
Muesli Supplement

Content

• A - Stochastic estimation details

• B - The illustrative MDP example

• C - The motivation behind Conservative Policy Iteration and TRPO

• D - Proof of Maximum CMPO total variation distance

• E - Extended related work

• F - Experimental details

• G - Additional experiments

A. Stochastic estimation details
In the policy-gradient term in Eq. 10, we clip the importance weight π(A|s)

πb(A|s) to be from [0, 1]. The importance weight
clipping introduces a bias. To correct for it, we use β-LOO action-dependent baselines (Gruslys et al., 2018).

Although the β-LOO action-dependent baselines were not significant in the Muesli results, the β-LOO was helpful for the
policy gradients with the TRPO penalty (Figure 16).

Figure 9. The episodic MDP from Figure 2, reproduced here for an easier reference. State 1 is the initial state. State 4 is terminal. The
discount is 1.

B. The illustrative MDP example
Here we will analyze the values and the optimal policy for the MDP from Figure 9, when using the identical state
representation φ(s) = ∅ in all states. With the state representation φ(s), the policy is restricted to be the same in all states.
Let’s denote the probability of the up action by p.

Muesli: Combining Improvements in Policy Optimization

Given the policy p = π(up|φ(s)), the following are the values of the different states:

vπ(3) = p+ (1− p)(−1) = 2p− 1 (15)
vπ(2) = p · (−1) + (1− p) = −2p+ 1 (16)
vπ(1) = p · (1 + vπ(2)) + (1− p)vπ(3) (17)

= −4p2 + 5p− 1. (18)

Finding the optimal policy. Our objective is to maximize the value of the initial state. That means maximizing vπ(1). We
can find the maximum by looking at the derivatives. The derivative of vπ(1) with respect to the policy parameter is:

dvπ(1)

dp
= −8p+ 5. (19)

The second derivative is negative, so the maximum of vπ(1) is at the point where the first derivative is zero. We conclude
that the maximum of vπ(1) is at p∗ = 5

8 .

Finding the action values of the optimal policy. We will now find the q∗π(φ(s), up) and q∗π(φ(s), down). The qπ(φ(s), a)
is defined as the expected return after the φ(s), when doing the action a (Singh et al., 1994):

qπ(φ(s), a) =
∑
s′

Pπ(s′|φ(s))qπ(s′, a), (20)

where Pπ(s′|φ(s)) is the probability of being in the state s′ when observing φ(s).

In our example, the Q-values are:

qπ(φ(s), up) =
1

2
(1 + vπ(2)) +

1

2
p · (−1) +

1

2
(1− p) (21)

= −2p+
3

2
(22)

qπ(φ(s), down) =
1

2
vπ(3) +

1

2
p+

1

2
(1− p)(−1) (23)

= 2p− 1 (24)

We can now substitute the p∗ = 5
8 in for p to find the q∗π(φ(s), up) and q∗π(φ(s), down):

q∗π(φ(s), up) =
1

4
(25)

q∗π(φ(s), down) =
1

4
. (26)

We see that these Q-values are the same and uninformative about the probabilities of the optimal (memory-less) stochastic
policy. This generalizes to all environments: the optimal policy gives zero probability to all actions with lower Q-values. If
the optimal policy π∗(·|φ(s)) at a given state representation gives non-zero probabilities to some actions, these actions must
have the same Q-values q∗π(φ(s), a).

Bootstrapping from vπ(φ(s)) would be worse. We will find the vπ(φ(s)). And we will show that bootstrapping from it
would be misleading. In our example, the vπ(φ(s)) is:

vπ(φ(s)) =
1

2
vπ(1) +

1

2
pvπ(2) +

1

2
(1− p)vπ(3) (27)

= −4p2 +
9

2
p− 1. (28)

We can notice that vπ(φ(s)) is different from vπ(2) or vπ(3). Estimating qπ(φ(s), up) by bootstrapping from vπ(φ(2))
instead of vπ(2) would be misleading. Here, it is better to estimate the Q-values based on Monte-Carlo returns.

Muesli: Combining Improvements in Policy Optimization

C. The motivation behind Conservative Policy Iteration and TRPO
In this section we will show that unregularized maximization of EA∼π(·|s)

[
q̂πprior

(s,A)
]

on data from an older policy πprior
can produce a policy worse than πprior. The size of the possible degradation will be related to the total variation distance
between π and πprior. The explanation is based on the proofs from the excellent book by Agarwal et al. (2020).

As before, our objective is to maximize the expected value of the states from an initial state distribution µ:

J(π) = ES∼µ [vπ(S)] . (29)

It will be helpful to define the discounted state visitation distribution dπ(s) as:

dπ(s) = (1− γ)ES0∼µ

[∞∑
t=0

γtP (St = s|π, S0)

]
, (30)

where P (St = s|π, S0) is the probably of St being s, if starting the episode from S0 and following the policy π. The scaling
by (1− γ) ensures that dπ(s) sums to one.

