further implies the conditional on D, we have Σ̂∗/N
p→ Σ.

• Step 2. We prove Z∗ conditionally converges to a multivariate Gaussian distribution. From Lemma B.4,

Λ2(vec(Z∗), vec(Z))2 ≤ Λ2

(
vec(

1√
H

H∑
h=1

φ∗hk(y∗hk − φ∗hkM̂π)), vec(
1√
H

H∑
h=1

φhk(yhk − φhkMπ))
)2

.

Using Lemma B.5, we have the right side converges to 0, a.e. as K →∞. This means the conditional law of vec(Z∗)

is close to the unconditional law of vec(Z), and the latter essentially converges to a multivariate Gaussian distribution
with zero mean and covariance matrix ∆ from Eq. (A.8).

By Slutsky’s theorem, we have conditional on D,
√
Nvec(M̂∗π − M̂π)

d→ N
(

0, (Σ−1 ⊗ Id)∆(Σ−1 ⊗ Id)
)
, (A.11)

where ∆ is defined in Eq. (A.9).

According to the equivalence between FQE and plug-in estimator in Section A.2,

v̂∗π = (νπ1 )>
H−1∑
h=0

(M̂∗π)hR̂∗, v̂π = (νπ1 )>
H−1∑
h=0

(M̂π)hR̂.

Define a function g : Rd×d → R as

g(M) := (νπ1 )>
H−1∑
h=0

(M)hwr.

By the high-order matrix derivative (Petersen & Pedersen, 2008), we have

∂

∂M
(νπ1 )>(M)hwr =

h−1∑
r=1

(Mr)>νπ1w
>
r (Mh−1−r)> ∈ Rd×d.

This implies the gradient of g at vec(Mπ)

∇g(vec(Mπ)) = vec
(H−1∑
h=0

h−1∑
r=1

(Mr
π)>νπ1w

>
r (Mh−1−r

π )>
)

= vec
( H∑
h=1

νπhw
>
r

H−h∑
h′=1

(Mh′−1
π )>

)
∈ Rd

2×1.
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Applying multivariate delta theorem (Theorem B.6) for Eq. (A.11), we have conditional on D
√
N
(
g(M̂∗π)− g(M̂π)

)
d→ N

(
0,∇>g(vec(M̂π))(Σ−1 ⊗ Id)∆(Σ−1 ⊗ Id)∇g(vec(M̂π))

)
,

where ∆ is defined in Eq. (A.9). From Eq. (A.10), we have Σ̂/N
p→ Σ. Using Slutsky’s theorem and Eqs. (A.7)-(A.8), we

have √
N
(

vec(M̂π −Mπ)
)

d→ N (0, (Σ−1 ⊗ Id)∆(Σ−1 ⊗ Id)).

This further implies M̂π
p→Mπ . By continuous mapping theorem,

√
N
(
g(M̂∗π)− g(M̂π)

)
d→ N

(
0,∇>g(vec(Mπ))(Σ−1 ⊗ Id)∆(Σ−1 ⊗ Id)∇g(vec(Mπ))

)
.

Now we simplify the variance term as follows:

∇>g(vec(Mπ))(Σ−1 ⊗ Id)∆(Σ−1 ⊗ Id)∇g(vec(Mπ))

