
Finding Relevant Information via a Discrete Fourier Expansion:
Supplementary Material

Mohsen Heidari, Jithin K. Sreedharan, Gil I. Shamir, Wojciech Szpankowski

Contents

A Proof of Proposition 1 2

B Proof of Lemma 1 2

C Proof of Theorem 1 3

D Proof of Theorem 2 4
D.1 Proof of Lemma D.1 . 5

E Generating Random Labeling Functions via Erlang Distribution 7

F Implementation Details 7

1

A. Proof of Proposition 1

Recall from the discussion in Section 2.1 that ψSi’s are orthonormal. We complete the proof of the
Proposition by showing that any function g can be written as a linear combination of these parities.

Let DXj , j ∈ [d], be the marginals of DX and let PXd be the product probability distribution
with the same marginals DXj . Without loss of generality, assume that Xj’s are non-trivial random
variables. Then, from the Fourier analysis on the Boolean cube (O’Donnell, 2014), the function g
can be written as

g(x) =
∑
S⊆[d]

gS χS(x), ∀x ∈ {−1, 1}d,

where gS = EP
Xd

[f(Xd)χS(X
d)] and the expectation is taken with respect to PXd . By performing

the reverse of the orthogonalization process in (4), each parity χSi , i = 1, 2, .., 2d, can be written as

χSi(x
d) =

∑
j≤i

αi,jψSj (x), (S.1)

where ai,j = 〈χSj , ψSj 〉 and the above equality holds for all x ∈ {−1, 1}d except a measure-zero
subset. Hence, replacing χSi with the right-hand side of (S.1), we can write

g(x) =
2d∑
i=1

gSi
(∑
j:j≤i

αi,jψSj (x)
)

=
2d∑
j=1

(∑
i:i≥j

gSiαi,j
)
ψSj (x).

Hence, we obtain a decomposition of g as a linear combination of ψSi’s. Since ψSi’s are orthogonal,
the coefficients in this linear combination are unique and calculated as in the statement of the
proposition.

B. Proof of Lemma 1

Note that the MMSE estimator of Y from XJ is E[Y |xJ]. Since, Y take values from {−1, 1},
then the Bayes predictor is obtained from h(x) =∆ sign[E[Y |xJ]]. Hence, it remains to show that
h = f⊆J as in the statement of the Lemma.

Note that h can be viewed as a real-valued function on {−1, 1}k. In addition, we can apply
Proposition 1 on coordinates j ∈ J and with d = k. As a result, h has a Fourier expansion of the
form

h(x) =
∑
S⊆J

ĥSψS(x),

2

where ψS’s are the orthogonalized parities w.r.t J , and ĥS = 〈h, ψS〉. Then, for each S ⊆ J , we
obtain that

ĥS = E[h(X)ψS(X)] = E
[
E[Y |XJ]ψS(X)

]
= E

[
E[Y ψS(X)|XJ]

]
= E

[
Y ψS(X)

]
= fS

where the second equality holds as ψS(X) depends only on Xj , j ∈ S , and the last equality follows
from the definition of fS as in the statement of the Lemma. Therefore, h admits the same Fourier
expansion as f⊆J . With that the proof is complete.

C. Proof of Theorem 1

Fix a subset J ⊆ [d] with at most k elements. Let g : {−1, 1}d 7→ {−1, 1} be a function whose
output depends on only xJ . Here, g represents a predictor of Y from XJ . Since Y and g(X) take
values from {−1, 1}, then,

P
{
Y 6= g(X)

}
=

1

2
− 1

2
E[Y g(X)].

Note that given J , the above probability is minimized by the Bayes estimator. Further, such an
estimator is given by sign

[
E[Y |xJ]

]
, for all xJ ∈ {−1, 1}k. Hence, it suffices to calculate the above

misclassification probability for g = sign
[
E[Y |xJ]

]
. For that, in the following, we calculate the

expectation E[Y g(X)] for g = sign
[
E[Y |xJ]

]
.