From the policy gradient theorem (Sutton et al., 2000) we know that the gradient of J(π) with respect to the policy
parameters is

∂J

∂θ
=

1

1− γ
∑
s

dπ(s)
∑
a

∂π(a|s)
∂θ

qπ(s, a). (31)

In practice, we often train on data from an older policy πprior. Training on such data maximizes a different function:

TotalAdvprior(π) =
1

1− γ
∑
s

dπprior
(s)
∑
a

π(a|s) advπprior
(s, a), (32)

where advπprior
(s, a) = qπprior

(s, a)− vπprior
(s) is an advantage. Notice that the states are sampled from dπprior

(s) and the
policy is criticized by advπprior

(s, a). This happens often in the practice, if updating the policy multiple times in an episode,
using a replay buffer or bootstrapping from a network trained on past data.

While maximization of TotalAdvprior(π) is more practical, we will see that unregularized maximization of
TotalAdvprior(π) does not guarantee an improvement in our objective J . The J(π) − J(πprior) difference can be even
negative, if we are not careful.

Kakade & Langford (2002) stated a useful lemma for the performance difference:

Lemma C.1 (The performance difference lemma) For all policies π, πprior,

J(π)− J(πprior) =
1

1− γ
∑
s

dπ(s)
∑
a

π(a|s) advπprior
(s, a). (33)

We would like the J(π)− J(πprior) to be positive. We can express the performance difference as TotalAdvprior(π) plus an
extra term:

J(π)− J(πprior) = TotalAdvprior(π)− TotalAdvprior(π) +
1

1− γ
∑
s

dπ(s)
∑
a

π(a|s) advπprior
(s, a) (34)

= TotalAdvprior(π) +
1

1− γ
∑
s

(dπ(s)− dπprior
(s))

∑
a

π(a|s) advπprior
(s, a) (35)

= TotalAdvprior(π) +
1

1− γ
∑
s

(dπ(s)− dπprior
(s))

∑
a

(π(a|s)− πprior(a|s)) advπprior
(s, a). (36)

To get a positive J(π)− J(πprior) performance difference, it is not enough to maximize TotalAdvprior(π). We also need
to make sure that the second term in (36) will not degrade the performance. The impact of the second term can be kept small
by keeping the total variation distance between π and πprior small.

Muesli: Combining Improvements in Policy Optimization

For example, the performance can degrade, if π is not trained at a state and that state gets a higher dπ(s) probability. The
performance can also degrade, if a stochastic policy is needed and the advπprior advantages are for an older policy. The π
would become deterministic, if maximizing

∑
a π(a|s) advπprior(s, a) without any regularization.

C.1. Performance difference lower bound.

We will express a bound of the performance difference as a function of the total variation between π and πprior. Starting
from Eq. 36, we can derive the TRPO lower bound for the performance difference. Let α be the maximum total variation
distance between π and πprior:

α = max
s

1

2

∑
a

|π(a|s)− πprior(a|s)|. (37)

The ‖dπ − dπprior‖1 is then bounded (see Agarwal et al., 2020, Similar policies imply similar state visitations):

‖dπ − dπprior‖1 ≤
2αγ

1− γ
. (38)

Finally, by plugging the bounds to Eq. 36, we can construct the lower bound for the performance difference:

J(π)− J(πprior) ≥ TotalAdvprior(π)− 4α2γεmax

(1− γ)2
, (39)

where εmax = maxs,a | advπprior
(s, a)|. The same bound was derived in TRPO (Schulman et al., 2015).

D. Proof of Maximum CMPO total variation distance
We will prove the following theorem: For any clipping threshold c > 0, we have:

max
πprior, ˆadv,s

DTV(πCMPO(·|s), πprior(·|s)) = tanh(
c

2
).

Having 2 actions. We will first prove the theorem when the policy has 2 actions. To maximize the distance, the clipped
advantages will be −c and c. Let’s denote the πprior probabilities associated with these advantages as 1 − p and p,
respectively.

The total variation distance is then:

DTV(πCMPO(·|s), πprior(·|s)) =
p exp(c)

p exp(c) + (1− p) exp(−c)
− p. (40)

We will maximize the distance with respect to the parameter p ∈ [0, 1].

The first derivative with respect to p is:

dDTV(πCMPO(·|s), πprior(·|s))
dp

=
1

(p exp(c) + (1− p) exp(−c))2
− 1. (41)

The second derivative with respect to p is:

d2 DTV(πCMPO(·|s), πprior(·|s))
dp2

= −2(p exp(c) + (1− p) exp(−c))−3(exp(c)− exp(−c)). (42)

Because the second derivative is negative, the distance is a concave function of p. We will find the maximum at the point
where the first derivative is zero. The solution is:

p∗ =
1− exp(−c)

exp(c)− exp(−c)
. (43)

Muesli: Combining Improvements in Policy Optimization

At the found point p∗, the maximum total variation distance is:

max
p

DTV(πCMPO(·|s), πprior(·|s)) =
exp(c)− 1

exp(c) + 1
= tanh(

c

2
). (44)

This completes the proof when having 2 actions.

Having any number of actions. We will now prove the theorem when the policy has any number of actions. To maximize
the distance, the clipped advantages will be −c or c. Let’s denote the sum of πprior probabilities associated with these
advantages as 1− p and p, respectively.

The total variation distance is again:

DTV(πCMPO(·|s), πprior(·|s)) =
p exp(c)

p exp(c) + (1− p) exp(−c)
− p, (45)

and the maximum distance is again tanh(c2).