=

H∑
h=1

(νπh )>Σ−1w>r

H−h∑
h′=1

(Mπ)h
′−1E

[ 1

H

H∑
h=1

ξ>h φ(s1
h, a

1
h)φ(s1

h, a
1
h)>ξh

] H∑
h=1

H−h∑
h′=1

(Mπ)h
′−1wrΣ

−1(νπh )>

=

H∑
h=1

(νπh )>Σ−1w>r

H−h∑
h′=1

(Mπ)h
′−1E

[ 1

H

H∑
h=1

ξ>h φ(s1
h, a

1
h)φ(s1

h, a
1
h)>ξh

]H−h∑
h′=1

(Mπ)h
′−1wrΣ

−1(νπh )>

+ 2
∑
h1<h2

(ν>h1
)>Σ−1w>r

H−h1∑
h′=1

(Mπ)h
′−1E

[ 1

H

H∑
h=1

ξ>h φ(s1
h, a

1
h)φ(s1

h, a
1
h)>ξh

]H−h2∑
h′=1

(Mπ)h
′−1wrΣ

−1(ν>h2
)>

=

H∑
h=1

(νπh )>Σ−1E
[ 1

H

H∑
h=1

w>r

H−h∑
h′=1

(Mπ)h
′−1ξ>h φ(s1

h, a
1
h)φ(s1

h, a
1
h)>ξh

H−h∑
h′=1

(Mπ)h
′−1wr

]
Σ−1(νπh )>

+ 2
∑
h1<h2

(ν>h1
)>Σ−1E

[ 1

H

H∑
h=1

w>r

H−h1∑
h′=1

(Mπ)h
′−1ξ>h φ(s1

h, a
1
h)φ(s1

h, a
1
h)>ξh

H−h2∑
h′=1

(Mπ)h
′−1wr

]
Σ−1(ν>h2

)>,

where ξ1
h = φ(s1

h, a
1
h)>Mπ − φπ(s1

h+1)>. Recall that we define

ε1
h,h′ = Qπh(s1

h′ , a
1
h′)− (r1

h′ + V πh+1(s1
h+1))

=

H−h1∑
h=1

(
φ(s1

h, a
1
h)>Mπ − φπ(s1

h+1)>
)

(Mπ)h
′−1wr =

H−h∑
h=1

ξ1
h(Mπ)h−1wr,

where the second equation is from Eq. (A.3). This implies

∇>g(vec(Mπ))(Σ−1 ⊗ Id)∆(Σ−1 ⊗ Id)∇g(vec(Mπ))

=

H∑
h=1

(νπh )>Σ−1E
[ 1

H

H∑
h′=1

φ(s1
h′ , a

1
h′)φ(s1

h′ , a
1
h′)
>(ε1

h,h′)
2
]
Σ−1(νπh )>

+ 2
∑
h1<h2

(ν>h1
)>Σ−1E

[ 1

H

H∑
h′=1

φ(s1
h′ , a

1
h′)φ(s1

h′ , a
1
h′)
>ε1

h1,h′ε
1
h2,h′

]
Σ−1(ν>h2

)> = σ2.

Therefore, we have proven that √
N
(
g(M̂∗π)− g(M̂π)

)
d→ N

(
0, σ2

)
.

On the other hand,

R̂∗ = (Σ̂∗)−1
K∑
k=1

H∑
h=1

r∗hkφ
∗
hk = KH(Σ̂∗)−1 1

K

K∑
k=1

1

H

H∑
h=1

r∗hkφ
∗
hk.
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Using Lemma B.3, we have

Λ1

( 1

K

K∑
k=1

1

H

H∑
h=1

r∗hkφ
∗
hk,

1

K

K∑
k=1

1

H

H∑
h=1

rhkφhk

)
≤ Λ1

( 1

H

H∑
h=1

r∗hkφ
∗
hk,

1

H

H∑
h=1

rhkφhk

)
.

The right hand side of the display goes to 0 as K →∞. From the law of large number,

1

K

K∑
k=1

1

H

H∑
h=1

rhkφhk
p→ E

[ 1

H

H∑
h=1

φ(s1
h, a

1
h)φ(s1

h, a
1
h)>
]
wr

Combining with the fact that the conditional laws of Σ̂∗ concentrates around Σ, this ends the proof. �

A.6. Proofs of Corollary 5.2 and Corollary 5.4

We prove the consistency of bootstrap confidence interval by using Lemma 23.3 in Van der Vaart (2000). Suppose
Ψ(t) = P(N (0, σ2) ≤ t). Combining Theorem 4.2 and Theorem 5.1, we have

PD
(√

N(v̂π − vπ) ≤ t
)
→ Ψ(t), PW∗|D

(√
N(v̂∗π − v̂π) ≤ t

)
→ Ψ(t).

