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Abstract

Real-world machine learning systems are often
trained using a mix of data sources with varying
cost and quality. Understanding how the size and
composition of a training dataset affect model per-
formance is critical for advancing our understand-
ing of generalization, as well as designing more
effective data collection policies. We show that
there is a simple scaling law that predicts the loss
incurred by a model even under varying dataset
composition. Our work expands recent observa-
tions of scaling laws for log-linear generalization
error in the i.i.d setting and uses this to cast model
performance prediction as a learning problem. Us-
ing the theory of optimal experimental design, we
derive a simple rational function approximation
to generalization error that can be fitted using
a few model training runs. Our approach can
achieve highly accurate (r2 ≈ .9) predictions of
model performance under substantial extrapola-
tion in two different standard supervised learning
tasks and is accurate (r2 ≈ .83) on more challeng-
ing machine translation and question answering
tasks where many baselines achieve worse-than-
random performance.

1. Introduction
The success of large scale machine learning systems de-
pends critically on the quantity and quality of data used
during training, and we cannot expect these systems to suc-
ceed if there is not enough training data or if that data does
not cover all the phenomena contained in the test distribu-
tion (Ben-David et al., 2010). Knowing this, the designer
of a machine learning system might create multiple sources
of data, with each one targeting a different feature or do-
main that the model ought to do well on (Crammer et al.,
2007; Wang et al., 2019a). This data-driven design strategy
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provides powerful tools to improve and evaluate model be-
havior, but also poses an additional challenge: what is the
right way to combine these various data sources? What is
the optimal data collection policy for a given budget?

Our goal is to answer these questions by quantifying the
relationship between data sources and model performance.
How well will our model do if we were to train it on n
samples using a data mixture (q1 . . . qk) (where qi is the
fraction of the dataset coming from data source i). A precise
model for predicting model performance will allow us to
both identify the optimal data collection policy and quantify
cost-performance tradeoffs.

The starting point of our work is the recent observation
across speech, vision and text (Hestness et al., 2017; Kaplan
et al., 2020; Rosenfeld et al., 2020) that the empirical per-
formance of a model is remarkably predictable, and follows
the log-linear formula

log(error) ≈ −α log(n) + C. (1)

In this work, we expand this observation to the multi-data-
source setting and conjecture that the slope of the log-linear
relationship (α) does not vary with data composition and
that the data composition only affects the intercept (C). We
prove this holds in a range of parametric and nonparametric
models.

The simple dependence of log-error on data size allows
us to reduce the problem of estimating model error into
a learning problem. Our approach is straightforward.
First, we hypothesize that model error follows V (n, q) :=
exp(−α log(n) + log(C(q))) for a simple parametric func-
tional form C(q). Next, we fit this functional form to ob-
served pairs of (n, q, error) that we obtain by subsampling
the dataset and re-training a model. We show that there
is a natural and simple choice of C(q) as a rational func-
tion that we derive from optimal experimental design for
linear regression, M-estimation, and nonparametric smooth-
ing. The simple and parametric dependence of V (n, q) on
n allows us to use our resulting estimates to predict model
performance under substantial extrapolation in data size.

As a concrete example of how this may be useful, con-
sider the Amazon sentiment prediction task (Mansour et al.,
2009), where we have the ability to collect review data from
multiple product categories. A practitioner may wish to un-
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derstand how the dataset size n and the mixture proportion
over these categories q affect model performance, so that
they can better understand tradeoffs in data collection. To
do this, they can collect a small pilot dataset with data from
all sources, and then subsample this pilot dataset in order to
vary the data size n and mixture proportion q. Measuring
the errors of models trained on these subsets now gives us
the triples of (n, q, error), and they can fit a model V (n, q)
to predict error on these examples. The resulting V (n, q)
can be used as a way to improve the data collection policy q
for substantially larger dataset sizes n than the pilot dataset.

Empirically, we show that the rational function approxima-
tion is a promising approach, and that the resulting predic-
tions are accurate and hold under extrapolation. On the
Amazon review prediction dataset (Mansour et al., 2009),
we can learn to predict model performance nearly perfectly
(r2 = 0.96) from a small dataset of 1200 examples across
3 sources and extrapolate to predict the model error on
datasets of up to 4000 examples. We show this high accu-
racy continues to hold on a real-world task oriented dialogue
system (r2 = 0.89), a multi-domain machine translation
system (r2 = 0.83), and boolean question answering with
weak supervision (r2 = 0.85). In each of the cases, our pro-
posed approach matches or outperforms the best baseline,
with most baselines performing worse-than-random in both
the machine translation and question answering tasks.