We also verified the theorem predictions experimentally, by using gradient ascent to maximize the total variation distance.

E. Extended related work
We used the desiderata to motivate the design of the policy update. We will use the desiderata again to discuss the related
methods to satisfy the desiderata. For a comprehensive overview of model-based reinforcement learning, we recommend the
surveys by Moerland et al. (2020) and Hamrick (2019).

E.1. Observability and function approximation

1a) Support learning stochastic policies. The ability to learn a stochastic policy is one of the benefits of policy gradient
methods.

1b) Leverage Monte-Carlo targets. Muesli uses multi-step returns to train the policy network and Q-values. MPO and
MuZero need to train the Q-values, before using the Q-values to train the policy.

E.2. Policy representation

2a) Support learning the optimal memory-less policy. Muesli represents the stochastic policy by the learned policy network.
In principle, acting can be based on a combination of the policy network and the Q-values. For example, one possibility is to
act with the πCMPO policy. ACER (Wang et al., 2016) used similar acting based on πMPO. Although we have not seen
benefits from acting based on πCMPO on Atari (Figure 15), we have seen better results on Go with a deeper search at the
evaluation time.

2b) Scale to (large) discrete action spaces. Muesli supports large actions spaces, because the policy loss can be estimated
by sampling. MCTS is less suitable for large action spaces. This was addressed by Grill et al. (2020), who brilliantly
revealed MCTS as regularized policy optimization and designed a tree search based on MPO or a different regularized
policy optimization. The resulting tree search was less affected by a small number of simulations. Muesli is based on this
view of regularized policy optimization as an alternative to MCTS. In another approach, MuZero was recently extended to
support sampled actions and continuous actions (Hubert et al., 2021).

2c) Scale to continuous action spaces. Although we used the same estimator of the policy loss for discrete and continuous
actions, it would be possible to exploit the structure of the continuous policy. For example, the continuous policy can be
represented by a normalizing flow (Papamakarios et al., 2019) to model the joint distribution of the multi-dimensional
actions. The continuous policy would also allow to estimate the gradient of the policy regularizer with the reparameterization
trick (Kingma & Welling, 2013; Rezende et al., 2014). Soft Actor-Critic (Haarnoja et al., 2018) and TD3 (Fujimoto et al.,
2018) achieved great results on the Mujoco tasks by obtaining the gradient with respect to the action from an ensemble of
approximate Q-functions. The ensemble of Q-functions would probably improve Muesli results.

Muesli: Combining Improvements in Policy Optimization

E.3. Robust learning

3a) Support off-policy and historical data. Muesli supports off-policy data thanks to the regularized policy optimization,
Retrace (Munos et al., 2016) and policy gradients with clipped importance weights (Gruslys et al., 2018). Many other
methods deal with off-policy or offline data (Levine et al., 2020). Recently MuZero Reanalyse (Schrittwieser et al., 2021)
achieved state-of-the-art results on an offline RL benchmark by training only on the offline data.

3b) Deal gracefully with inaccuracies in the values/model. Muesli does not trust fully the Q-values from the model. Muesli
combines the Q-values with the prior policy to propose a new policy with a constrained total variation distance from the
prior policy. Without the regularized policy optimization, the agent can be misled by an overestimated Q-value for a rarely
taken action. Soft Actor-Critic (Haarnoja et al., 2018) and TD3 (Fujimoto et al., 2018) mitigate the overestimation by
taking the minimum from a pair of Q-networks. In model-based reinforcement learning an unrolled one-step model would
struggle with compounding errors (Janner et al., 2019). VPN (Oh et al., 2017) and MuZero (Schrittwieser et al., 2020) avoid
compounding errors by using multi-step predictions P (Rt+k+1|st, at, at+1, . . . , at+k), not conditioned on previous model
predictions. While VPN and MuZero avoid compounding errors, these models are not suitable for planning a sequence of
actions in a stochastic environment. In the stochastic environment, the sequence of actions needs to depend on the occurred
stochastic events, otherwise the planning is confounded and can underestimate or overestimate the state value (Rezende
et al., 2020). Other models conditioned on limited information from generated (latent) variables can face similar problems
on stochastic environment (e.g. DreamerV2 (Hafner et al., 2020)). Muesli is suitable for stochastic environments, because
Muesli uses only one-step look-ahead. If combining Muesli with a deep search, we can use an adaptive search depth or a
stochastic model sufficient for causally correct planning (Rezende et al., 2020). Another class of models deals with model
errors by using the model as a part of the Q-network or policy network and trains the whole network end-to-end. These
networks include VIN (Tamar et al., 2016), Predictron (Silver et al., 2017), I2A (Racanière et al., 2017), IBP (Pascanu et al.,
2017), TreeQN, ATreeC (Farquhar et al., 2018) (with scores in Table 3), ACE (Zhang & Yao, 2019), UPN (Srinivas et al.,
2018) and implicit planning with DRC (Guez et al., 2019).

