
SPECTRE: Defending Against Backdoor Attacks Using Robust Statistics

Appendix

A. Previous approaches
For completeness, we write the algorithms we used for comparisons here.

A.1. Principal Component Defense

The principal component defense was proposed in (Tran et al., 2018). The representations produced by the network are
analyzed by projecting them onto the top eigenvector of their covariance and then removing points that are far from the
mean. This algorithm is shown in Algorithm 5.

Algorithm 5: PCA Defense (Tran et al., 2018)

Input: representation S = {hi ∈ Rd}ni=1

µ(S)← 1
n

∑n
i=1 hi

Center the data: S1 ← {hi − µ(S)}hi∈S
v, λ,u← SVD1(S1)
return 1.5εn samples with greatest |〈hi,v〉|

A.2. Clustering Defense

The clustering defense was proposed in (Chen et al., 2018a). The representations are analyzed by reducing their dimension
using principal component analysis and running a clustering algorithm on the result. The exact algorithm is shown in
Algorithm 6.

Algorithm 6: Activation Clustering (Chen et al., 2018a)

Input: representation S = {hi ∈ Rd}ni=1, dimension k
µ(S)← 1

n

∑n
i=1 hi

Center the data: S1 ← {hi − µ(S)}hi∈S
U,Λ, V ← SVDk(S1)

C1, C2 ← 2-means({U>h | h ∈ S1})
return clusters C1, C2

Chen et al. (2018a) propose several methods to determine which clusters, if any, contain poisoned representations. To avoid
these complexities, we equip the algorithm with an oracle, CLUSTERORACLE, which given two clusters returns the cluster
with the greatest fraction of poisoned examples. The algorithm which returns the best cluster out of C1, C2 give by the oracle
should perform at least as well as any heuristic to determine which clusters to return. There are two other concerns which
make it difficult to compare this defense with Algorithm 1: first, there is no way to control how many examples are removed
and second, the performance of the clustering varies with the initialization of k-means, which is random. Therefore, we use
a second step which repeatedly runs Algorithm 6 and samples the cluster with the highest fraction of poison according to the
oracle in order to build the set of samples to remove. The algorithm is shown in Algorithm 7.

Algorithm 7: Activation Clustering with Cluster Oracle

Input: representation S = {hi ∈ Rd}ni=1, dimension k
R← ∅
while |R| < 1.5εn do

C1, C2 ← ACTIVATIONCLUSTERING(S, k) [Algorithm 6]
C ← CLUSTERORACLE(C1, C2)
Sample h uniformly from C
Add h to R if h 6∈ R

return samples corresponding to R

SPECTRE: Defending Against Backdoor Attacks Using Robust Statistics

Algorithm 7 should perform well whenever the clustering is able to effectively separate the poisoned examples from clean
ones and its performance should have relatively low variance as R is built using many independent clustering runs. Although
this process is not guaranteed to terminate, we found that it did in all of our experiments.

B. Experimental results
B.1. Complete experimental results for pixel, periodic, and label consistent attacks

Complete experimental results for m-way pixel attacks, m-way periodic attacks, and label consistent attacks are shown in
Tables 6 to 8 respectively.

m-Way Pixel Attack PCA Defense Clustering Defense SPECTRE
m εn accp accp∗ prm acc′p acc′p∗ prm acc′p acc′p∗ prm acc′p acc′p∗

1 500 0.942 0.942 471 0.004 0.004 375 0.820 0.820 500 0.000 0.000
1 250 0.894 0.890 103 0.880 0.880 54 0.904 0.904 249 0.001 0.001
1 125 0.627 0.627 0 0.834 0.834 11 0.842 0.842 122 0.000 0.000
1 62 0.331 0.331 0 0.519 0.519 2 0.297 0.297 59 0.000 0.000
1 31 0.075 0.075 0 0.023 0.023 0 0.010 0.010 30 0.000 0.000
1 15 0.001 0.001 0 0.001 0.001 1 0.002 0.002 0 0.000 0.000

2 500 0.830 0.987 172 0.675 0.914 186 0.631 0.901 495 0.000 0.000
2 250 0.588 0.888 9 0.503 0.817 35 0.518 0.808 237 0.002 0.002
2 125 0.058 0.106 0 0.058 0.139 6 0.148 0.325 118 0.000 0.000
2 62 0.009 0.017 0 0.007 0.011 1 0.002 0.007 59 0.000 0.000
2 31 0.002 0.002 0 0.000 0.000 0 0.000 0.000 25 0.000 0.000
2 15 0.000 0.000 0 0.001 0.000 0 0.000 0.000 0 0.000 0.000

3 500 0.742 0.990 147 0.665 0.970 204 0.606 0.963 486 0.001 0.000
3 250 0.503 0.908 0 0.367 0.367 35 0.482 0.914 241 0.001 0.000
3 125 0.225 0.616 0 0.083 0.348 4 0.186 0.547 122 0.000 0.000
3 62 0.003 0.010 0 0.002 0.008 0 0.013 0.025 57 0.000 0.001
3 31 0.001 0.001 0 0.000 0.002 0 0.000 0.001 0 0.000 0.000
3 15 0.000 0.000 0 0.001 0.000 0 0.001 0.000 0 0.002 0.002

Table 6: Under the m-way pixel attacks, the proposed robust poison detection in Algorithm 1 completely removes the
backdoor for all m ∈ {1, 2, 3} and all sizes of the poisoned data εn, achieving the retrained accuracy of near zero on
backdoored test samples. On the other hand, the state-of-the-art PCA and clustering defenses fail to remove enough poisons
on almost all cases. There are 5,000 clean training samples with the target label “deer”. accp is the accuracy on poisoned test
data with one pixel watermark and accp∗ is the accuracy on poisoned test data with all m pixel watermarks simultaneously.
acc′p and acc′p∗ are the respective quantities after each defense has been applied and the network has been retrained. prm is
the number of poisoned examples removed by the defense, out of 1.5εn examples removed in total. Test accuracies on clean
data were between 92.5% and 93.5% in all experiments and are omitted in the table.

