
Hierarchical VAEs Know What They Don’t Know
Supplementary Material

Jakob D. Havtorn 1 2 Jes Frellsen 1 Søren Hauberg 1 Lars Maaløe 1 2

A. Datasets
Table 1 lists the datasets used in the paper. We use the
predefined train/test splits for the datasets.

For SmallNORB and Omniglot we resize the original grey-
scale images to 28×28 with ordinary bi-linear interpolation.
For each of these datasets, we also create a version where
the grey-scale is inverted. We do this because, the overall
white nature of the images tends to make detecting them as
OOD from FashionMNIST artificially easy. The inversion is
done via the simple transformation xinverted = 255−xoriginal
since images are encoded as 8 bit unsigned integers.

Dataset Dimensionality Examples

FashionMNIST (Xiao et al., 2017) 28× 28× 1 70,000
MNIST (LeCun et al., 1998) 28× 28× 1 70,000
notMNIST (Bulatov, 2011) 28× 28× 1 547,838
KMNIST (Clanuwat et al., 2018) 28× 28× 1 70,000
Omniglot (Lake et al., 2015) 28× 28× 1 32,460
SmallNORB (LeCun et al., 2004) 28× 28× 1 97,200

CIFAR10 (Krizhevsky, 2009) 32× 32× 3 60,000
SVHN (Netzer et al., 2011) 32× 32× 3 99,289

Table 1. Overview of the used datasets.

B. Model details
In Table 2 we specify the hyperparameters used when train-
ing our models.

We make our source code available at https://github.
com/JakobHavtorn/hvae-oodd.

B.1. Hierarchical VAE

Our Hierarchical VAE (HVAE) model uses bottom-up in-
ference and top-down generative paths as specified in the

1Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kongens Lyngby, Denmark
2Corti AI, Copenhagen, Denmark. Correspondence to: Jakob D.
Havtorn <jdh@corti.ai/jakob.havtorn@gmail.com>, Lars Maaløe
<lm@corti.ai>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

paper. For grey-scale images, the output is parameterized
by a Bernoulli distribution while for natural images we
use a Discretized Logistic Mixture (Salimans et al., 2017).
The latent variables are parameterized by stochastic layers
that output the mean and log-variance of a diagonal co-
variance Gaussian. The prior distribution on the top-most
latent is a standard Gaussian. For grey-scale images, the
lowest latent space is parameterized by a convolutional neu-
ral network and has dimensions 14 × 14 × 8 interpreted
as (height × width × latent dimension). The highest two
latent variables are parameterized by dense transformations
with 16 and 8 units, respectively. For natural images, all
latent variables are parameterized by convolutional neural
networks and have dimensions (16× 16)× 8, (8× 8)× 16
and (4 × 4) × 32, respectively for z1, z2 and z3 given as
(height× width)× dim).

Each stochastic layer is preceeded by a determininistic trans-
formation. For both grey-scale and natural images, each de-
terministic transformation consists of three residual blocks
of the same type used by Maaløe et al. (2019). The structure
of a residual block is:

y = Conv (Act (Convs (Act(x)))) + x ,

where “Conv” refers to a same-padded convolution and
“Act” to the activation function. Within a residual block,
the first convolution always has stride 1 while the second
convolution has stride s. In a deterministic transformation,
any non-unit stride is performed in the third residual block.
For grey-scale images, we stride by 2 in the first and second
deterministic transformations but not the third. For natural
images, we stride by 2 in all three deterministic blocks. In
both cases, the first deterministic block uses a kernel size of
5 and the latter two a kernel of size 3. In all cases we use 64
channels We use the ReLU activation function (Fukushima,
1980; Nair & Hinton, 2010).

Since the benefits and drawbacks of using batch normaliza-
tion (Ioffe & Szegedy, 2015) in hierarchical VAEs is still
the matter of some debate (Sønderby et al., 2016; Vahdat
& Kautz, 2020; Child, 2021) we choose to use weight nor-
malization (Salimans & Kingma, 2016) as in other work
(Maaløe et al., 2019) and initialize the model using the orig-
inally proposed data-dependent initialization. To have the

https://github.com/JakobHavtorn/hvae-oodd
https://github.com/JakobHavtorn/hvae-oodd

Hierarchical VAEs Know What They Don’t Know

stochastic layers initialize to standard Gaussian distributions
(zero mean, unit variance), with this initialization, we select
the activation function for the variance as a Softplus,

Softplus(x) =
1

β
log (1 + exp(βx)) ,

with β = log(2) ≈ 0.693 to output 1 for x = 0.

