
Muesli: Combining Improvements in Policy Optimization

Matteo Hessel * 1 Ivo Danihelka * 1 2 Fabio Viola 1 Arthur Guez 1 Simon Schmitt 1 Laurent Sifre 1

Theophane Weber 1 David Silver 1 2 Hado van Hasselt 1

Abstract

We propose a novel policy update that combines
regularized policy optimization with model learn-
ing as an auxiliary loss. The update (henceforth
Muesli) matches MuZero’s state-of-the-art perfor-
mance on Atari. Notably, Muesli does so without
using deep search: it acts directly with a policy
network and has computation speed comparable
to model-free baselines. The Atari results are
complemented by extensive ablations, and by ad-
ditional results on continuous control and 9x9 Go.

1. Introduction
Reinforcement learning (RL) is a general formulation for the
problem of sequential decision making under uncertainty,
where a learning system (the agent) must learn to maximize
the cumulative rewards provided by the world it is embed-
ded in (the environment), from experience of interacting
with such environment (Sutton & Barto, 2018). An agent
is said to be value-based if its behavior, i.e. its policy, is
inferred (e.g by inspection) from learned value estimates
(Sutton, 1988; Watkins, 1989; Rummery & Niranjan, 1994;
Tesauro, 1995). In contrast, a policy-based agent directly
updates a (parametric) policy (Williams, 1992; Sutton et al.,
2000) based on past experience. We may also classify as
model free the agents that update values and policies directly
from experience (Sutton, 1988), and as model-based those
that use (learned) models (Oh et al., 2015; van Hasselt et al.,
2019) to plan either global (Sutton, 1990) or local (Richalet
et al., 1978; Kaelbling & Lozano-Pérez, 2010; Silver & Ve-
ness, 2010) values and policies. Such distinctions are useful
for communication, but, to master the singular goal of op-
timizing rewards in an environment, agents often combine
ideas from more than one of these areas (Hessel et al., 2018;
Silver et al., 2016; Schrittwieser et al., 2020).
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Figure 1. Median human normalized score across 57 Atari
games. (a) Muesli and other policy updates; all these use the
same IMPALA network and a moderate amount of replay data
(75%). Shades denote standard errors across 5 seeds. (b) Muesli
with the larger MuZero network and the high replay fraction used
by MuZero (95%), compared to the latest version of MuZero.
These large scale runs use 2 seeds. Muesli still acts directly with
the policy network and uses one-step look-aheads in updates.

In this paper, we focus on a critical part of RL, namely policy
optimization. We leave a precise formulation of the problem
for later, but different policy optimization algorithms can be
seen as answers to the following crucial question:

given data about an agent’s interactions with the world,
and predictions in the form of value functions or models,

how should we update the agent’s policy?

We start from an analysis of the desiderata for general policy
optimization. These include support for partial observability
and function approximation, the ability to learn stochas-
tic policies, robustness to diverse environments or training
regimes (e.g. off-policy data), and being able to represent
knowledge as value functions and models. See Section 3 for
further details on our desiderata for policy optimization.

Then, we propose a policy update combining regularized
policy optimization with model-based ideas so as to make
progress on the dimensions highlighted in the desiderata.
More specifically, we use a model inspired by MuZero
(Schrittwieser et al., 2020) to estimate action values via
one-step look-ahead. These action values are then plugged
into a modified Maximum a Posteriori Policy Optimiza-
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tion (MPO) (Abdolmaleki et al., 2018) mechanism, based
on clipped normalized advantages, that is robust to scaling
issues without requiring constrained optimization. The over-
all update, named Muesli, then combines the clipped MPO
targets and policy-gradients into a direct method (Vieillard
et al., 2020) for regularized policy optimization.

The majority of our experiments were performed on 57 clas-
sic Atari games from the Arcade Learning Environment
(Bellemare et al., 2013; Machado et al., 2018), a popular
benchmark for deep RL. We found that, on Atari, Muesli
can match the state of the art performance of MuZero, with-
out requiring deep search, but instead acting directly with
the policy network and using one-step look-aheads in the
updates. To help understand the different design choices
made in Muesli, our experiments on Atari include multiple
ablations of our proposed update. Additionally, to evaluate
how well our method generalises to different domains, we
performed experiments on a suite of continuous control envi-
ronments (based on MuJoCo and sourced from the OpenAI
Gym (Brockman et al., 2016)). We also conducted experi-
ments in 9x9 Go in self-play, to evaluate our policy update
in a domain traditionally dominated by search methods.

2. Background
The environment. We are interested in episodic environ-
ments with variable episode lengths (e.g. Atari games),
formalized as Markov Decision Processes (MDPs) with ini-
tial state distribution µ and discount γ ∈ [0, 1); ends of
episodes correspond to absorbing states with no rewards.