SPECTRE: Defending Against Backdoor Attacks Using Robust Statistics

m-Way Periodic Attack PCA Defense Clustering Defense SPECTRE
m εn accp accp∗ prm acc′p acc′p∗ prm acc′p acc′p∗ prm acc′p acc′p∗

1 500 0.975 0.975 19 0.976 0.976 151 0.987 0.987 493 0.004 0.004
1 250 0.961 0.961 2 0.968 0.968 40 0.933 0.933 249 0.001 0.001
1 125 0.912 0.912 0 0.916 0.916 16 0.889 0.889 123 0.000 0.000
1 62 0.744 0.744 0 0.764 0.764 4 0.722 0.722 62 0.001 0.001
1 31 0.318 0.318 0 0.329 0.329 0 0.440 0.440 28 0.003 0.003
1 15 0.003 0.003 0 0.005 0.005 0 0.002 0.002 0 0.007 0.007

2 500 0.896 0.996 176 0.873 0.995 172 0.824 0.988 499 0.001 0.001
2 250 0.813 0.982 10 0.817 0.986 63 0.666 0.961 248 0.000 0.000
2 125 0.501 0.881 0 0.460 0.868 10 0.416 0.829 124 0.000 0.000
2 62 0.118 0.359 0 0.070 0.280 1 0.058 0.209 61 0.002 0.003
2 31 0.012 0.057 0 0.001 0.010 0 0.015 0.067 0 0.004 0.021
2 15 0.001 0.004 0 0.001 0.005 0 0.004 0.001 0 0.004 0.008

Table 7: Under the m-way periodic attacks, the proposed robust poison detection in SPECTRE completely removes the
backdoor for all m ∈ {1, 2} and all sizes of the poisoned data εn, achieving the retrained accuracy of near zero on
backdoored test samples. On the other hand, the state-of-the-art PCA and clustering defenses fail to remove enough poisons
on almost all cases. There are 5,000 clean training samples with the target label “deer”. Accuracies on clean data were
between 92.5% and 93.5% in all experiments and are omitted in the table.

Attack PCA Defense Clustering Defense SPECTRE
type εn accp prm prm prm

`2 500 0.881 500 500 500
`2 250 0.932 250 140 250
`2 125 0.843 1 17 125
`2 62 0.856 0 5 62
`2 31 0.051 0 1 31
`2 15 0.018 0 0 0

`∞ 500 0.798 500 500 500
`∞ 250 0.894 250 245 250
`∞ 125 0.744 0 24 125
`∞ 62 0.472 0 5 62
`∞ 31 0.024 0 0 31
`∞ 15 0.017 0 0 0

GAN 500 0.633 500 500 500
GAN 250 0.584 47 78 250
GAN 125 0.680 28 20 125
GAN 62 0.261 0 2 62
GAN 31 0.022 0 0 0
GAN 15 0.010 0 0 0

Table 8: The number of removed poisoned examples prm under label consistent attacks. SPECTRE successfully removes
all poisoned examples whenever the attack accuracy is larger than 10%. Accuracies on clean data were between 91% and
92.5% in all experiments and are omitted in the table.

SPECTRE: Defending Against Backdoor Attacks Using Robust Statistics

B.2. Experimental results for hidden trigger attacks

We also ran experiments for the hidden trigger attack of (Saha et al., 2020). This attack applies in the transfer learning
setting. To create poisoned images, a batch of images from the target label is selected. Next a batch of images from the
source label is selected and watermarks are applied to them. Each corrupted source labelled image is paired with the target
image that is closest in the representation space of the pretrained network. Then projected gradient descent is used to find
small perturbations of the target images that bring their representations close to those of the watermarked images. This
process is iterated until a suitably good set of perturbed images is found and these are added to the target label.

When the network is fine tuned on a dataset which has been poisoned this way, the perturbed images will behave similarly to
the original watermarked images, constructing a backdoor which is triggered by the watermark. In production when given a
watermarked image, the network will recognize it and activate the backdoor even though the watermark never appears in the
training data. As in the label consistent attack, the perturbed images are visually similar to clean examples from the target
label, so they are difficult to detect.

We tested the PCA defense, clustering defense, and our defense against the hidden trigger attack for εn ∈ {400, 200, 100, 50}
where n = 800. The results are shown in Table 9.

Attack PCA Defense Clustering Defense SPECTRE
`2 bound εn accp prm prm prm

8 400 0.548 328 391 400
8 200 0.350 183 186 198
8 100 0.128 95 49 98
8 50 0.038 27 9 50

16 400 0.600 327 396 399
16 200 0.400 172 200 200
16 100 0.100 78 34 97
16 50 0.060 18 3 48

32 400 0.510 331 392 400
32 200 0.312 183 189 199
32 100 0.128 93 41 97
32 50 0.028 29 15 50

Table 9: The number of removed poisoned examples prm under hidden trigger attacks. The `2 bound is projected gradient
descent perturbation norm limit. SPECTRE successfully removes nearly all poisoned examples in all cases. Accuracies on
clean data were between 98% and 99.5% in all experiments and are omitted in the table.