Using the quantile convergence theorem (Lemma 21.1 in Van der Vaart (2000)), it implies qπδ → Ψ−1(t) almost surely.
Therefore,

PDW∗
(
vπ ≤ v̂π − qπδ/2

)
= PDW∗

(√
N(v̂π − vπ) ≥ qπδ/2

)
→ PDW∗

(
N (0, σ2) ≥ Ψ−1(δ/2)

)
= 1− δ/2.

This finishes the proof of Corollary 5.2.

It is well known that the convergence in distribution implies the convergence in moment under the uniform integra-
bility condition. The proof of the consistency of bootstrap moment estimation is straightforward since the condition
lim supN→∞ EW∗|D[(

√
N(v̂∗π − v̂π))q] <∞ for some q > 2 ensures a similar uniform integrability condition. Together

with the distributional consistency in Theorem 5.1, we apply Lemma 2.1 in Kato (2011) then we reach the conclusion. �

B. Supporting Results

We present a series of useful lemmas about Mallows metric.

Lemma B.1 (Lemma 8.4 in Bickel & Freedman (1981)). Let {Xi}ni=1 be independent random variables with common
distribution µ. Let µn be the empirical distribution of X1, . . . , Xn. Then Λl(µn, µ)→ 0 a.e..

Lemma B.2 (Lemma 8.5 in Bickel & Freedman (1981)). Suppose Xn, X are random variables and Λl(Xn, X)→ 0. Let f
be a continuous function. Then Λl(f(Xn), f(X))→ 0.

Lemma B.3 (Lemma 8.6 of Bickel & Freedman (1981)). Let {Ui}ni=1, {Vi}ni=1 be independent random vectors. Then we
have

Λ1

( n∑
i=1

Ui,

n∑
i=1

Vi

)
≤

n∑
i=1

Λ1

(
Ui, Vi

)
.

Lemma B.4 (Lemma 8.7 of Bickel & Freedman (1981)). Let {Ui}ni=1, {Vi}ni=1 be independent random vectors and
E[Uj ] = E[Vj ]. Then we have

Λ2

( n∑
i=1

Ui,

n∑
i=1

Vi

)2

≤
n∑
i=1

Λ2

(
Ui, Vi

)2

.
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Let µK and µ be probabilities on R2Hd. A data point in R2Hd can be written as (x1, . . . , xH , y1, . . . , yH) where xh ∈ Rd

and yh ∈ Rd. Denote

Σ(µ) =

∫
1

H

H∑
h=1

xhx
>
h µ(dx1, . . . , dxH , dy1, . . . , dyH),

M(µ) = Σ(µ)−1

∫ H∑
h=1

xhy
>
h µ(dx1, . . . , dxH , dy1, . . . , dyH),

ε(µ, x1, . . . , xH , y1, . . . , yH) =

H∑
h=1

(yh − x>hM(µ)).

Lemma B.5 (Lemma 7 in Eck (2018)). If Λ4(µK , µ) → 0 as K → ∞, then we have the µK-law of
vec(

∑H
h=1 ε(µK , x1, . . . , xH , y1, . . . , yH)x>h ) converges to the µ-law of vec(

∑H
h=1 ε(µ, x1, . . . , xH , y1, . . . , yH)x>h ) in

Λ2.

Theorem B.6 (Multivariate delta theorem). Suppose {Tn} is a sequence of k-dimensional random vectors such that
√
n(Tn − θ)

d→ N(0,Σ(θ)). Let g : Rk → R be once differentiable at θ with the gradient matrix∇g(θ). Then

√
n(g(Tn)− g(θ))

d→ N(0,∇>g(θ)Σ(θ)∇g(θ)).

We restate Lemma B.5 in Duan & Wang (2020) in the following that is proven using matrix Bernstein inequality.