Related work Quantifying the effect of data composition
on model performance is closely related to the classical
ideas of optimal experimental design, as well as more recent
machine learning methods such as active learning and data
valuation.

Our work will draw inspiration from the classical V -optimal
experimental design (John & Draper, 1975) as a way to
understand how model performance will change with the
data collection policies. However, our approach differs
substantially beyond this. Instead of making strong linearity
assumptions and identifying closed form formulas for model
performance, we treat identifying the impact of data sources
on errors as itself a prediction problem, which allows us to
quantify these effects for neural networks and non-separable
objectives.

Scaling laws (Kaplan et al., 2020; Hestness et al., 2017) and
empirical prediction of model performance (Kolachina et al.,
2012) are closely related to our work and share our moti-
vation of identifying relationships between data and model
performance. Our work differs in studying the multi-data-
source settings, which pose substantial additional challenges
due to the non-i.i.d nature of the training and test distribu-
tions.

Active learning provides methods for incrementally select-
ing new points to rapidly reduce a loss (Hanneke, 2007).

Implicitly, these methods often rely upon an estimate of how
data collection affects downstream performance (Ghorbani
& Zou, 2019). However, these approaches only consider the
problem of optimal data collection and do not seek to pre-
dict model performance under all data collection strategies
(including suboptimal ones), which is critical when making
cost-performance tradeoffs across data sources. The model
performance predictions produced in our work complements
existing work on active learning by providing accurate fore-
casts of model performance under different data collection
strategies.

Finally, data valuation methods such as the Shapley value
attempt to assign estimate the impact of a data source on
model performance (Ghorbani & Zou, 2019; Jia et al., 2019;
Ghorbani et al., 2020; Yoon et al., 2019). These approaches
are natural when pricing data sources as part of a market
mechanism (Ohrimenko et al., 2019; Agarwal et al., 2019)
due to the axiomatic properties of the Shapley value. Our
approach differs in that we seek simply to estimate the per-
formance of a model rather than to assign a single price to
examples from a data source. This difference means that
axioms such as additivity that are critical for the Shapley
value are not relevant for our goal. We show that for the
purpose of predicting errors, a rational function (rather than
a linear cost) follows naturally from optimal experimen-
tal design. Our experiments also suggest that our rational
function approximation provides better model performance
predictions than a linear, additive model.

2. Problem setting
Our goal is to predict the performance of a model as a
function of the number of training samples n as well as the
dataset composition q, where qk represents the fraction of
the training data drawn from data source k. We will now
define this goal more formally in terms of the training data
distribution, model fitting, and test loss.

The training data consists of an n-sample training set
pn,q that is created by sampling from the mixture p :=∑
k∈[K] qkpk where pk are data generating distributions for

each of the K data sources and qk are mixture weights with
qk ≥ 0 and

∑
k∈[K] qk = 1. Using this dataset, we learn

a prediction model θ̂ that incurs loss `(θ̂;x, y) for a train-
ing example (x, y). The fitted model is the empirical loss
minimizer, which we define as

θ̂(pn,q) := arg min
θ∈Θ

Epn,q [`(θ;x, y)] .

The performance of this classifier is evaluated on a test
distribution with the same conditional label distribution
(i.e. p(y | x) = ptest(y | x)). We are interested in model
performance as a function of the data size and composition
(and not a fixed empirical distribution pn,q) and thus our
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(a) Log excess loss (y axis) is linear with log-dataset size (x
axis). Changing the data distribution by varying q (line color)
changes the intercept but not the slope.

(b) Intercept (C(q)) of the loss-dataset log linear relationship.
The loss is lowest when the dataset is a mix of both data
sources (q ≈ 0.5) and rapidly increases when exclusively
using one data source.

Figure 1. The log-linear effects of data composition and size on the linear toy dataset.

goal is to predict the model’s expected excess loss averaged
over draws in both the training and test distributions,

L(n, q) := E
[
`(θ̂(pn,q);x, y)

]
− inf

θ
E [`(θ;x, y)] .

Estimating L requires that we hypothesize a relationship
between (n, q) and the expected model loss. Following
earlier observations by Hestness et al. (2017), we expect a
log-linear relationship between L(n, q) and log(n) for any
fixed q, which implies a possible approximation as

log(L(n, q)) ≈ log(V (n, q)) := α(q) log(n) +C(q). (2)

We now examine this hypothesis in a simple toy example.