3c) Be robust to diverse reward scales. Muesli benefits from the normalized advantages and from the advantage clipping
inside πCMPO. Pop-Art (van Hasselt et al., 2016) addressed learning values across many orders of magnitude. On Atari,
the score of the games vary from 21 on Pong to 1M on Atlantis. The non-linear transformation by Pohlen et al. (2018) is
practically very helpful, although biased for stochastic returns.

3d) Avoid problem-dependent hyperparameters. The normalized advantages were used before in PPO (Schulman et al.,
2017). The maximum CMPO total variation (Theorem 4.1) helps to explain the success of such normalization. If the
normalized advantages are from [−c, c], they behave like advantages clipped to [−c, c]. Notice that the regularized
policy optimization with the popular −H[π] entropy regularizer is equivalent to MPO with uniform πprior (because
−H[π] = KL(π, πuniform) + const.). As a simple modification, we recommend to replace the uniform prior with πprior
based on a target network. That leads to the model-free direct MPO with normalized advantages, outperforming vanilla
policy gradients (compare Figure 13 to Figure 1a).

E.4. Rich representation of knowledge

4a) Estimate values (variance reduction, bootstrapping). In Muesli, the learned values are helpful for bootstrapping Retrace
returns, for computing the advantages and for constructing the πCMPO. Q-values can be also helpful inside a search, as
demonstrated by Hamrick et al. (2020a).

4b) Learn a model (representation, composability). Multiple works demonstrated benefits from learning a model. Like VPN
and MuZero, Gregor et al. (2019) learns a multi-step action-conditional model; they learn the distribution of observations
instead of actions and rewards, and focus on the benefits of representation learning in model-free RL induced by model-
learning; see also (Guo et al., 2018; Guo et al., 2020). Springenberg et al. (2020) study an algorithm similar to MuZero with
an MPO-like learning signal on the policy (similarly to SAC and Grill et al. (2020)) and obtain strong results on Mujoco
tasks in a transfer setting. Byravan et al. (2020) use a multi-step action model to derive a learning signal for policies on
continuous-valued actions, leveraging the differentiability of the model and of the policy. Kaiser et al. (2019) show how to
use a model for increasing data-efficiency on Atari (using an algorithm similar to Dyna (Sutton, 1990)), but see also van
Hasselt et al. (2019) for the relation between parametric model and replay. Finally, Hamrick et al. (2020b) investigate drivers
of performance and generalization in MuZero-like algorithms.

https://github.com/openai/baselines/blob/9b68103b737ac46bc201dfb3121cfa5df2127e53/baselines/ppo2/model.py#L139

Muesli: Combining Improvements in Policy Optimization

Table 3. The mean score from the last 100 episodes at 40M frames on games used by TreeQN and ATreeC. The agents differ along
multiple dimensions.

Alien Amidar Crazy Climber Enduro Frostbite Krull Ms. Pacman Q∗Bert Seaquest

TreeQN-1 2321 1030 107983 800 2254 10836 3030 15688 9302
TreeQN-2 2497 1170 104932 825 581 11035 3277 15970 8241
ATreeC-1 3448 1578 102546 678 1035 8227 4866 25159 1734
ATreeC-2 2813 1566 110712 649 281 8134 4450 25459 2176

Muesli 16218 524 143898 2344 10919 15195 19244 30937 142431

Figure 10. The model architecture when using the IMPALA-based representation network. The r̂1(st, at) predicts the reward
E[Rt+1|st, at]. The v̂1(st, at) predicts the value E[vπ(St+1)|st, at]. In general, r̂k(st, a<t+k) predicts the reward E[Rt+k|st, a<t+k].
And v̂k(st, a<t+k) predicts the value E[vπ(St+k)|st, a<t+k].

F. Experimental details
F.1. Common parts

Network architecture. The large MuZero network is used only on the large scale Atari experiments (Figure 1b) and on
Go. In all other Atari and MuJoCo experiments the network architecture is based on the IMPALA architecture (Espeholt
et al., 2018). Like the LASER agent (Schmitt et al., 2020), we increase the number of channels 4-times. Specifically, the
numbers of channels are: (64, 128, 128, 64), followed by a fully connected layer and LSTM (Hochreiter & Schmidhuber,
1997) with 512 hidden units. This LSTM inside of the IMPALA representation network is different from the second LSTM
used inside the model dynamics function, described later. In the Atari experiments, the network takes as the input one RGB
frame. Stacking more frames would help as evidenced in Figure 17.

Q-network and model architecture. The original IMPALA agent was not learning a Q-function. Because we train a
MuZero-like model, we can estimate the Q-values by:

q̂(s, a) = r̂1(s, a) + γv̂1(s, a), (46)

where r̂1(s, a) and v̂1(s, a) are the reward model and the value model, respectively. The reward model and the value model
are based on MuZero dynamics and prediction functions (Schrittwieser et al., 2020). We use a very small dynamics function,
consisting of a single LSTM layer with 1024 hidden units, conditioned on the selected action (Figure 10).

The decomposition of q̂(s, a) to a reward model and a value model is not crucial. The Muesli agent obtained a similar score
with a model of the qπ(s, a) action-values (Figure 14).

Value model and reward model losses. Like in MuZero (Schrittwieser et al., 2020), the value model and the reward model
are trained by categorical losses. The target for the value model is the multi-step return estimate provided by Retrace (Munos

Muesli: Combining Improvements in Policy Optimization

et al., 2016). Inside of the Retrace, we use q̂πprior
(s, a) action-values provided by the target network.