More details regarding the experimental setup are given in Appendix E.4.

B.3. Experimental results for different source-target label pairs

In our previous experiments, we chose “deer” as the source label and “truck” as the target label following (Tran et al., 2018).
We also ran the m-way pixel attack experiments for m ∈ {1, 3} and εn ∈ {500, 125} for ten combinations of source and
target labels. The labels are airplane (0), automobile (1), bird (2), cat (3), deer (4), dog (5), frog (6), horse (7), ship (8), and
truck (9). The results are shown in Table 10. Overall the trend in performance is similar, although there are some cases where
none of the defences work well (e.g., (`s, `t,m, εn) = (5, 3, 3, 125)). We suspect that this is because the representations of
the clean and poisoned samples are merged at an earlier point in the network, making them difficult to distinguish once they
reach the penultimate residual block. We believe exploring this phenomenon presents an interesting research direction.

SPECTRE: Defending Against Backdoor Attacks Using Robust Statistics

m-Way Pixel Attack PCA Defense Clustering Defense SPECTRE
`s `t m εn accp accp∗ prm acc′p acc′p∗ prm acc′p acc′p∗ prm acc′p acc′p∗

0 9 1 500 0.978 0.978 397 0.655 0.655 254 0.979 0.970 496 0.002 0.002
0 9 1 125 0.913 0.913 3 0.865 0.865 11 0.845 0.845 124 0.009 0.009
0 9 3 500 0.834 0.995 15 0.823 0.997 79 0.814 0.996 374 0.223 0.576
0 9 3 125 0.464 0.868 0 0.475 0.890 3 0.158 0.474 47 0.013 0.025

1 7 1 500 0.963 0.963 195 0.933 0.933 237 0.905 0.905 500 0.001 0.001
1 7 1 125 0.758 0.758 0 0.665 0.665 17 0.750 0.750 125 0.000 0.000
1 7 3 500 0.765 0.986 15 0.714 0.979 138 0.687 0.969 498 0.000 0.000
1 7 3 125 0.2 0.598 0 0.127 0.441 5 0.313 0.746 122 0.001 0.001

2 5 1 500 0.963 0.963 417 0.682 0.682 259 0.985 0.985 493 0.026 0.026
2 5 1 125 0.758 0.758 94 0.020 0.020 13 0.956 0.956 119 0.024 0.024
2 5 3 500 0.765 0.986 17 0.781 0.995 66 0.789 0.991 375 0.042 0.099
2 5 3 125 0.2 0.598 1 0.306 0.754 4 0.043 0.187 27 0.055 0.196

3 8 1 500 0.993 0.993 491 0.004 0.004 355 0.966 0.966 500 0.003 0.003
3 8 1 125 0.94 0.940 0 0.941 0.941 26 0.935 0.935 125 0.003 0.003
3 8 3 500 0.825 0.997 1 0.819 0.998 152 0.601 0.947 482 0.006 0.004
3 8 3 125 0.131 0.448 0 0.102 0.340 5 0.021 0.074 113 0.002 0.005

4 1 1 500 0.951 0.951 283 0.994 0.994 252 0.986 0.986 500 0.001 0.001
4 1 1 125 0.951 0.951 0 0.956 0.956 8 0.944 0.944 125 0.001 0.001
4 1 3 500 0.89 0.996 0 0.851 0.998 107 0.782 0.994 461 0.003 0.007
4 1 3 125 0.159 0.536 0 0.226 0.657 4 0.376 0.822 0 0.074 0.346

5 3 1 500 0.99 0.990 423 0.357 0.357 355 0.911 0.911 495 0.072 0.072
5 3 1 125 0.944 0.944 10 0.878 0.878 4 0.905 0.905 118 0.075 0.075
5 3 3 500 0.815 0.998 159 0.619 0.940 74 0.745 0.995 400 0.107 0.146
5 3 3 125 0.22 0.533 6 0.206 0.516 2 0.263 0.655 1 0.286 0.668

6 2 1 500 0.99 0.990 262 0.981 0.981 179 0.980 0.980 497 0.014 0.014
6 2 1 125 0.962 0.962 15 0.948 0.948 6 0.954 0.954 122 0.021 0.021
6 2 3 500 0.712 0.984 93 0.678 0.975 78 0.672 0.989 300 0.028 0.048
6 2 3 125 0.066 0.208 0 0.082 0.267 3 0.104 0.313 0 0.065 0.211

7 0 1 500 0.998 0.998 459 0.044 0.044 292 0.964 0.964 500 0.009 0.009
7 0 1 125 0.923 0.923 1 0.882 0.882 17 0.915 0.915 125 0.010 0.010
7 0 3 500 0.882 1.000 14 0.790 0.997 168 0.635 0.974 489 0.009 0.018
7 0 3 125 0.178 0.574 0 0.281 0.689 3 0.223 0.611 108 0.005 0.014

8 6 1 500 0.964 0.964 491 0.001 0.001 245 0.957 0.957 500 0.000 0.000
8 6 1 125 0.902 0.902 0 0.894 0.894 14 0.888 0.888 123 0.000 0.000
8 6 3 500 0.739 0.992 3 0.751 0.994 138 0.712 0.987 428 0.005 0.006
8 6 3 125 0.447 0.918 0 0.493 0.939 9 0.526 0.954 119 0.002 0.002

Table 10: The number of removed poisoned examples prm under m-way pixel attacks for various choices of the source label
`s and target label `t. Accuracy on clean data was between 91% and 92.5% in all experiments and are omitted in the table.