Training of a HVAE model took approximately two days on
a single NVIDIA GTX 1080 Ti graphics card.

B.2. BIVA

For the BIVA model (Maaløe et al., 2019), we use a spec-
ification that is very similar to that of the HVAE above,
and to that of the original paper. The model has 10 latent
variables the lowest 3 of which are spatial and the rest are
densely connected in order to have an architecture similar to
the HVAE. The model uses an overall stride of 8, achieved
by striding by 2 in the first, fourth and sixth determinis-
tic transformations. From z1 to z10, the latents have the
following dimensions: The lowest three latents are spatial
(16 × 16) × 8, (16 × 16) × 16 and (16 × 16) × 32, given
as (height×width)× dim), while the rest are dense vectors
with dimensions of 42, 40, 38, 36, 34, 32, 30.

Training of a BIVA model took approximately a week on a
single NVIDIA GTX 1080 Ti graphics card.

C. Analysis of the influence of latent variables
on the marginal likelihood

In the paper, we argue that the lowest level latent variables,
which have the highest dimensionality, contribute the most
to the approximate likelihood. Here, we provide a stringent
mathematical argument that generalizes this to the exact
marginal likelihood in a model with a deterministic decoder.

C.1. Model specification

For an arbitrary hierarchical latent variable model, we have
a prior p(zL) and a generative mapping f : Rd → RD, such
that x = f(zL) and D > d. Note that we will assume that
f is deterministic, such that we are effectively working with
p(x|z) = δf(z)(x). This is a limiting assumption, but it
allows working through the following. For shorthand we
will simply write z = zL.

Let f have a bottleneck architecture, i.e.

f(z) = f1(. . . fL−1(fL(z))) , (1)

where

fi : Rdi → Rdi−1 , i = L, . . . , 1 . (2)

Here we use the notation d0 = D = |x| and dL = d = |z|
and further assume d0 ≥ d1 ≥ . . . ≥ dL−1 ≥ dL which
gives the bottleneck.

Hyperparameter Setting/Range

All

Optimization Adam (Kingma & Ba, 2015)
Learning rate 3e− 4
Batch size 128
Epochs 2000
Free bits 2 nats shared among all zi
Free bits constant 200 epochs
Free bits annealed 200 epochs
Activation ReLU

Initialization Data-dependent
(Salimans & Kingma, 2016)

HVAE
Latent dimensionality 8-16-32 (natural) / 8-16-8 (grey)
Convolution kernel 5-3-3
Stride 2-2-2 (natural) / 2-2-1 (grey)
Warmup anneal period 200 epochs

BIVA

Latent dimensionality 10-8-6 (spatial)
42-40-38-36-34-32-30 (dense)

Convolution kernel 5-3-3-3-3-3-3-3-3-3
Stride 2-1-1-2-1-2-1-1-1-1

Table 2. Selection of most important hyperparameters and their
setting. Convolutional kernels are square and latent dimensions
are given without spatial dimensions which are given in the text.
See Appendix B for more details.

Assuming x is such that a corresponding latent variable z
exists, i.e. that there exists z such that x = f(z), then we
can write the likelihood of x through a standard change of
variables (similar to flow-based models),

p(x) = p(z)

L∏
i=1

(√
detJTi Ji

)−1
, (3)

where Ji is the Jacobian of fi, i.e.

Ji =
∂fi
∂zi
∈ Rdi×di−1 . (4)

Here we use the notation that zi is the representation at
layer i. Note that JTi Ji is a di−1 × di−1 symmetric positive
semidefinite matrix (determinant ≥ 0).