Optimizer. We use the Adam optimizer (Kingma & Ba, 2014), with the decoupled weight decay by (Loshchilov & Hutter,
2017). The learning rate is linearly decayed to reach zero at the end of the training. We do not clip the norm of the gradient.
Instead, we clip the parameter updates to [−1, 1], before multiplying them with the learning rate. In Adam’s notation, the
update rule is:

θt = θt−1 + α clip(
m̂t√
v̂t + ε

,−1, 1), (47)

where m̂t and v̂t are the estimated moments, not value functions.

Replay. As observed by (Schmitt et al., 2020), the LASER agent benefited from mixing replay data with on-policy data in
each batch. Like LASER, we also use uniform replay and mix replay data with on-policy data. To obtain results comparable
with other methods, we do not use LASER’s shared experience replay and hence compare to the LASER version that did
not share experience either.

Evaluation. On Atari, the human-normalized score is computed at 200M environment frames (including skipped frames).
The episode returns are collected from last 200 training episodes that finished before the 200M environment frames. This is
the same evaluation as used by MuZero. The replayed frames are not counted in the 200M frame limit. For example, if
replayed frames form 95% of each batch, the agent is trained for 20-times more steps than an agent with no replay.

F.2. Muesli policy update

The Muesli policy loss usage is summarized in Algorithm 1.

Prior policy. We use a target network to approximate vπprior , qπprior and πprior. Like the target network in DQN (Mnih
et al., 2015), the target network contains older network parameters. We use an exponential moving average to continuously
update the parameters of the target network.

In general, the πprior can be represented by a mixture of multiple policies. When forming πCMPO, we represented πprior by
the target network policy mixed with a small proportion of the uniform policy (0.3%) and the behavior policy (3%). Mixing
with these policies was not a significant improvement to the results (Figure 18).

F.3. Hyperparameters

On Atari, the experiments used the Arcade Learning Environment (Bellemare et al., 2013) with sticky actions. The
environment parameters are listed in Table 4.

The hyperparameters shared by all policy updates are listed in Table 5. When comparing the clipped and unclipped
advantages in Figure 4, we estimated the KL(πCMPO, π) with exact KL. The unclipped advantages would have too large
variance without the exact KL.

The hyperparameters for the large-scale Atari experiments are in Table 6, hyperparameters for 9x9 Go self-play are in Table 7
and hyperparameters for continuous control on MuJoCo are in Table 8. On Go, the discount γ = −1 allows to train by
self-play on the two-player perfect-information zero-sum game with alternate moves without modifying the reinforcement
learning algorithms.

F.4. Policy losses

We will explain the other compared policy losses here. When comparing the different policy losses, we always used the
same network architecture and the same reward model and value model training. The advantages were always normalized.

The hyperparameters for all policy losses are listed in Table 9. We tuned the hyperparameters for all policy
losses on 10 Atari games (alien, beam rider, breakout, gravitar, hero, ms pacman, phoenix,
robotank, seaquest and time pilot). For each hyperparameter we tried multiples of 3 (e.g., 0.1, 0.3, 1.0, 3.0).
For the PPO clipping threshold, we explored 0.2, 0.25, 0.3, 0.5, 0.8.

Policy gradients (PG). The simplest tested policy loss uses policy gradients with the entropy regularizer, as in (Mnih et al.,

Muesli: Combining Improvements in Policy Optimization

Algorithm 1 Agent with Muesli policy loss

Initialization:
Initialize the estimate of the variance of the advantage estimator:

var := 0
βproduct := 1.0

Initialize πprior parameters with the π parameters:
θπprior

:= θπ

Data collection on an actor:
For each step:

Observe state st and select action at ∼ πprior(·|st).
Execute at in the environment.
Append st, at, rt+1, γt+1 to the replay buffer.
Append st, at, rt+1, γt+1 to the online queue.

Training on a learner:
For each minibatch:

Form a minibatch B with sequences from the online queue and the replay buffer.
Use Retrace to estimate each return Gv(s, a), bootstrapping from q̂πprior .
Estimate the variance of the advantage estimator:

var := βvarvar + (1− βvar) 1
|B|
∑

(s,a)∈B(Gv(s, a)− v̂πprior(s))
2

Compute the bias-corrected variance estimate in Adam’s style:
βproduct := βproductβvar
v̂ar := var

1−βproduct

Prepare the normalized advantages:
ˆadv(s, a) =

q̂πprior
(s,a)−v̂πprior

(s)√
v̂ar+εvar

Compute the total loss:
Ltotal = (
LPG+CMPO(π, s) // Regularized policy optimization, Eq. 9.
+ Lm(π, s) // Policy model loss, Eq. 13.
+ Lv(v̂π, s) + Lr(r̂π, s)) // MuZero value and reward losses.