C. Ablation study
SPECTRE combines several steps to effectively detect poisoned examples.

1. Adaptive dimension reduction using Algorithm 3.

2. The covariance of the clean samples is estimated using Algorithm 10.

3. The samples are whitened using the estimated covariance.

SPECTRE: Defending Against Backdoor Attacks Using Robust Statistics

4. We compute QUE scores using Algorithm 2 to determine which samples to discard.

Here we perform an ablation study to demonstrate that none of this steps can be omitted. We show that Step 1 is necessary
in Section 4.4, where we show that no constant choice of k is sufficient to detect the majority of the poison across multiple
experiments. Note that choosing k = d is equivalent to performing no dimension reduction. In our experiments, we found
that checking values of k which are substantially smaller than d sufficed. This also gave us a substantial computational
speedup since the runtime of Algorithm 1 scales with k. We show that Step 4 is important in Section 3.3. In particular, in
Table 1 we show that two other natural choices for outlier scoring can fail under certain conditions. For Steps 2 and 3, we
provide Table 11, which shows the performance of Algorithm 1 on a variety of experiments where Step 3 has been omitted
(removing the need for Step 2) and where Step 2 is omitted, and the whitening is done using the sample covariance. The
results in Table 11 justify the use of Steps 2 and 3.

Attack 1+4 1+3+4 1+2+3+4
type m εn accp∗ prm prm prm

pixel 1 500 0.942 471 471 500
pixel 1 250 0.894 131 203 249
pixel 1 125 0.627 0 51 124
pixel 3 500 0.990 153 336 490
pixel 3 250 0.908 0 119 245
pixel 3 125 0.616 0 37 123
periodic 1 500 0.975 19 421 493
periodic 1 250 0.961 2 105 248
periodic 1 125 0.912 0 67 124
periodic 2 500 0.996 457 407 493
periodic 2 250 0.982 10 115 248
periodic 2 125 0.881 0 0 124
`2 1 500 0.881 500 500 500
`2 1 250 0.932 250 250 250
`2 1 125 0.843 1 125 125
GAN 1 500 0.633 500 500 500
GAN 1 250 0.584 246 239 250
GAN 1 125 0.680 79 124 125

Table 11: Performance for various combinations of: 1. adaptive dimension reduction, 2. robust covariance estimation, 3.
whitening, 4. QUE scoring. Note: 1+2+3+4 is SPECTRE, which performs better than the other combinations.

D. Robust estimation
We reproduce details from (Diakonikolas et al., 2017a) which are relevant to the implementation and usage of Algorithm 1
here for completeness. First, we introduce some notations. Given two sets A and B, ∆(A,B) is the size of their symmetric
difference |(A \B) ∪ (B \A)|. Given a matrix M ∈ Rd×d, we write M [to denote the flattened vector v ∈ Rd2 built by
concatenating the columns of M . Similarly, given a vector v ∈ Rd2 , we write v] to denote the matrix M ∈ Rd×d with vi as
columns, where v is split into d contiguous vectors in Rd.

D.1. Robust mean estimation

There exists a practical robust mean estimation algorithm ROBUSTMEAN which is given explicitly in Algorithm 8.

Understanding Algorithm 10 requires the definition of an (ε, τ)-good set with respect to a Gaussian, which is given in
Definition D.1. The key feature of (ε, τ)-goodness is that a set of independent samples from the Gaussian of sufficient size
is (ε, τ)-good with high probability as stated in Lemma D.2.
Definition D.1. (Diakonikolas et al., 2017a, Definition A.4) Let G be a sub-gaussian distribution in d dimensions with
mean µ(G) and covariance matrix I and let ε, τ > 0. We say that a multiset S of elements in Rd is (ε, τ)-good with respect
to G if the following conditions are satisfied:

SPECTRE: Defending Against Backdoor Attacks Using Robust Statistics

Algorithm 8: Robust mean estimation (ROBUSTMEAN) (Diakonikolas et al., 2017a)
Input: A multiset S′ such that there exists an (ε, τ)-good set S with ∆(S, S′) < 2ε
Output: A vector µ′ such that ‖µ′ − µ(G)‖2 ≤ O(ε

√
log(1/ε))

repeat
S′ ← GAUSSIANMEANFILTER(S′) [Algorithm 9]

until GAUSSIANMEANFILTER returns µ′

return µ′

1. For all x ∈ S we have ‖x− µ(G)‖2 ≤ O(
√
d log(|S|/τ)).

2. For every affine function L : Rd → R such that L(x) = v · (x− µ(G))− T , ‖v‖2 = 1, we have that∣∣∣∣ Pr
X∈uS

[L(X) ≥ 0]− Pr
X∼G

[L(X) ≥ 0]

∣∣∣∣ ≤ ε

T 2 log
(
d log(dετ)

)
3. We have that ‖µ(S)− µ(G)‖2 ≤ ε.

4. We have that ‖Ms − I‖2 ≤ ε.

Lemma D.2. (Diakonikolas et al., 2017a, Lemma A.6) Let G be a sub-gaussian distribution with parameter ν = Θ(1) and
identity covariance and let ε, τ > 0. If the multiset S is obtained by taking Ω((d/ε2) poly log(d/ετ)) independent samples
from G, it is ε-good with respect to G with probability at least 1− τ .