Linear toy data: We will start with the simplest nontrivial
example of linear least-squares regression to study L(n, q).
In this example, there are two data sources over x ∈ R2.
The first data source has substantial variability on the first
coordinate x0 but not x1 and vice versa for the second data
source. The overall generative process is

y | x ∼ [0.5, 1]>x+ ε z ∼ Bern(q) ε ∼ N(0, 1)

x | z = 0 ∼ N
(

0,

[
1 0
0 0.001

])
x | z = 1 ∼ N

(
0,

[
0.001 0

0 1

])
.

Let L(n, q) be the excess squared loss of a linear least
squares model trained with n samples from a mixture q
and evaluated on a test distribution with q = 0.5. What
will L(n, q) look like? Figure 1a shows a clear linear rela-
tionship between log dataset size (log(n)) and log(L(n, q)).
The intercept of the linear relationship seems to vary with
the data mixture q, but the slope seems constant.

Examining Figure 1a more closely, we find that the extremes
of using either data source exclusively (blue line) performs
worse than a mix suggesting that log(L(n, q)) is unlikely
to be linear in q. Intuitively, we can think of each data

distribution as having a different strength (i.e. more variance
in either x0 or x1) and combining the two results in a better
data distribution than either alone. We can see this more
clearly when we estimate the intercept for each of these
lines (Figure 1b). The estimated intercepts show a U-shaped
curve that rapidly increases as q → 0 or q → 1 and is
generally flat from 0.2 to 0.8.

3. Method and theory
We have observed that in the case of a simple linear regres-
sion, the log-error not only follows the relationship outlined
in equation 2, but also that the slope α is constant as we vary
the data composition (and we will further validate this claim
on more complex tasks and models in subsequent sections).
This observation shows we may be able to further simplify
the log-linear approximation as

log(L(n, q)) ≈ log(V (n, q)) := −α log(n) + log(C(q)).

Now note that this functional form decouples the data size
n and mixture proportions C(q) into two terms. This is the
key hypothesis of our work: log(V (n, q)) has a very simple
dependence on n, and the more complex term C(q) has no
dependence on n. Therefore we can cast this as a learning
problem, where we learn α and a parametric function Cλ(q)
based on the model’s error over a range of q and small n, and
extrapolate this for large n using the log-linear dependence
of log V on n.

Concretely, we are given a dataset that is comprised of k data
sources, where each data source contributes {n1 . . . nk}
examples. To predict the performance of a model under
varying data composition, we take the following steps.

First, we generate a subsampled dataset with n̂k ∼
Unif(0, nk) samples from each source. This results in a
training set with data size n̂ =

∑
k n̂k and composition

q̂k = n̂k
n̂ .

Next, we fit a model to this subsampled data and compute



Model Performance Scaling with Multiple Data Sources

its loss R(n̂, q̂) = E
[
`(θ̂(pn̂,q̂);x, y)

]
. Given the triple

(n̂, q̂, R(n̂, q̂)) we fit the hypothesized functional form,

min
λ,α

Eq̂,n̂
[
(log(R(n̂, q̂)− ε)− α log(n̂) + log(Cλ(q̂)))

2
]
.

Here, ε approximates the optimal asymptotic error
infθ E [`(θ;x, y)] (which is the Bayes error rate whenever
the model is well specified) and L(n, q) ≈ R(n, q)−ε. This
approach of modeling excess loss with respect to asymptotic
error is standard in existing work on scaling laws (Kaplan
et al., 2020; Hestness et al., 2017; Rosenfeld et al., 2020).

Finally, given the fitted α and Cλ(q̂), we can predict the
performance of any model by extrapolating to −α log(n) +
log(Cλ(q)).

This approach of predicting model performance is reminis-
cent of response surface methods (Belkhir et al., 2017) but
we have an additional challenge that we do not have a good
estimate ofCλ(q̂). We find empirically that generic function
approximators such as multilayer neural networks do not
perform well.

The experimental data does not specify the functional form
of Cλ(q) except that it should handle convex functions like
those seen in Figure 1b. We will now study V (n, q) theoret-
ically and argue that a natural choice is the rational function

Cλ(q) :=

M∑
i=1

(
K∑
k=1

λikqk

)−1

.

In the subsequent sections, we will study three settings:
ordinary linear regression, M-estimation, and nonparamet-
ric regression and show that our hypothesized log-linear
approximation arises naturally in all three cases.

3.1. Linear regression

We begin by characterizing L(n, q) in the linear regression
case, where we can derive closed form expressions for the
expected loss as a function of training data. Our setting
is d-dimensional, n-sample linear regression, defined as
y = x>β + ε with i.i.d. ε ∼ N(0, 1). Our training data
follows x ∼ p :=

∑
k∈[K] qkpk where each data source has

full-rank second moments Σk := Ex∼pk
[
xx>

]
.