Use Ltotal to update θπ by one step of gradient descent.
Use a moving average of π parameters as πprior parameters:
θπprior := (1− αtarget)θπprior + αtargetθπ

2016). The loss is defined by

LPG(π, s) = −EA∼π(·|s)
[

ˆadv(s,A)
]
− λHH[π(·|s)]. (48)

Policy gradients with the TRPO penalty. The next policy loss uses KL(πb(·|s), π(·|s)) inside the regularizer. The πb is
the behavior policy. This policy loss is known to work as well as PPO (Cobbe et al., 2020).

LPG+TRPOpenalty(π, s) = −EA∼π(·|s)
[

ˆadv(s,A)
]
− λHH[π(·|s)] + λTRPO KL(πb(·|s), π(·|s)). (49)

Proximal Policy Optimization (PPO). PPO (Schulman et al., 2017) is usually used with multiple policy updates on the
same batch of data. In our setup, we use a replay buffer instead. PPO then required a larger clipping threshold εPPO. In our
setup, the policy gradient with the TRPO penalty is a stronger baseline.

Muesli: Combining Improvements in Policy Optimization

Table 4. Atari parameters. In general, we follow the recommendations by Machado et al. (2018).
PARAMETER VALUE

Random modes and difficulties No
Sticky action probability ς 0.25
Start no-ops 0
Life information Not allowed
Action set 18 actions
Max episode length 30 minutes (108,000 frames)
Observation size 96× 96
Action repetitions 4
Max-pool over last N action repeat frames 4
Total environment frames, including skipped frames 200M

Table 5. Hyperparameters shared by all experiments.

HYPERPARAMETER VALUE

Batch size 96 sequences
Sequence length 30 frames
Model unroll length K 5
Replay proportion in a batch 75%
Replay buffer capacity 6,000,000 frames
Initial learning rate 3× 10−4

Final learning rate 0
AdamW weight decay 0
Discount 0.995
Target network update rate αtarget 0.1
Value loss weight 0.25
Reward loss weight 1.0
Retrace EA∼π[q̂πprior(s,A)] estimator 16 samples
KL(πCMPO, π) estimator 16 samples
Variance moving average decay βvar 0.99
Variance offset εvar 10−12

LPPO(π, s) = −EA∼πb(·|s)
[
min(

π(A|s)
πb(A|s)

ˆadv(s,A), clip(
π(A|s)
πb(A|s)

, 1− εPPO, 1 + εPPO) ˆadv(s,A))

]
− λHH[π(·|s)].

(50)

Maximum a Posteriori Policy Optimization (MPO). We use a simple variant of MPO (Abdolmaleki et al., 2018) that is
not specialized to Gaussian policies. Also, we use πMPO(·|st+k) as the target for the policy model.

LMPO(π, st) = KL(πMPO(·|st), π(·|st)) +
1

K

K∑
k=1

KL(πMPO(·|st+k), πk(·|st, a<t+k)) (51)

s.t. ES∼dπb [KL(πMPO(·|S), π(·|S))] < εMPO. (52)

Direct MPO. Direct MPO uses the MPO regularizer λKL(π, πprior) as a penalty.

LDirectMPO(π, s) = −EA∼π(·|s)
[

ˆadv(s,A)
]

+ λKL(π(·|s), πprior(·|s)). (53)

F.5. Go experimental details

The Go environment was configured using OpenSpiel (Lanctot et al., 2019). Games were scored with the Tromp-Taylor
rules with a komi of 7.5. Observations consisted of the last 2 board positions, presented with respect to the player in three

Muesli: Combining Improvements in Policy Optimization

Table 6. Modified hyperparameters for large-scale Atari experiments. The network architecture, discount and replay proportion are based
on MuZero Reanalyze.

HYPERPARAMETER VALUE

Network architecture MuZero net with 16 ResNet blocks
Stacked frames 16
Batch size 768 sequences
Replay proportion in a batch 95%
Replay buffer capacity 28,800,000 frames
AdamW weight decay 10−4

Discount 0.997
Retrace λ 0.95
KL(πCMPO, π) estimator exact KL

Table 7. Modified hyperparameters for 9x9 Go self-play experiments.
HYPERPARAMETER VALUE

Network architecture MuZero net with 6 ResNet blocks
Batch size 192 sequences
Sequence length 49 frames
Replay proportion in a batch 0%
Initial learning rate 2× 10−4

Target network update rate αtarget 0.01
Discount -1 (self-play)
Multi-step return estimator V-trace
V-trace λ 0.99

9x9 planes each (player’s stones, opponent’s stones, and empty intersections), in addition to a plane indicating the player’s
color. The agents were evaluated against GnuGo v3.8 at level 10 (Bump et al., 2005) and Pachi v11.99 (Baudiš & Gailly,
2011) with 10,000 simulations, 16 threads, and no pondering. Both were configured with the Chinese ruleset. Figure 11
shows the results versus GnuGo.

G. Additional experiments
Table 10 lists the median and mean human-normalized score across 57 Atari games. The table also lists the differences in
the number of stacked frames, the amount of replay and the probability of a sticky action. The environment with a non-zero
probability of a sticky action is more challenging by being stochastic (Machado et al., 2018).

In Figure 15 we compare the different ways to act and explore during training. Muesli (in blue) acts by sampling actions
from the policy network. Acting proportionally to πCMPO was not significantly different (in green). Acting based on
the Q-values only was substantially worse (in red). This is consistent with our example from Figure 2 where acting with
Q-values would be worse.