Now we give the definition of the filter used in Algorithm 8 in Algorithm 9, which shows that the sets S′ in Algorithm 8
approach the ε-good set S with respect to the size of their symmetric difference.

Algorithm 9: Filter algorithm for a Gaussian with unknown mean. (Diakonikolas et al., 2017a, Algorithm 2)
Input: A multiset S′ such that there exists an (ε, τ)-good set S with ∆(S, S′) < 2ε
Output: Either a set S′′ with ∆(S, S′′) ≤ ∆(S, S′)− ε/α where α , d log(d/ετ) log(d log(d/ετ)) or a vector µ

satisfying ‖µ′ − µ(G)‖2 ≤ O(ε
√

log(1/ε))
Compute the sample mean µ(S′) = EX∼Unif(S′)[X].
Compute the sample covariance matrix Σ(S′) = EX∈Unif(S′)[(X − µ(S′))(X − µ(S′))>].
Compute an approximation of the largest absolute eigenvalue of Σ− I , λ∗ ≈ ‖Σ− I‖2 and an approximate associated

eigenvector v∗.
if λ∗ ≤ O(ε log(1/ε)) then

return µ(S′)

Let δ = 3
√
ελ∗. Find a T > 0 such that

Pr
X∈Unif(S′)

(|v∗ · (X − µ(S′))| > T + δ) > 8 exp

(
−T

2

2ν

)
+

8ε

T 2 log(d log(dετ))
.

return S′′ = {x ∈ S′′ : |v∗ · (x− µ(S′))| ≤ T + δ}

D.2. Robust covariance estimation

The structure of this subsection mirrors that of Appendix D.1. Theorem 1 states the existence of a practical robust covariance
estimation algorithm ROBUSTCOV which is given explicitly in Algorithm 10.

Understanding Algorithm 10 requires the definition of an (ε-good set with respect to a Gaussian, which is given in
Definition D.3. The key feature of ε-goodness is that a set of independent samples from the Gaussian of sufficient size is
ε-good with high probability as stated in Proposition D.4.

Definition D.3. (Diakonikolas et al., 2017a, Definition A.27) Let G be a Gaussian in Rd with mean 0 and covariance Σ.
Let ε > 0 be sufficiently small. We say that a multiset S of points in Rd is ε-good with respect to G if the following hold:

SPECTRE: Defending Against Backdoor Attacks Using Robust Statistics

Algorithm 10: Robust covariance estimation (ROBUSTCOV) (Diakonikolas et al., 2017a)
Input: A multiset S′ such that there exists an ε-good set S with ∆(S, S′) < 2ε
Output: A matrix Σ′ such that ‖I − Σ−1/2Σ′Σ−1/2‖F = O(ε log(1

ε))
repeat

S′ ← GAUSSIANCOVARIANCEFILTER(S′) [Algorithm 11]
until GAUSSIANCOVARIANCEFILTER returns Σ′

return Σ′

1. For all x ∈ S, x>Σ−1x < d+O(
√
d log(d/ε)).

2. We have that ‖Σ−1/2 Cov(S)Σ−1/2 − I‖F = O(ε).

3. For all even degree-2 polynomials p, we have that Var(p(x)) = Var(p(G))(1 +O(ε)).

4. For p an even degree-2 polynomial with E[p(G)] = 0 and Var(p(G)) = 1, and for any T > 10 log(1/ε) we have that

Pr(|p(x)| > T) ≤ ε

T 2 log2(T)
.

Proposition D.4. (Diakonikolas et al., 2017a, Proposition A.28) Let N be a sufficiently large constant multiple of
(d2/ε2) log5(d/ε). Then a set S of N independent samples from G is ε-good with respect to G with high probability.

Now we give the definition of the filter used in Algorithm 10 in Algorithm 11, which shows that the sets S′ in Algorithm 10
approach the (ε, τ)-good set S with respect to the size of their symmetric difference.

Algorithm 11: Filter algorithm for a Gaussian with unknown covariance matrix. (Diakonikolas et al., 2017a, Algo-
rithm 4)
Input: A multiset S′ such that there exists an ε-good set S with ∆(S, S′) < 2ε
Output: Either a set S′′ with ∆(S, S′′) < ∆(S, S′) or a matrix Σ′ such that ‖I − Σ−1/2Σ′Σ−1/2‖F = O(ε log(1

ε))
Let C,C ′ > 0 be sufficiently large universal constants.
Σ′ ← EX∈S′ [XX>]
G′ ← N (0,Σ′)

if there exists an x ∈ S′ such that x>Σ′−1x ≥ Cd log(10|S′|) then
return S′′ = S′ \ {x ∈ S′ : x>Σ′−1x > Cd log(10|S′|)}

Let L be the space of even degree-2 polynomials p : Rk → R such that EX∼G′ [p(X)] = 0.
Define two quadratic forms on L:

(i) QG′(p) = EX∼G′ [p2(X)]

(ii) QS′(p) = EX∼Unif(S′)[p
2(X)]

Compute maxp∈L\{0}QS′(p)/QG′(p) and the associated polynomial p∗(x) normalized such that QG′(p) = 1 using
Algorithm 12.