E[Y g(X)]
(a)
= E

[
E[Y g(X)|XJ]

]
(b)
= E

[
E[Y |XJ]g(X)

]
(c)
= E

[∣∣E[Y |XJ]∣∣]
(d)
= E

[∣∣f⊆J (X)
∣∣]

= ‖f⊆J ‖1,

where (a) follows from the law of total probability, (b) holds because g(X) is a function of XJ ,
equality (c) follows by replacing g with sign

[
E[Y |xJ]

]
, and lastly, (d) holds because f⊆J (X) =

E[Y |XJ]. This equality is shown in Lemma 1.
As a result of the above argument, the minimum misclassification probability for a fixed subset

J is equal to 1
2 −

1
2‖f

⊆J ‖1. Hence, optimizing over all k-element subsets J gives the following
and completes the proof

L∗D(k) =
1

2
− 1

2
max
J :|J |≤k

‖f⊆J ‖1.

3

D. Proof of Theorem 2

From the proof of Theorem 1 and the definition of f⊆J , we obtain that

LD(J) =
1

2
− 1

2
‖f⊆J ‖1.

As a result,

LD(Ĵn)− LD(J ∗) =
1

2

(
‖f⊆J ∗‖1 − ‖f⊆Ĵn‖1

)
. (S.2)

By adding and subtracting Mn(Ĵn) and Mn(J ∗), we obtain that

‖f⊆J ∗‖1 − ‖f⊆Ĵn‖1 =
(
‖f⊆J ∗‖1 −Mn(J ∗)

)
+
(
Mn(J ∗)−Mn(Ĵn)

)
+
(
Mn(Ĵn)− ‖f⊆Ĵn‖1

)
≤
(
‖f⊆J ∗‖1 −Mn(J ∗)

)
+
(
Mn(Ĵn)− ‖f⊆Ĵn‖1

)
, (S.3)

where the last inequality follows as Mn(J ∗) ≤ Mn(Ĵn). Next, we provide upper bounds on the
right-hand side of the above inequality. We first assume that there is no error in the estimation of
the parities ψS’s for all subsets with |S| ≤ k. Let µ̂j and σ̂j , j = 1, 2, ..., d, denote the empirical
estimate of the mean and standard deviation of the features. For any subset S with at most k elements,
let φ̂S(xd) =

∏
j∈S

xj−µ̂j
σ̂j

. Now, fix a subset J with |J | ≤ k and perform the orthogonalization
process w.r.t J . We proceed with the following lemma which is proved in Appendix D.1.

Lemma D.1 The measureMn(J) as in (7) is an asymptotically unbiased estimate of ‖f⊆J ‖1. More
precisely, given any γ ∈ (0, 1

2) and for any feature subset J with |J | ≤ k,∣∣∣E[Mn(J)
]
− ‖f⊆J ‖1

∣∣∣ ≤ O(n−γ),

where the expectation is taken with respect to the training samples.

Next, we apply McDiarmid inequality on Mn(J) and show that Mn(J) is an accurate estimate
of ‖f⊆J ‖1 with high probability. Note that Mn is a function of the random training samples (xi, yi).
Suppose, for a fixed i, the training instant (xi, yi) is replaced with an independent and identically
distributed (i.i.d.) copy (x̃i, ỹi). Let M̃ (1)

n be the resulted measure with (x̃i, ỹi) replacing (xi, yi).
Then, we can show that for any J with |J | ≤ k, the inequality holds almost surely

|Mn(J)− M̃ (1)
n (J)| ≤ 4

n− 1
2k max
S⊆[d],|S|≤k

‖ψS‖2∞ =∆
4 2kck
n− 1

.

From McDiarmid’s inequality, for a fixed subset J ⊆ [d] with |J | = k

P
{∣∣Mn(J)− E[Mn(J)]

∣∣ ≤ ε′} ≤ 2 exp
{
− (n− 1)ε′2

8 22kc2
k

}
,

4

where the expectation is taken with respect to the training samples. Using the union bound, we obtain
that

P
{⋃

J :|J |=k

{∣∣Mn(J)− E[Mn(J)]
∣∣ ≤ ε′}} ≤ 2

(
d

k

)
exp

{
− (n− 1)ε′2

8 22kc2
k

}
.