Define the ordinary least squares estimator β̂ :=
(X>X)−1X>Y in terms of the features X ∈ Rn×d and
Y ∈ Rn. The excess test loss of this estimator over any
x∗ ∼ p∗ and y∗ := x∗>β + ε is defined as

L(n, q) = E[‖x∗(β − β̂)‖22].

The theory of V-optimal experimental design(Pukelsheim,
2006) allows us to characterize this excess loss.

Proposition 3.1. The excess expected loss for ordinary least
squares trained on a mixture q with data size n and sub-
gaussian x follows

log(L(n, q)) = − log(n)

+ log

(
Tr
(

Σ∗
(∑

k

qkΣk

)−1)
︸ ︷︷ ︸

C(q)

)
+O

(√
log(1/δ)√

n

)
,

with probability at least 1− δ where Σ∗ := Ex∼p∗
[
xx>

]
and Σk := Ex∼pk

[
xx>

]
.

We will defer all proofs to the supplement due to space
constraints. Clearly C(q) is not linear even in this simple
case, and the terms for qk appear within an inverse. Naively,
we might hypothesize that it behaves much more closely
to a linear rational function (i.e. (

∑
i λiqi)

−1) and this
intuition will turn out to be correct whenever Σ∗ and Σk are
approximately diagonalizable.

Corollary 3.1. Let P be an orthogonal matrix which ap-
proximately simultaneously diagonalizes P−1Σ∗P = D∗,
P−1ΣkP = Dk +Rk for diagonal some matrices D. Then
for full-rank Σ∗ and sufficiently small Rk,

Tr

Σ∗

 ∑
k∈[K]

qkΣk

−1
 =

∑
i∈[d]

D∗ii∑
k qkDk,ii

+ o

(
‖
∑
k

qkRk‖F

)
.

The first order term exactly matches the hypothesized C(q)
as a rational function with d terms and validates this choice
for linear regression. To interpret this corollary, the approxi-
mate diagonalizability condition states that the eigenvectors
for Σ∗ and Σk coincide, and that D∗ii and Dk,ii are these
eigenvalues. The ratio D∗ii∑

k qkDk,ii
measures the ratio of vari-

ance in the test distribution to that of the training distribution
for the i-th eigenvector.

The key observation is that the variance (i.e. the information
each data source contributes to a particular coordinate i) is
linear, but the dependence of model error to training vari-
ance is inverse and that there are d different coordinates mak-
ing the overall dependence of errors on data composition
nonlinear. There are clear qualitative differences between a
linear and rational function approximation to C(q), with the
rational function being strongly convex with diminishing
returns in q.

3.2. General M estimators

We might rightfully ask whether this kind of approximation
continues to hold for nonlinear models and losses like neural
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networks. The same analysis as above can be extended to the
asymptotic behavior of a substantially more general class of
models known as M -estimators, which are empirical loss
minimizers of a differentiable loss.

For the regression case, we relied on a closed-form charac-
terization of β. For M-estimators we will use asymptotic
normality under the sampling distribution,

Theorem 3.1 (van der Vaart (1998)). Consider a twice dif-
ferentiable loss ` whose gradients are bounded and Donsker.
Let θn be an estimator which fulfills the approximate first-
order optimality condition with minimizer θ∞,

Epn [∇`(y, x; θn)] = o(n−1/2) and Ep[∇`(y, x; θ∞)] = 0.

If θn
p→ θ∞ and both I−1

θ∞
:= Ep[H`(y, x; θ∞)]−1 and

Σθ∞ := Ep[∇`(y, x; θ∞)∇`(y, x; θ∞)>] exist,

√
n(θn − θ∞)→ N

(
0, I−1

θ∞
Σθ∞I

−1
θ∞

)
.

As with earlier, we defer all proofs to the supplement.

Now that we have the asymptotic distribution of the M -
estimator, we can quantify the (asymptotic) form of C(q)
with respect to a test distribution p∗ simply by taking the
Taylor expansion of the loss at θ∞.

Corollary 3.2. Under the conditions of Theorem 3.1, let
`(y, x; θ) = − log pθ(y | x) and there exists some θ∗ = θ∞
such that pθ∗(y | x) = p(y | x) then

log(L(n, q)) = − log(n)

+ log

Tr

Σ∗

(∑
k

qkΣk

)−1
+ o(n−1)

 .

for Σk := Epk [H`(y, x; θ∗)] and Σ∗ := Ep∗ [H`(y, x; θ∗)]

Note how this has the same functional form as before: C(q)
is the trace of a test distribution dependent matrix Σ∗ and the
inverse of data source matrices Σk. The difference now is
that instead of covariances, we are looking at the Hessian of
the parameters with respect to the unknown optimal model
θ∗. Applying the simultaneous diagonalization argument
from earlier once again results in a rational function that is
captured by C(q).