The objective. The agent starts at a state S0 ∼ µ from
the initial state distribution. At each time step t, the agent
takes an action At ∼ π(At|St) from a policy π, obtains
the reward Rt+1 and transitions to the next state St+1. The
expected sum of discounted rewards after a state-action pair
is called the action-value or Q-value qπ(s, a):

qπ(s, a) = E

[∑
t=0

γtRt+1|π, S0 = s,A0 = a

]
. (1)

The value of a state s is vπ(s) = EA∼π(·|s) [qπ(s,A)] and
the objective is to find a policy π that maximizes the ex-
pected value of the states from the initial state distribution:

J(π) = ES∼µ [vπ(S)] . (2)

Policy improvement. Policy improvement is one of the
fundamental building blocks of reinforcement learning algo-
rithms. Given a policy πprior and its Q-values qπprior

(s, a),
a policy improvement step constructs a new policy π such
that vπ(s) ≥ vπprior(s) ∀s. For instance, a basic policy
improvement step is to construct the greedy policy:

arg max
π

EA∼π(·|s)
[
qπprior(s,A)

]
. (3)

Regularized policy optimization. A regularized policy
optimization algorithm solves the following problem:

arg max
π

(
EA∼π(·|s)

[
q̂πprior(s,A)

]
− Ω(π)

)
, (4)

where q̂πprior
(s, a) are approximate Q-values of a πprior

policy and Ω(π) ∈ R is a regularizer. For example, we
may use as the regularizer the negative entropy of the policy
Ω(π) = −λH[π], weighted by an entropy cost λ (Williams
& Peng, 1991). Alternatively, we may also use Ω(π) =
λKL(πprior, π), where πprior is the previous policy, as used
in TRPO (Schulman et al., 2015).

Following the terminology introduced by Vieillard et al.
(2020), we can then solve Eq. 4 by either direct or indirect
methods. If π(a|s) is differentiable with respect to the policy
parameters, a direct method applies gradient ascent to

J(s, π) = EA∼π(·|s)
[
q̂πprior(s,A)

]
− Ω(π). (5)

Using the log derivative trick to sample the gradient of
the expectation results in the canonical (regularized) policy
gradient update (Sutton et al., 2000).

In indirect methods, the solution of the optimization prob-
lem (4) is found exactly, or numerically, for one state and
then distilled into a parametric policy. For example, Maxi-
mum a Posteriori Policy Optimization (MPO) (Abdolmaleki
et al., 2018) uses as regularizer Ω(π) = λKL(π, πprior),
for which the exact solution to the regularized problem is

πMPO(a|s) = πprior(a|s) exp

(
q̂πprior

(s, a)

λ

)
1

z(s)
, (6)

where z(s) = EA∼πprior(·|s)

[
exp

(
q̂πprior (s,A)

λ

)]
is a nor-

malization factor that ensures that the resulting probabilities
form a valid probability distribution (i.e. they sum up to 1).

MuZero. MuZero (Schrittwieser et al., 2020) uses a
weakly grounded (Grimm et al., 2020) transition model
m trained end to end exclusively to support accurate reward,
value and policy predictions: m(st, at, at+1, . . . , at+k) ≈
(Rt+k+1, vπ(St+k+1), π(·|St+k+1)). Since such model
can be unrolled to generate sequences of rewards and value
estimates for different sequences of actions (or plans), it
can be used to perform Monte-Carlo Tree Search, or MCTS
(Coulom, 2006). MuZero then uses MCTS to construct a
policy as the categorical distribution over the normalized
visit counts for the actions in the root of the search tree; this
policy is then used both to select actions, and as a policy
target for the policy network. Despite MuZero being intro-
duced with different motivations, Grill et al. (2020) showed
that the MuZero policy update can also be interpreted as
approximately solving a regularized policy optimization
problem with the regularizer Ω(π) = λKL(πprior, π) also
used by the TRPO algorithm (Schulman et al., 2015).
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3. Desiderata and motivating principles
First, to motivate our investigation, we discuss a few desider-
ata for a general policy optimization algorithm.

3.1. Observability and function approximation

Being able to learn stochastic policies, and being able to
leverage Monte-Carlo or multi-step bootstrapped return es-
timates is important for a policy update to be truly general.

This is motivated by the challenges of learning in partially
observable environments (Åström, 1965) or, more generally,
in settings where function approximation is used (Sutton &
Barto, 2018). Note that these two are closely related: if a
chosen function approximation ignores a state feature, then
the state feature is, for all practical purposes, not observable.

In POMDPs the optimal memory-less stochastic policy can
be better than any memory-less deterministic policy, as
shown by Singh et al. (1994). As an illustration, consider the
MDP in Figure 2; in this problem we have 4 states and, on
each step, 2 actions (up or down). If the state representation
of all states is the same φ(s) = ∅, the optimal policy is
stochastic. We can easily find such policy with pen and
paper: π∗(up|φ(s)) = 5

8 ; see Appendix B for details.