Thus, with probability (1− δ), the inequality

∣∣Mn(J)− E[Mn(J)]
∣∣ ≤√ λ(k)

(n− 1)
log(

d

δ
),

holds for all J ⊆ [d] with |J | = k, where λ(k) = 8 k22kc2
k. Next, from Lemma D.1 and the triangle

inequality, we have, with probability at least (1− δ), that

∣∣Mn(J)− ‖f⊆J ‖1
∣∣ ≤√ λ(k)

(n− 1)
log(

d

δ
) +O(n−γ), ∀J ⊆ [d], |J | = k. (S.4)

The proof completes by combining (S.2), (S.3), and (S.4).

D.1 Proof of Lemma D.1

We first assume that there is no estimation error for mean and standard deviation of the features; that
is µ̂j = µj and σ̂j = σj for all j ∈ [d]. Further, b̂ij = bij for all i, j for which their corresponding
feature subsets satisfy |Si| ≤ k and |Sj | ≤ k. We start with rewriting Mn. Define, the function

f̂⊆J(i) (xd) =∆
n

n− 1

∑
S⊆J

(
f̂S −

1

n
Y (i)ψS(X

d(i))
)
ψS(x

d),

for all xd ∈ X d. With this definition, given any xd, the quantity f̂⊆J(i) (xd) is independent of (Xd(i),

Y (i)). Further, we can write Mn as the summation Mn(J) = 1
n

∑
i |f̂
⊆J
(i) (Xd(i))|. Hence, the

expectation of Mn taken over the training samples gives

E[Mn(J)] =
1

n

n∑
i=1

EXd(1),...,Xd(n)

[∣∣∣ f̂⊆J(i) (Xd(i))
∣∣∣]

= EXd(1),...,Xd(n)

[∣∣∣ f̂⊆J(1) (Xd(1))
∣∣∣]

= EXd(2),...,Xd(n)EXd(1)

[∣∣∣ f̂⊆J(1) (Xd(1))
∣∣∣]

= EXd(2),...,Xd(n)

[
‖f̂⊆J(1) ‖1

]
,

where the first equality is due to the symmetry with respect to the index i of the training samples. The
last equality is due to the definition of 1-norm and the property that the function f̂⊆J(1) is independent

of (Xd(1), Y (1)). Note that f̂⊆J(1) is as an estimation of the projection f⊆J using the (n−1) training

samples (Xd(i), Y (i)), i = 2, 3, ..., n. Next, we bound the difference
∣∣∣E‖f̂⊆J(1) ‖1 − ‖f

⊆J ‖1
∣∣∣.

5

Observe that ∣∣∣E[‖f̂⊆J(1) ‖1
]
− ‖f⊆J ‖1

∣∣∣ ≤ E
[
‖f̂⊆J(1) − f

⊆J ‖1
]

≤ E
[
‖f̂⊆J(1) − f

⊆J ‖2
]

≤
√
E
[
‖f̂⊆J(1) − f⊆J ‖

2
2

]
,

where the first inequality is obtained by applying the triangle inequality twice, one for ‖f̂⊆J(1) ‖1 and
once for ‖f⊆J ‖1. The second inequality is from the identity ‖·‖1 ≤ ‖·‖2. The third inequality is due
to the Jensen’s inequality. Next, by Parseval’s identity we have

E
[
‖f⊆J − f̂⊆J(1) ‖

2
2

]
=
∑
S⊆J

E
[
|gS − f̂(1),S |2

]
=
∑
S⊆J

var
(
f̂(1),S

)
,

where f̂(1),S is the empirical average of i.i.d. random variables Y (i)ψS(X
d(i)) for i = 2, 3, ..., n.

Thus,

var
(
f̂(1),S

)
=

1

n− 1
var
(
Y ψS(X

d)
)

=
1

n− 1
(E
[
Y 2ψS

2(Xd)
]
− gS2)

=
1

n− 1
(1− gS2).

Hence,

E
[
‖f⊆J − f̂⊆J(1) ‖

2
2

]
=

1

n− 1

∑
S⊆J

(1− gS2) =
1

n− 1
(2|J | − ‖f⊆J ‖22)

≤ 1

n− 1
2k.

Putting all together we get that∣∣∣E[‖f̂⊆J(1) ‖1
]
− ‖f⊆J ‖1

∣∣∣ ≤ 2k/2√
n− 1

.