The log-likelihood can be written as

log p(x) = log p(z)− 1

2

L∑
i=1

log detJTi Ji . (5)

By construction of determinants, we can generally expect
these determinants to grow with the dimensionality of the
matrix. We should expect the determinant of a d× d matrix

Hierarchical VAEs Know What They Don’t Know

0 5000 10000 15000 20000 25000 30000 35000

Layer input dimensionality

−50000

−40000

−30000

−20000

−10000

0

10000

−
1 2

lo
g

d
et
J
T i
J
i

σ = 0.01

σ = 0.1

σ = 1

σ = 10

Figure 1. The expected inverse volume change for Gaussian Jaco-
bians (7) on a log-scale.

to be of the order O(λd) for some number λ > 0. With that
in mind, we should generally expect that

detJTi+1Ji+1 > detJTi Ji , (6)

due to the bottleneck assumption. If so, we see
that the marginal likelihood p(x) will be dominated by(√

detJT1 J1

)−1
, i.e. low-level features have a higher influ-

ence on the likelihood than more important semantic ones.

C.2. The Gaussian case

The previous remarks can be made more precise if we make
distributional assumptions on the Jacobians. Here we will
assume that the Jacobians of each layer follow a Gaussian
distribution. Specifically, we will assume that each entry in
Ji is distributed asN (0, σ2). The analysis below extends to
nonzero means and more general covariance structure, but
this comes with a cost of less transparent notation. In this
setting, JTi Ji follows a Wishart distribution (in the general
setting it would follow a non-central Wishart distribution).
Muirhead (2009) tells us that the expected multiplicative
contribution to the likelihood of each layer is

E

[(√
detJTi Ji

)−1]
= σ−di−12−

di−1
2

Γdi−1

(
1
2di − 1

2

)
Γdi−1

(
1
2di
)

= σ−di−12−
di−1

2
Γ
(
1
2 (di − di−1)

)
Γ
(
1
2di
)

(7)

where Γd is the multivariate Gamma function. Assuming
that the increase in layer dimension di − di−1 is constant,
then we see that (7) goes to zero as di goes to infinity as
the Γ function grows super-exponentially to infinity. This
super-exponential growth further implies that the first layers

dominate the marginal likelihood p(x). This is also visually
evident in Figure 1.

D. Derivation of the L>k bound
In this section we present the derivation of L>k and show
that it is a lower bound on the marginal likelihood.

First, we consider a two-layered VAE with bottom-up in-
ference. We proceed very similarly to the derivation of the
regular ELBO and also use Jensen’s inequality.

log p(x) = log

∫ ∫
p(x|z1)p(z1|z2)p(z2)dz1dz2 (8)

= log

∫ ∫
q(z2|x)

q(z2|x)
p(x|z1)p(z1|z2)p(z2)dz1dz2

= log

∫ ∫
q(z2|x)p(z1|z2)

p(x|z1)p(z2)

q(z2|x)
dz1dz2

≥ Ep(z1|z2)q(z2|x)

[
log

p(x|z1)p(z2)

q(z2|x)

]
≡ L>1 .

Here, we have introduced the variational distribution
q(z2|x) which, naively, is different from any of the available
variational distributions q(z1|x) and q(z2|z1). However, it’s
easy to see that we can simply define q(z2|x) = q(z2|d1(x))
where d1(x) = E [q(z1|x)]. I.e. we compute the distribu-
tion over z2 via the mode of q(z1|x). This is possible since
we exclusively manipulate the variational proposal distribu-
tion without altering the generative model p(x, z).

In general, the derivation of L>k for an L-layered hierarchi-
cal VAE with z = z1, . . . , zL is as follows:

log p(x) = log

∫
p(x|z)p(z)dz (9)

= log

∫
q(z>k|x)

q(z>k|x)
p(x|z)p(z)dz

= log

∫
q(z>k|x)p(z)

p(x|z)

q(z>k|x)
dz

= log

∫
q(z>k|x)p(z≤k|z>k)p(z>k)

p(x|z)

q(z>k|x)
dz

= log

∫
q(z>k|x)p(z≤k|z>k)

p(x|z)p(z>k)

q(z>k|x)
dz

≥ Ep(z≤k|z>k)

[
log q(z>k|x)

p(x|z)p(z>k)

q(z>k|x)

]
≥ Ep(z≤k|z>k)q(z>k|x)

[
log

p(x|z)p(z>k)

q(z>k|x)

]
≡ L>k .

Similar to the L = 2 case above, we have defined

q(z>k|x) = q(z>k|dk(x))

with dk defined recursively as

dk(x) = E [q(zk|dk−1(x))] , d0(x) = x .