It is also known that, in these settings, it is often prefer-
able to leverage Monte-Carlo returns, or at least multi-step
bootstrapped estimators, instead of using one-step targets
(Jaakkola et al., 1994). Consider again the MDP in Figure 2:
boostrapping from vπ(φ(s)) produces biased estimates of
the expected return, because vπ(φ(s)) aggregates the values
of multiple states; again, see Appendix B for the derivation.

Among the methods in Section 2, both policy gradients and
MPO allow convergence to stochastic policies, but only
policy gradients naturally incorporate multi-step return esti-
mators. In MPO, stochastic return estimates could make the
agent overly optimistic (E[exp(G)] ≥ exp(E[G])).

3.2. Policy representation

Policies may be constructed from action values or they may
combine action values and other quantities (e.g., a direct
parametrization of the policy or historical data). We argue
that the action values alone are not enough.

First, we show that action values are not always enough
to represent the best stochastic policy. Consider again the
MDP in Figure 2 with identical state representation φ(s)
in all states. As discussed, the optimal stochastic policy
is π∗(up|φ(s)) = 5

8 . This non-uniform policy cannot be
inferred from Q-values, as these are the same for all actions
and are thus wholly uninformative about the best probabil-
ities: qπ∗(φ(s), up) = qπ∗(φ(s), down) = 1

4 . Similarly, a
model on its own is also insufficient without a policy, as it
would produce the same uninformative action values.

Figure 2. An episodic MDP with 4 states. State 1 is the initial state.
State 4 is terminal. At each step, the agent can choose amongst two
actions: up or down . The rewards range from -1 to 1, as displayed.
The discount is 1. If the state representation φ(s) is the same in all
states, the best stochastic policy is π∗(up|φ(s)) = 5

8
.

One approach to address this limitation is to parameterize
the policy explicitly (e.g. via a policy network). This has
the additional advantage that it allows us to directly sample
both discrete (Mnih et al., 2016) and continuous (van Hasselt
& Wiering, 2007; Degris et al., 2012; Silver et al., 2014)
actions. In contrast, maximizing Q-values over continuous
action spaces is challenging. Access to a parametric policy
network that can be queried directly is also beneficial for
agents that act by planning with a learned model (e.g. via
MCTS), as it allows to guide search in large or continuous
action space.

3.3. Robust learning

We seek algorithms that are robust to 1) off-policy or histori-
cal data; 2) inaccuracies in values and models; 3) diversity
of environments. In the following paragraphs we discuss
what each of these entails.

Reusing data from previous iterations of policy π (Lin, 1992;
Riedmiller, 2005; Mnih et al., 2015) can make RL more data
efficient. However, if computing the gradient of the objec-
tive EA∼π(·|s)

[
q̂πprior(s,A)

]
on data from an older policy

πprior, an unregularized application of the gradient can de-
grade the value of π. The amount of degradation depends
on the total variation distance between π and πprior, and we
can use a regularizer to control it, as in Conservative Policy
Iteration (Kakade & Langford, 2002), Trust Region Policy
Optimization (Schulman et al., 2015), and Appendix C.

Whether we learn on or off-policy, agents’ predictions in-
corporate errors. Regularization can also help here. For
instance, if Q-values have errors, the MPO regularizer
Ω(π) = λKL(π, πprior) maintains a strong performance
bound (Vieillard et al., 2020). The errors from multiple iter-
ations average out, instead of appearing in a discounted sum
of the absolute errors. While not all assumptions behind this
result apply in an approximate setting, Section 5 shows that
MPO-like regularizers are helpful empirically.
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Observability and function approximation
1a) Support learning stochastic policies
1b) Leverage Monte-Carlo targets
Policy representation
2a) Support learning the optimal memory-less policy
2b) Scale to (large) discrete action spaces
2c) Scale to continuous action spaces
Robust learning
3a) Support off-policy and historical data
3b) Deal gracefully with inaccuracies in the values/model
3c) Be robust to diverse reward scales
3d) Avoid problem-dependent hyperparameters
Rich representation of knowledge
4a) Estimate values (variance reduction, bootstrapping)
4b) Learn a model (representation, composability)

Table 1. A recap of the desiderata or guiding principles that we
believe are important when designing general policy optimization
algorithms. These are discussed in Section 3.

Finally, robustness to diverse environments is critical to en-
sure a policy optimization algorithm operates effectively in
novel settings. This can take various forms, but we focus on
robustness to diverse reward scales and minimizing problem
dependent hyperparameters. The latter are an especially
subtle form of inductive bias that may limit the applicability
of a method to established benchmarks (Hessel et al., 2019).

3.4. Rich representation of knowledge

Even if the policy is parametrized explicitly, we argue it is
important for the agent to represent knowledge in multiple
ways (Degris & Modayil, 2012) to update such policy in a
reliable and robust way. Two classes of predictions have
proven particularly useful: value functions and models.

Value functions (Sutton, 1988; Sutton et al., 2011) can cap-
ture knowledge about a cumulant over long horizons, but
can be learned with a cost independent of the span of the
predictions (van Hasselt & Sutton, 2015). They have been
used extensively in policy optimization, e.g., to implement
forms of variance reduction (Williams, 1992), and to al-
low updating policies online through bootstrapping, without
waiting for episodes to fully resolve (Sutton et al., 2000).