Muesli: Combining Improvements in Policy Optimization

Table 8. Modified hyperparameters for MuJoCo experiments.
HYPERPARAMETER VALUE

Replay proportion in a batch 95.8%

Table 9. Hyperparameters for the different policy losses.
HYPERPARAMETER PG TRPO penalty PPO MPO Muesli

Total policy loss weight 3.0 3.0 3.0 3.0 3.0
Entropy bonus weight 0.003 0.0003 0.0003 0 0
TRPO penalty weight 0 0.01 0 0 0
PPO clipping εPPO - - 0.5 - -
MPO KL(πMPO, π) constraint - - - 0.01 -
CMPO loss weight 0 0 0 - 1.0
CMPO clipping threshold c - - - - 1.0

Table 10. Median and mean human-normalized score across 57 Atari games, after 200M environment frames. The agents differ in network
size, amount of replay, the probability of a sticky action and agent training. The ± indicates the standard error across 2 random seeds.
While DreamerV2 was not evaluated on defender and surround, DreamerV2 median score remains valid on 57 games, if we assume
a high DreamerV2 score on defender.

AGENT MEDIAN MEAN STACKED FRAMES REPLAY STICKY ACTION

DQN (Mnih et al., 2015) 79% - 4 87.5% 0.0
IMPALA (Espeholt et al., 2018) 192% 958% 4 0% 0.0
IQN (Dabney et al., 2018) 218% - 4 87.5% 0.0
Rainbow (Hessel et al., 2018) 231% - 4 87.5% 0.0
Meta-gradient{γ, λ} (Xu et al., 2018) 287% - 4 0% 0.0
LASER (Schmitt et al., 2020) 431% - 4 87.5% 0.0
DreamerV2 (Hafner et al., 2020) 164% - 1 - 0.25
Muesli with IMPALA architecture 562 ±3% 1,981 ±66% 4 75% 0.25
Muesli with MuZero arch, replay=80% 755 ±27% 2,253 ±120% 16 80% 0.25
Muesli with MuZero arch, replay=95% 1,041 ±40% 2,524 ±104% 16 95% 0.25
MuZero Reanalyse (Schrittwieser et al., 2021) 1,047 ±40% 2,971 ±115% 16 95% 0.25

0 1000 2000 3000 4000 5000
Millions of frames

(a)

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 p
ro

b
a
b
ili

ty

9x9 Go vs GnuGo

Muesli

CMPO

TRPO penalty

PPO

PG

0 1000 2000 3000 4000 5000
Millions of frames

(b)

9x9 Go vs GnuGo

MuZero[2021]

MCTS[Act,Learn,Eval]

Muesli/MCTS[Eval]

Muesli

Figure 11. Win probability on 9x9 Go when training from scratch, by self-play, for 5B frames. Evaluating 3 seeds against GnuGo (level
10). (a) Muesli and other search-free baselines. (b) MuZero MCTS with 150 simulations and Muesli with and without the use of MCTS
at the evaluation time only.

Muesli: Combining Improvements in Policy Optimization

0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0

1500

1000

500

0

500

1000

1500

2000

M
e
a
n
 r

e
tu

rn

ant_v2

Muesli

TRPO penalty

PPO

PG

CMPO

0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0

500

0

500

1000

1500

2000

2500

3000

3500

halfcheetah_v2

0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0

0

500

1000

1500

2000

2500

3000

hopper_v2

0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0

0

1000

2000

3000

4000

humanoid_v2

0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0

40000

60000

80000

100000

120000

140000

humanoidstandup_v2

0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0
Millions of frames

0

2000

4000

6000

8000

M
e
a
n
 r

e
tu

rn

inverteddoublependulum_v2

0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0
Millions of frames

0

200

400

600

800

1000

invertedpendulum_v2

0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0
Millions of frames

80

60

40

20

reacher_v2

0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0
Millions of frames

0

50

100

150

200

250

300

350
swimmer_v2

0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0
Millions of frames

0

500

1000

1500

2000

2500

3000

3500

4000

walker2d_v2

Figure 12. Mean episode return on MuJoCo environments from OpenAI Gym. The shaded area indicates the standard error across 10
random seeds.

Muesli: Combining Improvements in Policy Optimization

0 25 50 75 100 125 150 175 200
Millions of frames

0%

100%

200%

300%

400%

M
e
d
ia

n
 h

u
m

a
n
-n

o
rm

a
liz

e
d
 s

co
re

atari57 median

Muesli

Direct MPO

CMPO

MPO

Figure 13. Median score of across 57 Atari games for different
MPO variants. CMPO is MPO with clipped advantages and no
constrained optimization.

0 25 50 75 100 125 150 175 200
Millions of frames

0%

100%

200%

300%

400%

500%

M
e
d
ia

n
 h

u
m

a
n
-n

o
rm

a
liz

e
d
 s

co
re

atari57 median

with reward model, value model

with Q model

Figure 14. Median score of Muesli across 57 Atari games when
modeling the reward and value or when modeling the qπ(s, a)
directly.