if QS′(p∗) ≤ (1 + Cε log2(1/ε))QG′(p
∗) then

return Σ′

µ← the median value of p∗(X) over X ∈ S′
Find a T > C ′ such that

Pr
X∈T ′

(|p∗(X)− µ| ≥ 3) ≤ Tail(T, d, ε),

where

Tail(T, d, ε) =

{
3ε/(T 2 log2(T)) if T ≥ 10 ln(1/ε)

1 otherwise
.

return S′′ = {x ∈ S′′ : |p∗(U ′>x)− µ| ≤ T}

SPECTRE: Defending Against Backdoor Attacks Using Robust Statistics

Algorithm 12: Algorithm to compute the polynomial with maximum variance relative to a Gaussian (Diakonikolas
et al., 2017a, Algorithm 4)

Input: A multiset S′ = {xi}ni=1 ⊂ Rd and a Gaussian G′ = N (0,Σ′)
Output: The even degree-2 polynomial p∗(x) with EX∼G′ [p(X)] ≈ 0 and QG′(p∗) ≈ 1 that approximately

maximizes QS′(p∗) and this maximum is λ∗ = QS′(p
∗)

for i ∈ [n] do
yi ← Σ

′−1/2
k xi

zi ← (yiy
>
i)[

TS′ ← −I[I[> + 1
|S′|
∑n
i=1 ziz

>
i

Approximate the top eigenvalue λ∗ and eigenvector v∗ of TS′

p ∗ (x)← 1√
2
((Σ
′−1/2
k x)v∗](Σ

′−1/2
k x)− Tr(v∗]))

return p∗ and λ∗

Note that a naive implementation of Algorithm 12 requires Ω(nd2) space to store the yi and Ω(d4) space to store TS′ .
Additionally, the matrix multiplication performed by OpenBLAS to produce TS′ requires Ω(nd4) time. By representing
the linear operator TS′ implicitly, we can reduce these requirements substantially. First, the product −I[(I[>v) can be
computed in O(d2) time and space. Next, if Y and Z are the matrices with columns yi and zi respectively, then Z is the
Khatri-Rao product Y � Y . This means we can use the vec tricks for the Khatri-Rao and transpose Khatri-Rao vector
products of (Periša, 2017) to calculate ZZ>v in O(nd2) time and O(nd+ d2) space. We can then calculate the eigenvector
v∗ of the implicitly represented linear operator TS′ using Krylov methods, requiring the evaluation of a small number of
products TS′v. For our experiments, this provided a speedup of several orders of magnitude and a substantial reduction in
the required amount of system memory versus the naive implementation.

D.3. Robust joint mean and covariance estimation

Note that Algorithm 8 requires the inputs to have identity covariance and Algorithm 10 requires the inputs to have zero
mean. Here we show how to combine them to estimate both the mean and covariance of an arbitrary Gaussian, as described
in (Diakonikolas et al., 2017a, Section 4.5). The key idea is to split the dataset into two halves, pair off samples from
each half, and subtract them. The resulting vectors have zero mean and double the original covariance. This allows us to
use Algorithm 10 to whiten the samples, which then allows us to use Algorithm 8. We reproduce the exact procedure in
Algorithm 13.

Algorithm 13: Algorithm to robustly learn an arbitrary Gaussian (Diakonikolas et al., 2019, Algorithm 6)

Input: A multiset S′ = {xi}ni=1 ⊂ Rd, corruption fraction ε
Output: A matrix Σ′ such that ‖I − Σ−1/2Σ′Σ−1/2‖F = O(ε log(1

ε)) and Aavector µ′ such that
‖µ′ − µ(G)‖2 ≤ O(ε

√
log(1/ε))

for i ∈ [bn/2c] do
x′i ← (xi − xbn/2c+1)/

√
2

Σ̂← ROBUSTCOV({x′i}, ε) [Algorithm 10]
for i ∈ [n] do

x′′i ← Σ̂−1/2xi

µ̂← ROBUSTMEAN({x′′i }, ε) [Algorithm 8]
return Σ̂ and Σ̂1/2µ̂

E. Experiment details
For each poisoned dataset, we performed one training run to produce each poisoned model. For the pixel and periodic
attacks, we performed one retraining run for each defense. Training for our experiments was done on a server with a Xeon
Gold 6230 CPU and eight Nvidia 2080 Ti GPUs. The training and retraining for our experiments took approximately 100

SPECTRE: Defending Against Backdoor Attacks Using Robust Statistics

GPU hours. Running all defences for our experiments took approximately 200 CPU-core hours. Using the thermal design
power of these components to estimate of our required power, we estimate that our experiments required a total of 28 kW h
of energy.

E.1. m-way pixel attacks

For pixel attacks, we reproduce the experimental setup of (Tran et al., 2018). For our ResNet-32, we used a leaky ReLU
with a negative slope of 0.1 for the nonlinearity and trained it using stochastic gradient descent with momentum for 200
epochs, dividing the learning rate by 10 every 75 epochs. Both data standardization and augmentation were used.

Although a fixed pixel is used for watermarking, data augmentation may ensure that the network is sensitive to pixels of the
chosen color at multiple locations in the image. Using the standard random horizontal flip and random crop with 4 pixels of
padding used for CIFAR-10, the pixel may end up in as many as 9× 9× 2 = 162 distinct pixels in the transformed image,
representing about 16% of the image’s total area.