Models can also be useful in various ways: 1) learning a
model can act as an auxiliary task (Schmidhuber, 1990;
Sutton et al., 2011; Jaderberg et al., 2017; Guez et al., 2020),
and help with representation learning; 2) a learned model
may be used to update policies and values via planning
(Werbos, 1987; Sutton, 1990; Ha & Schmidhuber, 2018); 3)
finally, the model may be used to plan for action selection
(Richalet et al., 1978; Silver & Veness, 2010). These benefits
of learned models are entangled in MuZero. Sometimes, it
may be useful to decouple them, for instance to retain the
benefits of models for representation learning and policy
optimization, without depending on the computationally
intensive process of planning for action selection.

4. Robust yet simple policy optimization
The full list of desiderata is presented in Table 1. These are
far from solved problems, but they can be helpful to reason
about policy updates. In this section, we describe a policy
optimization algorithm designed to address these desiderata.

4.1. Our proposed clipped MPO (CMPO) regularizer

We use the Maximum a Posteriori Policy Optimization
(MPO) algorithm (Abdolmaleki et al., 2018) as starting
point, since it can learn stochastic policies (1a), supports
discrete and continuous action spaces (2c), can learn sta-
bly from off-policy data (3a), and has strong performance
bounds even when using approximate Q-values (3b). We
then improve the degree of control provided by MPO on the
total variation distance between π and πprior (3a), avoiding
sensitive domain-specific hyperparameters (3d).

MPO uses a regularizer Ω(π) = λKL(π, πprior), where
πprior is the previous policy. Since we are interested in
learning from stale data, we allow πprior to correspond to
arbitrary previous policies, and we introduce a regularizer
Ω(π) = λKL(πCMPO, π), based on the new target

πCMPO(a|s) =
πprior(a|s) exp

(
clip( ˆadv(s, a),−c, c)

)
zCMPO(s)

,

(7)

where ˆadv(s, a) is a non-stochastic approximation of the
advantage q̂πprior

(s, a)− v̂πprior
(s) and the factor zCMPO(s)

ensures the policy is a valid probability distribution. The
πCMPO term we use in the regularizer has an interesting
relation to natural policy gradients (Kakade, 2001): πCMPO

is obtained if the natural gradient is computed with respect to
the logits of πprior and then the expected gradient is clipped
(for proof note the natural policy gradient with respect to
the logits is equal to the advantages (Agarwal et al., 2019)).

The clipping threshold c controls the maximum total varia-
tion distance between πCMPO and πprior. Specifically, the
total variation distance between π′ and π is defined as

DTV(π′(·|s), π(·|s)) =
1

2

∑
a

|π′(a|s)− π(a|s)|. (8)

As discussed in Section 3.3, constrained total variation sup-
ports robust off-policy learning. The clipped advantages
allows us to derive not only a bound for the total variation
distance but an exact formula:

Theorem 4.1 (Maximum CMPO total variation distance)
For any clipping threshold c > 0, we have:

max
πprior, ˆadv,s

DTV(πCMPO(·|s), πprior(·|s)) = tanh(
c

2
).
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Figure 3. (a) The maximum total variation distance between
πCMPO and πprior is exclusively a function of the clipping thresh-
old c. (b) A comparison (on 10 Atari games) of the Muesli sen-
sitivity to the regularizer multiplier λ. Each dot is the mean of 5
runs with different random seeds and the black line is the mean
across all 10 games. With Muesli’s normalized advantages, the
good range of values for λ is fairly large, not strongly problem
dependent, and λ = 1 performs well on many environments.

We refer readers to Appendix D for proof of Theorem 4.1;
we also verified the theorem predictions numerically.

Note that the maximum total variation distance between
πCMPO and πprior does not depend on the number of actions
or other environment properties (3d). It only depends on the
clipping threshold as visualized in Figure 3a. This allows to
control the maximum total variation distance under a CMPO
update, for instance by setting the maximum total variation
distance to ε, without requiring the constrained optimization
procedure used in the original MPO paper. Instead of the
constrained optimization, we just set c = 2 arctanh(ε). We
used c = 1 in our experiments, across all domains.

4.2. A novel policy update

Given the proposed regularizer Ω(π) = λKL(πCMPO, π),
we can update the policy by direct optimization of the regu-
larized objective, that is by gradient descent on

LPG+CMPO(π, s) = −EA∼π(·|s)
[

ˆadv(s,A)
]

+

λKL(πCMPO(·|s), π(·|s)), (9)

where the advantage terms in each component of the loss can
be normalized using the approach described in Section 4.5
to improve the robustness to reward scales.

The first term corresponds to a standard policy gradient
update, thus allowing stochastic estimates of ˆadv(s,A) that
use Monte-Carlo or multi-step estimators (1b). The second
term adds regularization via distillation of the CMPO target,
to preserve the desiderata addressed in Section 4.1.