0 25 50 75 100 125 150 175 200
Millions of frames

0%

100%

200%

300%

400%

M
e
d
ia

n
 h

u
m

a
n
-n

o
rm

a
liz

e
d
 s

co
re

atari57 median

Muesli

act CMPO

act Q

Figure 15. Median score across 57 Atari games for different ways
to act and explore. Acting with πCMPO was not significantly
different. Acting with softmax(q̂/temperature) was worse.

0 25 50 75 100 125 150 175 200
Millions of frames

0%

100%

200%

300%

400%

M
e
d
ia

n
 h

u
m

a
n
-n

o
rm

a
liz

e
d
 s

co
re

atari57 median

Muesli

^ without beta-LOO

TRPO penalty

^ without beta-LOO

Figure 16. Median score across 57 Atari games when using or not
using β-LOO action dependent baselines.

0 25 50 75 100 125 150 175 200
Millions of frames

0%

100%

200%

300%

400%

500%

600%
M

e
d
ia

n
 h

u
m

a
n
-n

o
rm

a
liz

e
d
 s

co
re

atari57 median

stacking 4 frames, exact KL

stacking 4 frames

stacking 1 frame

Figure 17. Median score across 57 Atari games for different num-
bers of stacked frames.

0 25 50 75 100 125 150 175 200
Millions of frames

0%

100%

200%

300%

400%

500%

M
e
d
ia

n
 h

u
m

a
n
-n

o
rm

a
liz

e
d
 s

co
re

atari57 median

Muesli

no uniform in prior

no actor in prior

Figure 18. Median score across 57 Atari games for different πprior

compositions.

Muesli: Combining Improvements in Policy Optimization

Table 11. The mean score from the last 200 episodes at 200M frames on 57 Atari games. The ± indicates the standard error across 2
random seeds.

GAME Random Human MuZero Muesli

alien 228 7128 135541 ±65349 139409 ±12178
amidar 6 1720 1061 ±136 21653 ±2019
assault 222 742 29697 ±3595 36963 ±533
asterix 210 8503 918628 ±56222 316210 ±48368
asteroids 719 47389 509953 ±33541 484609 ±5047
atlantis 12850 29028 1136009 ±1466 1363427 ±81093
bank heist 14 753 14176 ±13044 1213 ±0
battle zone 2360 37188 320641 ±141924 414107 ±13422
beam rider 364 16927 319684 ±13394 288870 ±137
berzerk 124 2630 19523 ±16817 44478 ±36140
bowling 23 161 156 ±25 191 ±37
boxing 0 12 100 ±0 99 ±1
breakout 2 30 778 ±20 791 ±10
centipede 2091 12017 862737 ±11564 869751 ±16547
chopper command 811 7388 494578 ±488588 101289 ±24339
crazy climber 10780 35829 176172 ±17630 175322 ±3408
defender 2874 18689 544320 ±12881 629482 ±39646
demon attack 152 1971 143846 ±8 129544 ±11792
double dunk -19 -16 24 ±0 -3 ±2
enduro 0 861 2363 ±2 2362 ±1
fishing derby -92 -39 69 ±5 51 ±0
freeway 0 30 34 ±0 33 ±0
frostbite 65 4335 410173 ±35403 301694 ±275298
gopher 258 2412 121342 ±1540 104441 ±424
gravitar 173 3351 10926 ±2919 11660 ±481
hero 1027 30826 37249 ±15 37161 ±114
ice hockey -11 1 40 ±2 25 ±13
jamesbond 29 303 32107 ±3480 19319 ±3673
kangaroo 52 3035 13928 ±90 14096 ±421
krull 1598 2666 50137 ±22433 34221 ±1385
kung fu master 258 22736 148533 ±31806 134689 ±9557
montezuma revenge 0 4753 1450 ±1050 2359 ±309
ms pacman 307 6952 79319 ±8659 65278 ±1589
name this game 2292 8049 108133 ±6935 105043 ±732
phoenix 761 7243 748424 ±67304 805305 ±26719
pitfall -229 6464 0 ±0 0 ±0
pong -21 15 21 ±0 20 ±1
private eye 25 69571 7600 ±7500 10323 ±4735
qbert 164 13455 85926 ±8980 157353 ±6593
riverraid 1338 17118 172266 ±592 47323 ±1079
road runner 12 7845 554956 ±23859 327025 ±45241
robotank 2 12 85 ±15 59 ±2
seaquest 68 42055 501236 ±498423 815970 ±128885
skiing -17098 -4337 -30000 ±0 -18407 ±1171
solaris 1236 12327 4401 ±732 3031 ±491
space invaders 148 1669 31265 ±27619 59602 ±2759
star gunner 664 10250 158608 ±4060 214383 ±23087
surround -10 7 10 ±0 9 ±0
tennis -24 -8 -0 ±0 12 ±12
time pilot 3568 5229 413988 ±10023 359105 ±21396
tutankham 11 168 318 ±30 252 ±47
up n down 533 11693 606602 ±28296 549190 ±70789
venture 0 1188 866 ±866 2104 ±291
video pinball 0 17668 921563 ±56020 685436 ±155718
wizard of wor 564 4757 103463 ±3366 93291 ±5
yars revenge 3093 54577 187731 ±32107 557818 ±1895
zaxxon 32 9173 106935 ±45495 65325 ±395