To implement an m-way pixel attack, m pairs of locations and colors are chosen. Only one of the m pixels is used for each
poisoned training example, but all m are used simultaneously at test time. We ran experiments for m ∈ {1, 2, 3}. We used
the same backdoor pixel Tran et al. used for their experiments, along with two more arbitrarily chosen. The exact locations
and colors are shown in Table 12.

m location color

1 (11, 16) #650019
2 (5, 27) #657B79
3 (30, 7) #002436

Table 12: Pixel watermarks used for the m-way pixel attacks. Location is a pixel coordinate in (x, y) format and color is a
24-bit hexadecimal color in HTML format.

E.2. m-way periodic attacks

For periodic attacks, we used the same network architecture and training environment used for pixel attacks. Although the
phase of the signal is fixed for watermarking, the signal will be shifted by a random amount at training time due to the
random flip and random crop and pad, in a manner similar to the pixel attack. Because our signals have a period of 4 pixels,
which equals the maximum translation produced by the data augmentation, the backdoored network should be sensitive to
signals with any phase.

E.3. Label consistent attacks

For label consistent attacks, we used the experimental setup of (Turner et al., 2019) which is provided at https://
github.com/MadryLab/label-consistent-backdoor-code. The setup of (Turner et al., 2019) for CIFAR-
10 appears to be very similar to that of (Tran et al., 2018). The same ResNet-32 architecture is used, albeit with a normal
(i.e. not leaky) ReLU. Data standardization was enabled by default. Data augmentation was disabled by default, but we
enabled it to ensure greater consistency with our previous experiments. We used an `2 perturbation bound of ε = 300, an
`∞ perturbation bound of ε = 8, and a GAN perturbation bound of τ = 0.2. We also enabled patch placement on all four
corners to ensure the watermark would not be cropped out. For this family of attacks, we did not make any changes to the
training system of (Turner et al., 2019), which does not provide retraining.

E.4. Hidden trigger attacks

For hidden trigger attacks, we used the experimental setup of (Saha et al., 2020) which is provided at https:
//github.com/UMBCvision/Hidden-Trigger-Backdoor-Attacks. The setup for hidden trigger attacks
differs substantially from that of the other attacks in this work. The dataset used is a subset of ImageNet containing examples
with label n04243546 or n03584254. (Saha et al., 2020) fine tunes Alexnet on the resulting binary classification task using
SGD and constructs a backdoor using n04243546 as the source label and n03584254 as the target label. We used the default
settings which enable data standardization but disable data augmentation and uses a patch size of 30x39 for the watermark.

https://github.com/MadryLab/label-consistent-backdoor-code
https://github.com/MadryLab/label-consistent-backdoor-code
https://github.com/UMBCvision/Hidden-Trigger-Backdoor-Attacks
https://github.com/UMBCvision/Hidden-Trigger-Backdoor-Attacks

SPECTRE: Defending Against Backdoor Attacks Using Robust Statistics

We used the activations of the penultimate layer for our representations. We did not make any changes to the training system
of (Saha et al., 2020), which does not provide retraining.

F. Analysis of poisoned representations
Here we include Figs. 12 to 15, which illustrate some relevant properties of the hidden layer activations of examples bearing
the target layer under a successful backdoor poisoning attack.

SPECTRE: Defending Against Backdoor Attacks Using Robust Statistics

Figure 12: Scatter plots of the representations of the 3-way pixel attack with ε = 0.1 before any whitening. The whitened
representations are projected onto their top eight PCA directions. Plots along the diagonal are Gaussian kernel density
estimate plots after projecting onto that PCA direction (of the combined data including the representations of both the
poisoned and the clean samples). Off-diagonal plots are scatter plots of the data projected onto the subspace spanned by
the corresponding pair of PCA directions. This shows that the poisoned samples (in orange) are not separable from the
clean ones (in blue), if we only focus on these top PCA directions; the spectral signature is hidden. We propose using
robust covariance estimation to fine the approximate covariance of clean data and whiten the entire data with the estimated
covariance. This enhances the spectral signature as we show in the next figure.

SPECTRE: Defending Against Backdoor Attacks Using Robust Statistics

Figure 13: Scatter plots of the representations of the 3-way pixel attack with ε = 0.1 after whitening using the covariance of
the clean samples. The whitened representations are projected onto their top eight PCA directions. Plots along the diagonal
are Gaussian kernel density estimate plots after projecting onto that PCA direction (of the combined data including the
representations of both the poisoned and the clean samples). Off-diagonal plots are scatter plots of the data projected onto
the subspace spanned by the corresponding pair of PCA directions. This shows that the poisoned samples (in orange) are
now separable from the clean ones (in blue) using the top PCA direction after whitening, for example.

SPECTRE: Defending Against Backdoor Attacks Using Robust Statistics

Figure 14: Scatter plots of the representations of the 3-way pixel attack with ε = 0.1 after whitening using the robustly
estimated covariance. The whitened representations are projected onto their top eight PCA directions. Plots along the
diagonal are Gaussian kernel density estimate plots after projecting onto that PCA direction (of the combined data including
the representations of both the poisoned and the clean samples). Off-diagonal plots are scatter plots of the data projected
onto the subspace spanned by the corresponding pair of PCA directions. This shows that the poisoned samples (in orange)
remain separable from the clean ones (in blue) even when whitening using the estimated covariance instead of the true
covariance of the clean samples.

SPECTRE: Defending Against Backdoor Attacks Using Robust Statistics

Figure 15: Scatter plots of the representations of the 2-way pixel attack with ε = 0.1 after whitening with the true covariance
of the representation of the clean samples. The whitened representations are projected onto their top eight PCA directions.
Plots along the diagonal are Gaussian kernel density estimate plots after projecting onto that PCA direction. Off-diagonal
plots are scatter plots of the data projected onto the subspace spanned by the corresponding pair of PCA directions. This
shows that the poisoned samples (in orange) have split into multiple distinct clusters, resulting in a weakened spectral
signature. Nevertheless, whitening enhances the spectral signature and bring the direction of separation to the top principal
components.