Critically, the hyper-parameter λ is easy to set (3d), because
even if λ is high, λKL(πCMPO(·|s), π(·|s)) still proposes
improvements to the policy πprior. This property is missing

in popular regularizers that maximize entropy or minimize
a distance from πprior. We refer to the sensitivity analysis
depicted in Figure 3b for a sample of the wide range of
values of λ that we found to perform well on Atari. We used
λ = 1 in all other experiments reported in the paper.

Both terms can be sampled, allowing to trade off the compu-
tation cost and the variance of the update; this is especially
useful in large or continuous action spaces (2b), (2c).

We can sample the gradient of the first term by computing
the loss on data generated on a prior policy πprior, and then
use importance sampling to correct for the distribution shift
wrt π. This results in the estimator

− π(a|s)
πb(a|s)

(Gv(s, a)− v̂πprior(s)), (10)

for the first term of the policy loss. In this expression,
πb(a|s) is the behavior policy; the advantage (Gv(s, a) −
v̂πprior(s)) uses a stochastic multi-step bootstrapped estima-
tor Gv(s, a) and a learned baseline v̂πprior

(s).

We can also sample the regularizer, by computing a stochas-
tic estimate of the KL on a subset of N actions a(k), sam-
pled from πprior(s). In which case, the second term of Eq. 9
becomes (ignoring an additive constant):

λ

N

N∑
k=1

[
exp(clip( ˆadv(s, a(k)),−c, c))

zCMPO(s)
log π(a(k)|s)

]
,

(11)

where ˆadv(s, a) = q̂πprior
(s, a) − v̂πprior

(s) is computed
from the learned values q̂πprior

and v̂πprior
(s). To support

sampling just few actions from the current state s, we can
estimate zCMPO(s) for the i-th sample out of N as:

z̃
(i)
CMPO(s) =

zinit +
∑N
k 6=i exp(clip( ˆadv(s, a(k)),−c, c))

N
,

(12)

where zinit is an initial estimate. We use zinit = 1.

4.3. Learning a model

As discussed in Section 3.4, learning models has several po-
tential benefits. Thus, we propose to train a model alongside
policy and value estimates (4b). As in MuZero (Schrit-
twieser et al., 2020) our model is not trained to reconstruct
observations, but is rather only required to provide accurate
estimates of rewards, values and policies. It can be seen as
an instance of value equivalent models (Grimm et al., 2020).

For training, the model is unrolled k > 1 steps, taking as
inputs an initial state st and an action sequence a<t+k =
at, at+1, ..., at+k−1. On each step the model then predicts
rewards r̂k, values v̂k and policies π̂k. Rewards and values
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are trained to match the observed rewards and values of the
states actually visited when executing those actions.

Policy predictions π̂k after unrolling the model k steps are
trained to match the πCMPO(·|st+k) policy targets com-
puted in the actual observed states st+k. The policy compo-
nent of the model loss can then be written as:

Lm(π, st) =

K∑
k=1

KL(πCMPO(·|st+k), π̂k(·|st, a<t+k))

K
.

(13)

This differs from MuZero in that here the policy pre-
dictions π̂k(·|st, a<t+k) are updated towards the targets
πCMPO(·|st+k), instead of being updated to match the tar-
gets πMCTS(·|st+k) constructed from the MCTS visitations.

4.4. Using the model

The first use of a model is as an auxiliary task. We im-
plement this by conditioning the model not on a raw envi-
ronment state st but, instead, on the activations h(st) from
a hidden layer of the policy network. Gradients from the
model loss Lm are then propagated all the way into the
shared encoder, to help learning good state representations.

The second use of the model is within the policy update
from Eq. 9. Specifically, the model is used to estimate the
action values q̂πprior

(s, a), via one-step look-ahead:

q̂πprior
(s, a) = r̂1(s, a) + γv̂1(s, a), (14)

and the model-based action values are then used in two
ways. First, they are used to estimate the multi-step return
Gv(s,A) in Eq. 10, by combining action values and ob-
served rewards using the Retrace estimator (Munos et al.,
2016). Second, the action values are used in the (non-
stochastic) advantage estimate ˆadv(s, a) = q̂πprior(s, a)−
v̂πprior(s) required by the regularisation term in Eq. 11.

Using the model to compute the πCMPO target instead of
using it to construct the search-based policy πMCTS has
advantages: a fast analytical formula, stochastic estima-
tion of KL(πCMPO(s), π(s)) in large action spaces (2b),
and direct support for continuous actions (2c). In contrast,
MuZero’s targets πMCTS are only an approximate solution
to regularized policy optimization (Grill et al., 2020), and
the approximation can be crude when using few simulations.

Note that we could have also used deep search to estimate
action-values, and used these in the proposed update. Deep
search would however be computationally expensive, and
may require more accurate models to be effective (3b).