Our result here relies on two additional assumptions: the
loss is a log loss, and the model is well-specified. The first
assumption is weak, as many models today use log softmax
type losses. The well-specified assumption is stronger but
may be reasonable for nearly nonparametric functions such
as neural networks. We relax this assumption in a corollary
below.

Corollary 3.3. Under the conditions of Theorem 3.1 and

either Ep∗ [∇`(y, x; θ∞)] = 0 or E[θn] = θ∞ + o(n−1),

log(L(n, q)) := log(E[`(y, x; θn)]− E[`(y, x; θ∞)])

= − log(n)

+ log
(
Tr
(
Ep∗ [H`(y, x; θ∞)]I−1

θ∞
Σθ∞I

−1
θ∞

)
+ o(n−1)

)
.

When the model is well-specified, Iθ∞ = Σθ∞ and we
recover our earlier result. Corollary 3.3 captures all of the
parametric situations above, including well-specified linear
regression but also includes common other models that have
not been covered such as ridge regression.

3.3. Nonparametric models

Finally, we show that the same relationship holds for non-
parametric models such as kernel smoothing or binning. Our
goal will be to estimate some ground truth map y = f(x)+ε
for ε i.i.d N(0, 1) and f a differentiable L-Lipschitz func-
tion. The quality of an estimate will be measured by
some twice-differentiable loss `(y, x) with bounded first
two derivatives.

Given n samples (x1, y1) . . . (xn, yn) ∈ [0, 1]d × R drawn
i.i.d from some density p =

∑
k qkpk, one natural estimator

for this problem is the nonparametric binning estimator
f̂ which we define in terms of axis-aligned hypercubes
Bδ(x, S) := {x′ ∈ S : bx′/δc = bx/δc}. Let Xn :=
{x1 . . . xn} then we can define our estimator,

f̂δ(x) :=
1

|Bδ(x,Xn)|
∑

xi∈Bδ(x,Xn)

yi.

Assuming we choose δ and n sufficiently large that each bin
concentrates to its expected value, we have the following
error estimate

Proposition 3.2. Let Bδ(x, pk) = Ex′∼pk [|Bδ(x, {x′})|]
be the probability of drawing x′ ∼ pk in the same bin as x,
and assume Bδ(x, pk) is bounded away from zero. Then

log(L(n, q)) := log(E[`(f̂δ(x), x)− `(f(x), x)])

= − log(n) + log

(
E
[

`′′(f(x), x)∑
k qkBδ(x, pk)

]
+O

(√
log(γ−1) + d log(δ)√

2n

)
+O(Lδ

√
d+ L2δ2d)

)
,

holds with probability at least 1− γ, where the expectation
is taken with respect to draws of y.

Once again, we see a rational function in q, with no further
approximation needed. Each bin is a term in the rational
function approximation with weight `′′(x).
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4. Experiments
We have seen that a rational function is a reasonable approx-
imation to C(q) across 3 different settings. We will now
show that this is the case in practice, and additionally that
C(q) can be accurately estimated using a few models trained
on small datasets. The resulting estimates of model perfor-
mance are accurate for models with an order of magnitude
more data.

Baselines and implementation Our evaluations focus on
our ability to predict the loss incurred by a model L(n, q).
To do so, we will compare the rational function approxi-
mation procedure against several natural baselines for pre-
dicting the loss of a model. Each of the baselines corre-
spond to a different assumption about the functional form
of log(V (n, q)) that we use to approximate log(L(n, q)).

Datasize: Assume a functional form of log(V (n, q)) =
α log(n) + c ignoring the data composition and dependence
on q. We solve for α via least squares regression in closed
form.

Linear: Assume a functional form of log(V (n, q)) =
α log(n) + β>q + c. This is the natural approach if we
treat log(V (n, q)) as linear in q and log-linear in n. As with
the datasize baseline, we solve for the parameters using least
squares regression.

Ablation and Shapley: further constrain the linear baseline
by setting β to either the log-Shapley value obtained as
the marginal contribution of a data source (for the Shapley
baselines) or the log-ratio of losses obtained after removing
a data source (ablation). We use this approach as we found
it to dominate the usual assumption of treating V (n, q) as
being linear in the Shapley value.