Lemma B.7. Under the assumption φ(s, a)>Σ−1φ(s, a) ≤ C1d for all (s, a) ∈ X , with probability at least 1− δ,∥∥∥∥∥Σ−1/2

(
1

N

N∑
n=1

φ(sn, an)φ(sn, an)>
)

Σ−1/2 − I

∥∥∥∥∥
2

≤
√

2 ln(2d/δ)C1dH

N
+

2 ln(2d/δ)C1dH

3N
. (B.1)

C. Supplement for Experiments

C.1. Experiment details

The original CliffWalking environment from OpenAI gym has deterministic state transitions. That is, for any state-action
pair (s, a), there exists a corresponding s′ ∈ S such that P(· | s, a) = δs′(·). We modify the environment in order to make it
stochastic. Specifically, we introduce randomness in state transitions such that given a state-action pair (s, a), the transition
takes place in the same way as in the deterministic environment with probability 1− ε and takes place as if the action were a
random action a′, instead of the intended a, with probability ε. This is an episodic tabular MDP and the agent stops when
falling from the cliff or reaching the terminal point. We also reduce the penalty of falling off the cliff from −100 to −50.

The original MountainCar environment from OpenAI gym has deterministic state transitions. We modify the environment in
order to make it stochastic. Specifically, we introduce randomness in state transitions by adding a Gaussian random force,
namely, N (0, 1

10 ) multiplied by the constant-magnitude force from the original environment. We also increase the gravity
parameter from 0.0025 to 0.008, the force parameter from 0.001 to 0.008 and the maximum allowed speed from 0.07 to 0.2.

Empirical coverage probability. The preceding discussion leads to the simulation method for estimating the coverage
probability of a confidence interval. The simulation method has three steps:

1. Simulate many fresh dataset of episode size K following the behavior policy.

2. Compute the confidence interval for each dataset.

3. Compute the proportion of dataset for which the true value of target policy is contained in the confidence interval. That
proportion is an estimate for the empirical coverage probability for the confidence interval.
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Figure 7. Left: Empirical coverage probability of CI; Right: CI width under different behavior policies.
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Figure 8. Error of correlation estimates, as data size increases.

The true value of target policy is computed through Monte Carlo rollouts with sufficient number of samples (10000 in our
experiments).

With linear function approximation, we use the confidence interval proposed in Section 6 in Duan & Wang (2020) as a
baseline since it is only available confidence interval based on FQE. In particular, it shows that with probability at least
1− δ,

|v̂π − vπ| ≤
H∑
h=1

(H − h+ 1)

√
(ν̂πh )>Σ̂−1ν̂πh

(√
2λ+ 2

√
2d log

(
1 +

N

λd

)
log
(3N2H

δ

)
+

4

3
log
(3N2H

δ

))
,

where (ν̂πh )> = (νπ1 )>(M̂π)h and M̂π is defined in Eq. (A.1).

C.2. Additional experiments

In Figure 7, we include the result for soft-max behavior policy in the Cliff Walking environment. In Figure 8, we include the
result for correlation estimation in Cliff Walking environment. The behavior policy is 0.1 ε-greedy policy while two target
policies are optimal policy and 0.1 ε-greedy policy.

In order to better understand the tradeoff between computational efficiency and accuracy with finite samples, we conduct
some empirical demonstrations based on Cliffwalking. We set s = Kγ and the true coverage probability is 0.9. It is
relatively safe to set γ > 0.5. Note that γ = 1 corresponds to the vanilla bootstrap that has the highest accuracy but heaviest
computation.

We argue that bootstrapping sample transitions (which are dependent) would lead to inconsistent estimations of the error
distribution and thus output wrong confidence interval and variance estimation. We further run one additional test using
the taxi environment and further compute the CI and variance estimations based on different bootstrap distributions in
Cliffwalking (CW) and taxi environments. This is already in an asymptotic regime since both the number of episodes and the
number of bootstrap samples are 10e+6. It is clear that bootstrapping by sample transition gives an incorrect distribution,
thus it is inconsistent.
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Figure 9. Subsampled bootstrap with s = Kγ
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Variance (CW) 0.45 0.44 0.082
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Figure 10. Taxi environment (Dietterich 2000)