4.5. Normalization

CMPO avoids overly large changes but does not prevent
updates from becoming vanishingly small due to small
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clipped and unclipped MPO agents to the scale of the advantages.
Without clipping, we found that performance degraded quickly as
the scale increased. In contrast, with CMPO, performance was
almost unaffected by scales ranging from 10−3 to 103.

advantages. To increase robustness to reward scales (3c),
we divide advantages ˆadv(s, a) by the standard deviation
of the advantage estimator. A similar normalization was
used in PPO (Schulman et al., 2017), but we estimate
ESt,At

[
(Gv(St, At)− v̂πprior(St))

2
]

using moving aver-
ages, to support small batches. Normalized advantages do
not become small, even when the policy is close to optimal;
for convergence, we rely on learning rate decay.

All policy components can be normalized using this ap-
proach, but the model also predict rewards and values, and
the corresponding losses could be sensitive to reward scales.
To avoid having to tune, per game, the weighting of these
unnormalized components (4c), (4d), we compute losses in
a non-linearly transformed space (Pohlen et al., 2018; van
Hasselt et al., 2019), using the categorical reparametrization
introduced by MuZero (Schrittwieser et al., 2020).

5. An empirical study
In this section, we investigate empirically the policy updates
described in the Section 4. The full agent implementing our
recommendations is named Muesli, as homage to MuZero.
The Muesli policy loss isLPG+CMPO(π, s)+Lm(π, s). All
agents in this section are trained using the Sebulba podracer
architecture (Hessel et al., 2021).

First, we use the 57 Atari games in the Arcade Learning
Environment (Bellemare et al., 2013) to investigate the key
design choices in Muesli, by comparing it to suitable base-
lines and ablations. We use sticky actions to make the
environments stochastic (Machado et al., 2018). To ensure
comparability, all agents use the same policy network, based
on the IMPALA agent (Espeholt et al., 2018). When appli-
cable, the model described in Section 4.3 is parametrized

https://github.com/openai/baselines/blob/9b68103b737ac46bc201dfb3121cfa5df2127e53/baselines/ppo2/model.py#L139
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Figure 5. A comparison (on two Atari games) of direct and indirect
optimization. Whether direct MPO (in green) or indirect CMPO
(in yellow) perform best depends on the environment. Muesli,
however, typically performs as well or better than either one of
them. The aggregate score across the 57 games for Muesli, direct
MPO and CMPO are reported in Figure 13 of the appendix.

by an LSTM (Hochreiter & Schmidhuber, 1997), with a
diagram in Figure 10 in the appendix. Agents are trained
using uniform experience replay, and estimate multi-step
returns using Retrace (Munos et al., 2016).

In Figure 1a we compare the median human-normalized
score on Atari achieved by Muesli to that of several base-
lines: policy gradients (in red), PPO (in green), MPO
(in grey) and a policy gradient variant with TRPO-like
KL(πb, π) regularization (in orange). The updates for each
baseline are reported in Appendix F, and the agents differed
only in the policy components of the losses. In all updates
we used the same normalization, and trained a MuZero-like
model grounded in values and rewards. In MPO and Muesli,
the policy loss included the policy model loss from Eq. 13.
For each update, we separately tuned hyperparameters on
10 of the 57 Atari games. We found the performance on
the full benchmark to be substantially higher for Muesli (in
blue). In the next experiments we investigate how different
design choices contributed to Muesli’s performance.

In Figure 4 we use the Atari games beam rider and
gravitar to investigate advantage clipping. Here, we
compare the updates that use clipped (in blue) and unclipped
(in red) advantages, when first rescaling the advantages by
factors ranging from 10−3 to 103 to simulate diverse return
scales. Without clipping, performance was sensitive to scale,
and degraded quickly when scaling advantages by a factor of
100 or more. With clipping, learning was almost unaffected
by rescaling, without requiring more complicated solutions
such as the constrained optimization introduced in related
work to deal with this issue (Abdolmaleki et al., 2018).

In Figure 5 we show how Muesli combines the benefits
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Figure 6. Median score across 57 Atari games. (a) Return abla-
tions: 1) Retrace or V-trace, 2) training the policy with multi-step
returns or with q̂πprior(s, a) only (in red). (b) Different numbers
of samples to estimate the KL(πCMPO, π). The ”1 sample, oracle”
(pink) used the exact zCMPO(s) normalizer, requiring to expand
all actions. The ablations were run with 2 random seeds.

of direct and indirect optimization. A direct MPO update
uses the λKL(π, πprior) regularizer as a penalty; c.f. Mirror
Descent Policy Optimization (Tomar et al., 2020). Indirect
MPO first finds πMPO from Eq. 6 and then trains the policy
π by the distillation loss KL(πMPO, π). Note the different
direction of the KLs. Vieillard et al. (2020) observed that
the best choice between direct and indirect MPO is problem
dependent, and we found the same: compare the ordering of
direct MPO (in green) and indirect CMPO (in yellow) on the
two Atari games alien and robotank. In contrast, we
found that the Muesli policy update (in blue) was typically
able to combine the benefits of the two approaches, by
performing as well or better than the best among the two
updates on each of the two games. See Figure 13 in the
appendix for aggregate results across more games.