Hierarchical VAEs Know What They Don’t Know

That is, we simply consider the inference network below
zk+1 to be a deterministic encoder and forward pass the
mode of each preceding variational distribution.

Additionally, we obtain p(z≤k|z>k)p(z>k) by splitting

p(z) = p(zL)p(zL−1|zL) · · · p(z1|z2)

at index k. Importantly, we then evaluate

p(z>k) = p(zL)p(zL−1|zL) · · · p(zk+1|zk+2)

with samples from q(z>k|x) while

p(z≤k|z>k) = p(zk|zk+1)p(zk−1|zk) · · · p(z1|z2)

is evaluated for zk with zk+1 ∼ q(z>k|x) and for z<k with
z>k obtained conditionally from itself.

E. The complementary L<l bound
We can generalize the L>k bound by introducing the
flipped version, L<l, which compared to L>k, in-
stead samples the L − l highest latent variables in
the hierarchy from the prior zl, . . . , zL ∼ pθ(z≥l) =
pθ(zl|zl+1) · · · pθ(zL) and the remaining lower latents from
the approximate posterior ẑ1, . . . , ẑl−1 ∼ qφ(z<l|x) =
qφ(z1|x)qφ(z2|z1) · · · qφ(zl−1|zl−2),

L<l = Epθ(z≥l)qφ(z<l|x)

[
log

pθ(x, z)pθ(z<l)

qφ(z<l|x)

]
. (10)

Similar to L>k, we recover the regular ELBO for l = L.
Contrary to L>k, this bound puts as much emphasis on the
lowest latent variables as the regular ELBO but keeps track
of large deviation from the unconditional prior in the top
L − l KL-terms since it is not guided by the approximate
posterior for z>l. We hypothesize that this bound might be
useful for OOD detection in cases where the discriminating
factor is to be found in low-level statistics rather than high-
level features.

Additionally, we can incorporate it in a generalized log
likelihood-ratio between L<l and L>k

LLR>k<l = L<l − L>k. (11)

We hypothesize that this score, or the other possible permu-
tations of it, might be useful for OOD detection but leave
further examination to future work.

F. Note on the KL-term of hierarchical VAEs
In this research we choose model parameterizations relying
on bottom-up inference (Burda et al., 2016),

qφ(z|x) = qφ(z1|x)
∏L
i=2 qφ(zi|zi−1) . (12)

We do this because bottom-up inference enables the model
to learn covariance between the latent variables in the hierar-
chy. In the inference model, any latent variable is dependent
on the latent variables below it in the hierarchy and, impor-
tantly, the top most latent variable is dependent on all other
latent variables.

In contrast, a top-down inference model (Sønderby et al.,
2016) has a topmost latent variable zL that is independent
of the other latent variables and is directly given by x.

qφ(z|x) = qφ(zL|x)
∏1
i=L−1 qφ(zi|zi+1) . (13)

This, in essence, makes zL a mean-field approximation
without any covariance structure tying it to the other latent
variables, Cov(zL,i, zk,j) = 0 for k < L. Furthermore,
since the approximate posterior (and the prior) typically
have diagonal covariance, zL is also mean-field within its
own elements, Cov(zL,i, zL,j) = 0 for i 6= j.

We hypothesize that the covariance of latent variables to-
wards the top of the hierarchy with other latent variables is
important for learning semantic representations. However,
top-down inference models are easier to optimize as has
recently been demonstrated (Sønderby et al., 2016; Vahdat
& Kautz, 2020; Child, 2021).

In the following, we inspect the differences between the
ELBO used for bottom-up inference and the ELBO used
for top-down inference and show that it is not generally
possible to decompose the total KL-divergence into separate
KL-divergences per latent variable. Specifically, for top-
down inference it is possible to obtain KL-divergence at
the top-most latent variable and an expectation of a KL-
divergence for the other latent variables. For bottom-up
inference, the resulting terms are no longer KL-divergences
except at the top-most latent variable.

We ask the question whether models relying on top-down
inference are impeded in their use for semantic OOD detec-
tion, or whether they still learn to assign a more semantic
representation in the top-most variables simply due to the
flexibility of the deterministic neural network layers. This
remains an open research question.