MLP (small, medium, large): a multi-layer fully con-
nected neural network with tanh nonlinearities that directly
regresses log(V (n, q)) as a function of log(n). The small
model has 1 layer and hidden units equal to K={number
of data sources +1}; medium has K layers and K hidden
units; large has a depth of 5 and 50 hidden units each. We
train these three models to show that generic nonlinear re-
gression models do not necessarily succeed at extrapolation.

We will refer to our approach as Rational, and we fit this
using the Adagrad (Duchi et al., 2010) optimizer with 20000
steps and learning rate set over the interval [0.005, 0.5] via
goodness-of-fit on a held out set. We re-parametrize the
weights λ by log-transforming them for numerical stability,
and initialize it with a Xavier initialization. This prevents
degeneracies near λ = 0 and we empirically found the
optimization process to be stable over the cross-validation
range we used. We fixed the number of factors in the ratio-
nal approximation (M ) to one greater than the number of
data sources to reduce the number of hyperparameters to

tune. We found ε = 0 to work well on the regression and
classification datasets, and we use this value throughout.

4.1. Focused evaluation: Amazon sentiment

We now consider the Amazon sentiment prediction regres-
sion dataset in Mansour et al. (2009) where the goal is to
predict Amazon ratings for books (from 0 to 5 stars) us-
ing bag-of-words features from the reviews. The training
data comes from 3 domains that differ from the test data:
kitchen, DVD, and electronics reviews. The model is a stan-
dard ridge regularized regression model; we add the ridge
regularization term in order to show that Proposition 3.1
continues to hold even when the assumptions are slightly
violated. Our experimental setup for estimating model loss
is the following: we uniformly randomly sample the dataset
size for each source (resulting in between 0 and 1200 exam-
ples for each source), and train a model on this dataset. We
measure the test error via average squared loss on the books
domain.

We fit V (n, q) with 4 terms for C(q) by minimizing the
squared loss with respect to log-error on models containing
0-1200 examples total with ε = 0. We then use V (n, q) to
predict log-error on the models trained on 1200-3600 ex-
amples from each domain. The results of this extrapolation
task are shown in Table 2. Our V (n, q) estimate is highly
accurate (r2 = 0.96) and extrapolate from the low data to
high data regime without issue. This correlation is substan-
tially higher than either using data set size (r2 = −0.65),
a linear model (r2 = 0.76) and even better the training
error of the best additive model (r2 = 0.87). The MLP
models all underperform the rational function approxima-
tion and even substantially larger capacity models do not
help, demonstrating that the performance of our approach is
not merely due to a more flexible family of predictors. The
MLP (medium) model achieves the best fit and substantially
larger models that fit the training data well (MLP large) do
not improve performance. Attempting to optimize the MLP
model further for this task by varying the hidden unit sizes
did not help, as both increasing and decreasing the number
of hidden units per layer resulted in decreased performance.
Finally, this experiment used a ridge regression model which
deviates from the least-squares regression analyzed in the
theory section. We find that increasing the ridge penalty to
make this gap larger leads to even better results, with the r2

for the rational function approximation increasing to 0.96
as the regularization strength is varied from 300 to 1000.

The data size predictor has a negative r2 on the extrapola-
tion setting which may seem surprising. However, this can
happen whenever a predictor fails to perform better than
predicting the mean of the test set. It is nontrivial to predict
the mean of the test set in an extrapolation setting, and in
this case, data size estimates are generally uninformative as
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Metric Datasize Ablation Shapley Linear Rational MLP (small) MLP (medium) MLP (large)
Train 0.20 0.77 0.80 0.87 0.96 0.93 0.97 0.99

Extrapolation -0.65 0.43 0.51 0.76 0.96 0.23 0.75 0.57

Table 1. Accuracy of L(n, q) estimates on the Amazon review sentiment prediction task. Bold indicates the best performing model under
extrapolation, identified by a bootstrapped paired difference test.

data from the kitchen domain is less useful for predicting
book review scores. Next, we will examine the limits of pre-
dicting model performance by considering two additional
settings: when the estimates V (n, q) are fitted only for a
small subset of q (extrapolation on q) and when the ratio of
training and testing data sizes exceed a factor of 10.

Extrapolation over q In our previous experiment, we sub-
sampled a subset of the Amazon sentiment reviews dataset
to obtain model performance measurements for a wide range
of qs. While this emulates how we estimate V (n, q) from
a pilot dataset, we may additionally be interested in an ab-
lation experiment where we intentionally restrict the set of
values q that are used to fit V (n, q). This allows us to further
validate our rational function approximation by testing for
extrapolation in both n and q.