In Figure 6a we evaluate the importance of using multi-step
bootstrapped returns and model-based action values in the
policy-gradient-like component of Muesli’s update. Replac-
ing the multi-step return with an approximate q̂πprior

(s, a)
(in red in Figure 6a) degraded the performance of Muesli (in
blue) by a large amount, showing the importance of lever-
aging multi-step estimators. We also evaluated the role of
model-based action value estimates qπ in the Retrace estima-
tor, by comparing full Muesli to an ablation (in green) where
we instead used model-free values v̂ in a V-trace estimator
(Espeholt et al., 2018). The ablation performed worse.

In Figure 6b we compare the performance of Muesli when
using different numbers of actions to estimate the KL term
in Eq. 9. We found that the resulting agent performed well,
in absolute terms (∼ 300% median human normalized per-
formance) when estimating the KL by sampling as little as a
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Figure 7. Median score across 57 Atari games. (a) Muesli ab-
lations that train one-step models (in green), or drop the policy
component of the model (in red). (b) Muesli and two MCTS-
baselines that act sampling from πMCTS and learn using πMCTS

as target; all use the IMPALA policy network and an LSTM model.

single action (brown). Performance increased by sampling
up to 16 actions, which was then comparable the exact KL.

In Figure 7a we show the impact of different parts of the
model loss on representation learning. The performance de-
graded when only training the model for one step (in green).
This suggests that training a model to support deeper unrolls
(5 steps in Muesli, in blue) is a useful auxiliary task even
if using only one-step look-aheads in the policy update. In
Figure 7a we also show that performance degraded even
further if the model was not trained to output policy predic-
tions at each steps in the future, as per Eq. 13, but instead
was only trained to predict rewards and values (in red). This
is consistent with the value equivalence principle (Grimm
et al., 2020): a rich signal from training models to support
multiple predictions is critical for this kind of models.

In Figure 7b we compare Muesli to an MCTS baseline. As
in MuZero, the baseline uses MCTS both for acting and
learning. This is not a canonical MuZero, though, as it
uses the (smaller) IMPALA network. MCTS (in purple)
performed worse than Muesli (in blue) in this regime. We
ran another MCTS variant with limited search depth (in
green); this was better than full MCTS, suggesting that
with insufficiently large networks, the model may not be
sufficiently accurate to support deep search. In contrast,
Muesli performed well even with these smaller models (3b).

Since we know from the literature that MCTS can be very
effective in combination with larger models, in Figure 1b we
reran Muesli with a much larger policy network and model,
similar to that of MuZero. In this setting, Muesli matched
the published performance of MuZero (the current state
of the art on Atari in the 200M frames regime). Notably,
Muesli achieved this without relying on deep search: it
still sampled actions from the fast policy network and used
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Figure 8. Win probability on 9x9 Go when training from scratch,
by self-play, for 5B frames. Evaluating 3 seeds against Pachi
with 10K simulations per move. (a) Muesli and other search-free
baselines. (b) MuZero MCTS with 150 simulations and Muesli
with and without the use of MCTS at the evaluation time only.

one-step look-aheads in the policy update. We note that
the resulting median score matches MuZero and is substan-
tially higher than all other published agents, see Table 2 to
compare the final performance of Muesli to other baselines.

Next, we evaluated Muesli on learning 9x9 Go from self-
play. This requires to handle non-stationarity and a combi-
natorial space. It is also a domain where deep search (e.g.
MCTS) has historically been critical to reach non-trivial
performance. In Figure 8a we show that Muesli (in blue)
still outperformed the strongest baselines from Figure 1a,
as well as CMPO on its own (in yellow). All policies were
evaluated against Pachi (Baudiš & Gailly, 2011). Muesli
reached a ∼75% win rate against Pachi: to the best of our
knowledge, this is the first system to do so from self-play
alone without deep search. In the Appendix we report even
stronger win rates against GnuGo (Bump et al., 2005).

In Figure 8b, we compare Muesli to MCTS on Go; here,
Muesli’s performance (in blue) fell short of that of the
MCTS baseline (in purple), suggesting there is still value
in using deep search for acting in some domains. This is
demonstrated also by another Muesli variant that uses deep
search at evaluation only. Such Muesli/MCTS[Eval] hybrid
(in light blue) recovered part of the gap with the MCTS base-
line, without slowing down training. For reference, with
the pink vertical line we depicts published MuZero, with its
even greater data efficiency thanks to more simulations, a
different network, more replay, and early resignation.