F.1. Bottom-up inference

By splitting up the expectation, we can write the ELBO of a
two-layer bottom-up hierarchical VAE as

log p(x) ≥ Eq(z1,z2|x) [log p(x|z1)] (14)
+ Eq(z1,z2|x) [log p(z1|z2)− log q(z1|x)]

+ Eq(z1,z2|x) [log p(z2)− log q(z2|z1)] .

Hierarchical VAEs Know What They Don’t Know

We can write out the expectations in order to derive the
KL-divergence terms of the bottom-up ELBO:

log p(x) ≥
∫ ∫

log p(x|z1)dz2z1 (15)

+

∫
q(z1|x)

∫
q(z2|z1) log

p(z1|z2)

q(z1|x)
dz2z1

+

∫
q(z1|x)

∫
q(z2|z1) log

p(z2)

q(z2|z1)
dz2z1 .

From the above, we can see that since the decomposition
is in a reverse order, we cannot derive the KL-divergence
for the second term. This will hold in general for L-layered
models for any latent variables z1, ..., zL−1:

log p(x) ≥ Eq(z1,z2|x) [log p(x|z1)] (16)

+ Eq(z1|x)

[
Eq(z2|z1)

[
log

p(z1|z2)

q(z1|x)

]]
+ Eq(z1|x) [−DKL[q(z2|z1)||p(z2)]] .

F.2. Top-down inference

By splitting up the expectation, we can write the ELBO of a
two-layer top-down hierarchical VAE as

log p(x) ≥ Eq(z1,z2|x) [log p(x|z1)] (17)
+ Eq(z1,z2|x) [log p(z2|x)− log q(z2|x)]

+ Eq(z1,z2|x) [log p(z1|z2)− log q(z1|z2)] .

We can write out the expectations in order to derive the
KL-divergence terms:

log p(x) ≥
∫ ∫

log p(x|z1)dz1z2 (18)

+

∫
q(z2|x) log

p(z2|x)

q(z2|x)
dz2

+

∫
q(z2|x)

∫
q(z1|z2) log

p(z1|z2)

q(z1|z2)
dz1z2 .

The KL-divergence terms can now easily be computed by:

log p(x) ≥ Eq(z1,z2|x) [log p(x|z1)] (19)
−DKL[q(z2|x)||p(z2)]

− Eq(z2|x) [DKL[q(z1|z2)||p(z1|z2)] .

Note that the KL-divergence in the second layer is not exact
since it is dependent on the sample-noise from the layer
below. An exact solution can only be derived if the latent
variables z are all conditionally independent. However, this
comes at the cost of not learning a covariance structure.

G. Additional results
We provide additional results for a model trained on Fash-
ionMNIST in Table 5, a model trained on MNIST in Table 6,

OOD dataset Metric AUROC↑ AUPRC↑ FPR80↓
Trained on SVHN

CIFAR10 L>0 0.992 0.993 0.004
CIFAR10 L>1 0.988 0.990 0.002
CIFAR10 L>2 0.746 0.756 0.468
CIFAR10 LLR>1 0.939 0.950 0.052

SVHN L>0 0.599 0.587 0.702
SVHN L>1 0.555 0.543 0.755
SVHN L>2 0.403 0.431 0.869
SVHN LLR>1 0.489 0.484 0.799

Table 3. Additional results for the HVAE model trained on SVHN.
All results computed with 1000 importance samples.

OOD dataset Metric AUROC↑ AUPRC↑ FPR80↓
Trained on CIFAR10

SVHN L>0 0.083 0.318 0.974
SVHN L>1 0.097 0.320 0.972
SVHN L>2 0.693 0.725 0.599
SVHN LLR>2 0.811 0.837 0.394

CIFAR10 L>0 0.485 0.488 0.817
CIFAR10 L>1 0.467 0.476 0.822
CIFAR10 L>2 0.411 0.433 0.869
CIFAR10 LLR>1 0.469 0.479 0.835

Table 4. Additional results for the HVAE model trained on CI-
FAR10. All results computed with 1000 importance samples.

a model trained on CIFAR10 in Table 4 and a model trained
on SVHN in Table 3.

We note that while the likelihood is highly unreliable across
the datasets, the proposed log likelihood-ratio score is con-
sistent and always allows correct OOD detection with high
AUROC↑.