We use the Amazon sentiment prediction task from before,
but restrict the set of qs by ensuring that all examples in
the training set used to fit V (n, q) have qi < 1/3 for the qi
corresponding to the “kitchen” category. This means that
the model must learn to estimate the value of examples from
the kitchen domain when most of the dataset consists of
dvd and electronics reviews. We find only minor degrada-
tion in the performance of the rational function model, with
r2 = 0.92. The best baseline (linear) shows slight improve-
ments (r2 = 0.83) due to the fact that the kitchen examples
contribute substantially to the nonlinearity of V (n, q), but
does not match the performance of the rational function
approximation. The MLP methods perform worse-than-
random in this setting, suggesting that extrapolation over q
is substantially more challenging using an arbitrary function
approximator.

Large train-test gaps in n We may also be interested in
substantially larger extrapolation settings, beyond the factor
of 4 scaling considered earlier. To test this, we changed the
train-test split for the earlier Amazon experiment to split by
0− 360 training examples and 360− 3600 test. This results
in a close to a factor of 10 gap in data size – going beyond
this made the training uninformative, as models trained with
fewer than 100 examples per category have extremely high
error and variance. This substantially degrades the perfor-
mance of all models, but the overall conclusions remain
similar: the rational function approximation has relatively
high predictive power (r2 = 0.77) with substantial gaps
to the best baseline (linear, r2 = 0.65). Once again, we

find that the MLP based approaches perform worse than
random and degrade substantially in these more challenging
situations. For more complex experimental settings in the
next section, we were unable to achieve satisfactory perfor-
mance by any of the methods at 10× extrapolation, and we
view this as an interesting future work to build predictors
for more extreme extrapolation in general settings.

4.2. Broad evaluation: semantic parsing, translation,
and question answering

We now perform a shallow but broader evaluation of the
3 methods (linear, rational, MLP, and datasize) on 3 tasks
that violate our assumptions about model performance pre-
diction. We excluded the two ablation based methods as
they are special cases of the linear model, and generally
performed worse.

Task-oriented dialogue We perform this analysis on a
real world task-oriented dialogue system that the SM-
CalFlow dataset and model (Andreas et al., 2020) is based
on. The task differs from the Amazon setting in two ways:
the model is a nonlinear neural model for which there is
no closed form optimal experimental design and the task is
semantic parsing which is a more complex structured pre-
diction problem. There are 105727 total dialogues across
4 data sources consisting of a wizard-of-oz style crowd-
sourced dialogues, paraphrases of existing dialogues, on-
policy dialogues between the system and crowdworkers, and
hand-crafted dialogues by expert data scientists. We sample
the number of dialogues for each source with a uniform
distribution to determine q and then further subsample each
data source by [0.1, 0.3, 0.7, 1.0] to vary n. Test errors are
measured by whether the execution of the model matches
human references.

We fit V (n, q) with 5 terms for C(q) on 10 models contain-
ing less than 16,000 examples, and testing on 19 models
containing between 16,000 and 100,000 examples. The re-
sults in Table 2 show our approach is accurate (r2 = 0.89)
and matches the best baseline (r2 = 0.90) under a boot-
strapped paired difference test. Both methods outperform
other baselines including data size (r2 = 0.64). We see
more substantial gaps between the best MLP model (small)
and the rational function approximation here, with the MLP
model performing worse (r2 = 0.35) due to overaggressive
extrapolation. Analyzing these results together with the
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Task-oriented dialogue Machine Translation Multitask QA

Method Train Extrapolation Train Extrapolation Train Extrapolation
Datasize 0.54 0.64 (0.41, 0.78) 0.07 -0.80 (-3.48, -0.09) 0.49 0.38 (-0.19, 0.58)
Linear 0.99 0.90 (0.73, 0.95) 0.30 -0.69 (-3.02, -0.05) 0.87 -1.5 (-10.0, -0.29)
MLP 0.99 0.35 (-0.54, 0.61) 0.91 -0.95 (-3.49, -0.26) 0.99 -0.17 (-2.9, 0.20)

Rational 0.99 0.89 (0.72, 0.94) 0.97 0.83 (0.57, 0.92) 0.96 0.85 (0.43, 0.92)

Table 2. Accuracy of error estimates on 3 real-world tasks that pose challenges for performance prediction due to their use of deep neural
networks, non-separable losses such as BLEU, and weak supervision. Bolded method indicates best method with at a 5% significance
level on bootstrapped paired differences. For MLP, we report the best of 3 models for brevity.