SPECTRE: Defending Against Backdoor Attacks Using Robust Statistics

G. Analysis of QUE scores

In Section 3.3, we showed that the squared norm scoring τ (0)
i = ‖h̃i‖2 and squared projected norm scoring τ (∞)

i = |〈v, h̃i〉|2
can both fail under certain conditions. Here we will explain those conditions in greater detail.

In our experiments, squared norm scoring τ (0)
i = ‖h̃i‖2 fails for the 3-way attack with ε = 0.0124. For this attack, the

poisoned representations have high variance along a single direction, and relatively low variance along all other directions,
as seen in Fig. 16a. Because there are few poisoned examples relative to clean ones, the resulting spectral signature of
the poisoned examples is weak. The directions where the variance of the clean data was amplified, as seen in Fig. 16b,
dominate all but one of the directions where the poison had high variance. This can be seen in Fig. 17, where only the top
PCA direction, which corresponds to projected norm scoring, is suitable for removing the poisoned examples. Using the
squared norm scoring τ (0)

i = ‖h̃i‖2 here causes the top PCA direction to be mixed with the less useful directions, diluting
its utility as a metric for removing the poison.

Squared projected norm scoring τ (∞)
i = |〈v, h̃i〉|2 fails for the 1-way attack with ε = 0.1. Here the spectral signature of the

poisoned examples is very strong. The poisoned examples have high variance along many directions, as seen in Fig. 16c.
The resulting top PCA direction v is not well aligned with the direction of the separation µ(Spoison)− µ(Sclean). In fact,
the angle between them is cos−1(〈v,µ(Spoison)− µ(Sclean)〉/‖µ(Spoison)− µ(Sclean)‖) = 35.7°. The consequence of
this misalignment can be seen in Fig. 18, where it is clear that v does not separate the poisoned examples from the clean
ones. On the other hand, squared norm scoring works well here because the poisoned examples have large variance along
many directions, which is apparent in Fig. 18.

2 4 6 8 10
0

20

40

60

80

100

120

k

σ
k

(a) 3-way attack with ε = 0.0124, top 10 singular values

0 25 50 75 100

10−1

100

101

102

k

σ
k

poison
clean
1

(b) 3-way attack with ε = 0.0124, top 100 singular values

2 4 6 8 10
0

25

50

75

100

125

k

σ
k

(c) 1-way attack with ε = 0.1, top 10 singular values

0 25 50 75 100

10−2

10−1

100

101

102

k

σ
k

(d) 1-way attack with ε = 0.1, top 100 singular values

Figure 16: Plots of the top 10/100 singular values of the covariances of the poison and clean representations after whitening
with the robustly estimated covariance in order of decreasing magnitude.

SPECTRE: Defending Against Backdoor Attacks Using Robust Statistics

Figure 17: Scatter plots of the representations of the 3-way pixel attack with ε = 0.0124 after robust whitening; whitening
the representations of the data with the estimated covariance of the clean samples. The whitened representations are projected
onto their top eight PCA directions. Plots along the diagonal are Gaussian kernel density estimate plots after projecting onto
that PCA direction. Off-diagonal plots are scatter plots of the data projected onto the subspace spanned by the corresponding
pair of PCA directions. This clearly shows that the top PCA direction is aligned with the direction of separation between the
poisoned samples (in orange) and clean samples (in blue), hence the squared projected norm scoring works. However, the
variance of the poisoned examples are generally smaller, making it hard to distinguish using the squared norm scoring.

SPECTRE: Defending Against Backdoor Attacks Using Robust Statistics

Figure 18: Scatter plots of the representations of the 1-way pixel attack with ε = 0.1 after robust whitening; whitening the
representations of the data with the estimated covariance of the clean samples. The whitened representations are projected
onto their top eight PCA directions. Plots along the diagonal are Gaussian kernel density estimate plots after projecting onto
that PCA direction. Off-diagonal plots are scatter plots of the data projected onto the subspace spanned by the pair of PCA
directions. This clearly shows that the top PCA direction is not aligned with the direction of separation between the poisoned
samples (in orange) and clean samples (in blue), hence the squared projected norm scoring does not works. However, the
variance of the poisoned examples are generally larger, making it easy to distinguish using the squared norm scoring.

SPECTRE: Defending Against Backdoor Attacks Using Robust Statistics

H. Sensitivity to number of removed examples
Following (Tran et al., 2018), we choose to remove the 1.5εn samples with the highest QUE scores from the (1 + ε)n total
samples bearing the target label. We show in Fig. 19 that our defence performance is not overly sensitive to this choice. In
particular, the fraction of poisoned samples removed does not vary substantially with the total number of removed samples
after the first εn samples are removed.

0.0 0.5 1.0 1.5 2.0
0.00

0.25

0.50

0.75

1.00

examples removed/(εn)

fra
ct

io
n

of
po

iso
n

re
m

ov
ed

1 pixel, εn = 500
2 pixel, εn = 250
3 pixel, εn = 125

Figure 19: Fraction of all poisoned samples removed vs. the total number of samples removed by SPECTRE, for three pixel
attacks featuring spectral signatures of varying strength.