Hierarchical VAEs Know What They Don’t Know

OOD dataset Metric AUROC↑ AUPRC↑ FPR80↓
Trained on FashionMNIST

MNIST L>0 0.268 0.363 0.882
MNIST L>1 0.593 0.591 0.658
MNIST L>2 0.712 0.750 0.548
MNIST LLR>1 0.986 0.987 0.011

notMNIST L>0 0.916 0.932 0.116
notMNIST L>1 0.983 0.986 0.000
notMNIST L>2 0.997 0.997 0.000
notMNIST LLR>1 0.998 0.998 0.000

KMNIST L>0 0.690 0.694 0.554
KMNIST L>1 0.835 0.863 0.359
KMNIST L>2 0.844 0.875 0.339
KMNIST LLR>1 0.974 0.977 0.017

Omniglot28x28 L>0 0.898 0.837 0.166
Omniglot28x28 L>1 0.991 0.989 0.011
Omniglot28x28 L>2 1.000 1.000 0.000
Omniglot28x28 LLR>2 1.000 1.000 0.000

Omniglot28x28Inverted L>0 0.261 0.361 0.879
Omniglot28x28Inverted L>1 0.450 0.431 0.709
Omniglot28x28Inverted L>2 0.557 0.574 0.678
Omniglot28x28Inverted LLR>1 0.954 0.954 0.050

SmallNORB28x28 L>0 0.982 0.984 0.000
SmallNORB28x28 L>1 0.998 0.998 0.000
SmallNORB28x28 L>2 1.000 1.000 0.000
SmallNORB28x28 LLR>2 0.999 0.999 0.002

SmallNORB28x28Inverted L>0 0.965 0.971 0.000
SmallNORB28x28Inverted L>1 0.997 0.992 0.000
SmallNORB28x28Inverted L>2 0.981 0.985 0.000
SmallNORB28x28Inverted LLR>2 0.941 0.946 0.069

FashionMNIST L>0 0.476 0.484 0.816
FashionMNIST L>1 0.475 0.482 0.817
FashionMNIST L>2 0.475 0.484 0.823
FashionMNIST LLR>1 0.488 0.496 0.811

Table 5. Additional results for the HVAE model trained on Fash-
ionMNIST. All results computed with 1000 importance samples.

OOD dataset Metric AUROC↑ AUPRC↑ FPR80↓
Trained on MNIST

FashionMNIST L>0 1.000 1.000 0.000
FashionMNIST L>1 1.000 1.000 0.000
FashionMNIST L>2 0.981 0.983 0.003
FashionMNIST LLR>1 0.999 0.999 0.000

notMNIST L>0 1.000 1.000 0.000
notMNIST L>1 1.000 1.000 0.000
notMNIST L>2 1.000 1.000 0.000
notMNIST LLR>1 1.000 0.999 0.000

KMNIST L>0 1.000 1.000 0.000
KMNIST L>1 1.000 1.000 0.000
KMNIST L>2 0.987 0.987 0.011
KMNIST LLR>1 0.999 0.999 0.000

Omniglot28x28 L>0 1.000 1.000 0.000
Omniglot28x28 L>1 1.000 1.000 0.000
Omniglot28x28 L>2 1.000 1.000 0.000
Omniglot28x28 LLR>1 1.000 1.000 0.000

Omniglot28x28Inverted L>0 0.862 0.902 0.205
Omniglot28x28Inverted L>1 0.923 0.943 0.056
Omniglot28x28Inverted L>2 0.749 0.691 0.411
Omniglot28x28Inverted LLR>1 0.944 0.953 0.057

SmallNORB28x28 L>0 1.000 1.000 0.000
SmallNORB28x28 L>1 1.000 1.000 0.000
SmallNORB28x28 L>2 1.000 1.000 0.000
SmallNORB28x28 LLR>1 1.000 1.000 0.000

SmallNORB28x28Inverted L>0 1.000 1.000 0.000
SmallNORB28x28Inverted L>1 1.000 1.000 0.000
SmallNORB28x28Inverted L>2 0.977 0.980 0.001
SmallNORB28x28Inverted LLR>1 0.985 0.987 0.000

MNIST L>0 0.488 0.486 0.807
MNIST L>1 0.469 0.469 0.816
MNIST L>2 0.514 0.505 0.791
MNIST LLR>2 0.515 0.507 0.792

Table 6. Additional results for the HVAE model trained on MNIST.
All results computed with 1000 importance samples.