(a) Data size (b) Linear (c) MLP (overparam) (d) Rational function

Figure 2. Performance prediction on a multi-domain machine translation task with BLEU as the performance measure. There is little
correlation between dataset size and loss (left panel) while the rational function approximation provides reasonable predictions (right).

amazon experiment suggests that the linearity assumption
may be substantially violated in certain situations (ama-
zon sentiment) even though it may perform well in some
situations (dialogue).

Machine translation Thus far, we have evaluated on sep-
arable losses such as mean squared error, or model accuracy.
We now show that our approach to predicting model per-
formance continues to work for non-separable losses such
as BLEU for machine translation. Our task is the standard
multi-domain machine translation dataset from Koehn &
Knowles (2017). We use the preprocessed data, model, and
hyperparameters from Hu et al. (2019) which was the state-
of-the-art domain adaptation based translation method for
this dataset in 2019. The model is trained on 4 data sources:
Acquis (legal text), EMEA (parliamentary proceedings), IT
(IT assistance), and Koran (translations of the Quran). Eval-
uation is performed on the Acquis test set using sacrebleu
to compute BLEU (Post, 2018).

To estimate the performance of models under varying data
composition, we subsample up to 300,000 sentences from
each data source, fit the estimators on 19 datasets of size less
than 600,000 total sentences, and evaluate on 11 datasets
of size 600,000 to 1,200,000. Since BLEU is a similar-
ity measure and is penalized by reference ambiguity, we
consider 50-BLEU to be the excess error. The rational func-
tion approximation was the only procedure to achieve a
positive r2 (0.83) among the methods. The difference in
prediction accuracies is apparent when plotting predicted
and observed log-loss (Figure 2). Especially notable is the
fact that the overparametrized MLP model fits well on the

training set, but completely fails to extrapolate. In contrast,
the linear model has a low training set r2, suggesting that
the relationship between data composition and performance
is fundamentally nonlinear in this case.

Multitask question answering Finally, we consider a
multitask learning problem where some of the data sources
are auxiliary tasks that may not directly be useful for the
test time task. This breaks the covariate shift assumption
that has been implicit throughout this paper. The target task
is the BoolQ question answering dataset , and we train this
model using a combination of 4 data sources: the MNLI en-
tailment task (Williams et al. (2018), 50,000 examples sub-
sampled), STS sentence similarity judgment task (Cer et al.
(2017), 5749 examples), MRPC paraphrasing task (Dolan
et al. (2004), 3668 examples), and the BoolQ training set
(Clark et al. (2019) 9427 examples). We use the GLUE
data with the Jiant package to train a multitask BERT based
model for this task (Wang et al., 2019b). The Jiant package
captures best-practices on the GLUE benchmark and is rep-
resentative of how a large class of pre-trained model based
classifiers operate.

The challenge with this task is that only the BoolQ training
set provides direct supervision for the test-time task, and
the other data sources provide weak supervision that may
or may not be helpful in the downstream problem. The
model performance estimates are fitted on 9 datasets with
up to 26,000 total examples and evaluated on 14 datasets
with more than 26,000 examples. The linear and MLP
estimates do not seem to extrapolate well to the test set,
and the datasize estimates provides only weak correlation
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to the true errors. Although the gaps between the various
methods are large, we note that the small sample size makes
the confidence intervals relatively wide compared to the
other experiments, and the 5 and 95% percentiles for the
bootstrapped paired difference between the rational and
datasize methods are (0.04, 0.80) respectively.

Overall, the rational function approximation is a promising
approximation for model performance scaling even in chal-
lenging scenarios with neural models, non-accuracy metrics
(such as BLEU), and multitask settings. Although linear
approximations to generalization error can be effective (as
seen in the dialogue task), this was not the case for the re-
maining three out of four tasks and the rational function
approximation obtained substantial gains in those settings.

5. Discussion
In this work, we’ve proposed a new approach to predict-
ing the performance of a prediction model as a function of
training data composition that consists of measuring model
accuracies for small n and a range of q and fitting a paramet-
ric model V (n, q) := −α log(n) +

∑m
i=1(

∑K
k=1 λikqk)−1.

Our main contribution is to show that for a range of models,
this nonlinear parametric model is a more natural approxima-
tion to generalization error than existing linear approxima-
tions. Empirical results on the Amazon sentiment regression
task show that this approximation is accurate under a range
of conditions, and experiments on neural models suggest
that the method can continue to perform well in more real-
istic situations where the theory does not necessarily hold.
Our work is a first step in going beyond closed-form esti-
mates of model performance or additivity assumptions. It
is an open question whether the same approach can scale
to more extreme extrapolation settings or large numbers of
data sources, and we hope to explore this in future work.
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