Finally, we tested the same agents on MuJoCo environments
in OpenAI Gym (Brockman et al., 2016), to test if Muesli
can be effective on continuous domains and on smaller data
budgets (2M frames). Muesli performed competitively. We
refer readers to Figure 12, in the appendix, for the results.
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Table 2. Median human-normalized score across 57 Atari games
from the ALE, at 200M frames, for several published baselines.
These results are sourced from different papers, thus the agents
differ along multiple dimensions (e.g. network architecture and
amount of experience replay). MuZero and Muesli both use a very
similar network, the same proportion of replay, and both use the
harder version of the ALE with sticky actions (Machado et al.,
2018). The ± denotes the standard error over 2 random seeds.

AGENT MEDIAN

DQN (Mnih et al., 2015) 79%
DreamerV2 (Hafner et al., 2020) 164%
IMPALA (Espeholt et al., 2018) 192%
Rainbow (Hessel et al., 2018) 231%
Meta-gradient{γ, λ} (Xu et al., 2018) 287%
STAC (Zahavy et al., 2020) 364%
LASER (Schmitt et al., 2020) 431%
MuZero Reanalyse (Schrittwieser et al., 2021) 1,047 ±40%
Muesli 1,041 ±40%

6. Conclusion
Starting from our desiderata for general policy optimiza-
tion, we proposed an update (Muesli), that combines policy
gradients with Maximum a Posteriori Policy Optimization
(MPO) and model-based action values. We empirically eval-
uated the contributions of each design choice in Muesli,
and compared the proposed update to related ideas from
the literature. Muesli demonstrated state of the art perfor-
mance on Atari (matching MuZero’s most recent results),
without the need for deep search. Muesli even outperformed
MCTS-based agents, when evaluated in a regime of smaller
networks and/or reduced computational budgets. Finally,
we found that Muesli could be applied out of the box to self-
play 9x9 Go and continuous control problems, showing the
generality of the update (although further research is needed
to really push the state of the art in these domains). We hope
that our findings will motivate further research in the rich
space of algorithms at the intersection of policy gradient
methods, regularized policy optimization and planning.
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Upadhyay, S., Pérolat, J., Srinivasan, S., Timbers, F.,
Tuyls, K., Omidshafiei, S., Hennes, D., Morrill, D.,
Muller, P., Ewalds, T., Faulkner, R., Kramár, J., De
Vylder, B., Saeta, B., Bradbury, J., Ding, D., Borgeaud, S.,

Lai, M., Schrittwieser, J., Anthony, T., Hughes, E., Dani-
helka, I., and Ryan-Davis, J. OpenSpiel: A Framework
for Reinforcement Learning in Games. arXiv e-prints, art.
arXiv:1908.09453, August 2019.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline Rein-
forcement Learning: Tutorial, Review, and Perspectives
on Open Problems. arXiv e-prints, art. arXiv:2005.01643,
May 2020.

Lin, L.-J. Self-improving reactive agents based on reinforce-
ment learning, planning and teaching. Mach. Learn., 8
(3–4):293–321, May 1992. ISSN 0885-6125.

Loshchilov, I. and Hutter, F. Decoupled Weight Decay
Regularization. arXiv e-prints, art. arXiv:1711.05101,
November 2017.

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness,
J., Hausknecht, M., and Bowling, M. Revisiting the
arcade learning environment: Evaluation protocols and
open problems for general agents. Journal of Artificial
Intelligence Research, 61:523–562, 2018.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik,
A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D.,
Legg, S., and Hassabis, D. Human-level control through
deep reinforcement learning. Nature, 2015.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International Conference on Machine Learning, pp. 1928–
1937, 2016.

Moerland, T. M., Broekens, J., and Jonker, C. M. Model-
based Reinforcement Learning: A Survey. arXiv e-prints,
art. arXiv:2006.16712, June 2020.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare,
M. Safe and efficient off-policy reinforcement learning.
In Advances in Neural Information Processing Systems,
pp. 1054–1062, 2016.

Oh, J., Guo, X., Lee, H., Lewis, R. L., and Singh, S. Action-
conditional video prediction using deep networks in Atari
games. In Advances in Neural Information Processing
Systems, pp. 2845–2853. Curran Associates, Inc., 2015.

Oh, J., Singh, S., and Lee, H. Value prediction network.
In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H.,
Fergus, R., Vishwanathan, S., and Garnett, R. (eds.), Ad-
vances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017.



Muesli: Combining Improvements in Policy Optimization

Papamakarios, G., Nalisnick, E., Jimenez Rezende, D., Mo-
hamed, S., and Lakshminarayanan, B. Normalizing Flows
for Probabilistic Modeling and Inference. arXiv e-prints,
art. arXiv:1912.02762, December 2019.

Pascanu, R., Li, Y., Vinyals, O., Heess, N., Buesing, L.,
Racanière, S., Reichert, D., Weber, T., Wierstra, D., and
Battaglia, P. Learning model-based planning from scratch.
arXiv e-prints, art. arXiv:1707.06170, July 2017.

Pohlen, T., Piot, B., Hester, T., Gheshlaghi Azar, M., Hor-
gan, D., Budden, D., Barth-Maron, G., van Hasselt,
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