Next, we address the effect of mean and variance estimations. As a measure of accuracy of the
estimations, we require the following event:

(B) :
∣∣µ̂j − µj∣∣ ≤ ε0, ∣∣1− σj

σ̂j

∣∣ ≤ 2ε0
σ2
j

, ∀j ∈ [d].

happen with probability close to one. This is a deviation from standard measures of estimations in
which the variance of the differences are required to be small. In the following lemma, we bound the
estimation errors in terms of the number of the samples.

Lemma D.2 Given ε0, δ0 ∈ (0, 1), the event (B) happens with probability at least (1− δ0), provided
that atleast n0(ε0, δ0) =

2
ε20
log 2d

δ0
samples are available.

Lemma D.3 Conditioned on (B), the inequality ‖χS − φ̂S‖∞ ≤ γ(ε0) holds for all k-element
subsets S, almost surely, where γ is a function satisfying γ(ε0) = O(kε0

√
ck) as ε0 → 0.

6

E. Generating Random Labeling Functions via Erlang Distribution

We generate randomly a labeling function which is the sign of a polynomial of the form

p(x) =∆
∑
S
αSx

S ,

where xS =
∏
j∈S xj and the coefficients αS ∈ [0, 1] are generated randomly according to the

following process:
Let fE(x) where fE is the pdf of the Erlang random variable with shape and rate parameters

equal to 8 and 1, respectively. Let wi = fE(i), i = 1, 2, ...,m. For each wi, we select 10 subsets
randomly from the collection of all subsets S ⊆ [d] that have i-elements. The selected subsets
for each i are denoted as Si,j , j = 1, 2, ..., 10. Let Vi,j ∼ Unif([0, 1]), i ∈ [m] and j ∈ [10]
be i.i.d. random variables. Then, the Fourier coefficient corresponding to Si,j is determined as
αi,j =Wi × Vi,j . With that the polynomial p can be written as p(x) =

∑
i,j αi,jχSi,j (x). Note that

by changing the parameters of the Erlang pdf, we get different randomized polynomials.

F. Implementation Details

In this section, we explain the details of our implementations of SFFS algorithm.
The following are some of the characteristics of our implementation:

• For benchmarking purposes, we use the original implementation of mRMR1, scikit-feature2

for MCFS, and ReliefF, and scikit-learn3 for mutual information (MI)-based algorithm.

• Though most parts are written in Python, the code snippets that require heavy computations
(B and A matrix computations in Procedure 1 and Fourier coefficient calculation in Algorithm
1) are converted to C++ using Cython.

• We have also parallelized some of the computations.

• All the experiments were performed on 48-CPU workstation, with Intel(R) Xeon(R) CPU
E7-8857 v2 @ 3.00GHz and 256GB RAM.

FOURIER-ORTH with limited computational resources: To minimize the computational
burden further, we follow a sequential approach for the FOURIER-ORTH procedure. Let the target
depth t be 3, and a1, a2,m1, and m2 be some positive integers. First we find the set of non-redundant
features outputted by FOURIER-ORTH with t = 1. Let its count be d1. If the actual number of
features d < a1, we directly run FOURIER-ORTH with t = 2 on the full set of features. Otherwise,
if d1 < a1, FOURIER-ORTH (t = 2) is ran on the selected features from t = 1 step. In case
d1 ≥ a1, we split the d1 features from step t = 1 to multiple non-overlapping clusters of size m1,
and FOURIER-ORTH (t = 2) is executed on these clusters and combine the selected features. Let the
number of selected features from step t = 2 be d2. For step t = 3, we pursue a similar approach as
in the previous step with the selected features from the FOURIER-ORTH (t = 2): a) if d < a2, run
the FOURIER-ORTH directly; b) else if d2 < a2, run FOURIER-ORTH (t = 3) on d2 features; c) in

1. http://home.penglab.com/proj/mRMR/
2. http://featureselection.asu.edu/
3. https://scikit-learn.org

7

http://home.penglab.com/proj/mRMR/
http://featureselection.asu.edu/
https://scikit-learn.org

case d2 ≥ a2, divide d2 features into non-overlapping clusters of size m2 and run t = 3 step on each
of them. Here a1, a2, and m1,m2 are hyper-parameters that needs to be chosen depending on the
computational resources.

References

Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

8

	Proof of Proposition 1
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Lemma D.1

	Generating Random Labeling Functions via Erlang Distribution
	Implementation Details

