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A. Optimization Algorithm

Algorithm 1 Alternating optimization algorithm

1: Initialize θ = θ0

2: repeat
3: x1, . . . , xn ∼ S {Sample n train examples}
4: zi ← φθ(xi) ∀ i ∈ [n] {Generate representations}
5: ai ← h(ρ(zi)) ∀ i ∈ [n] {Query human decisions}
6: T = {(zi, ai)}ni=1

7: η ← argminη′ ET [`(a, ĥη′(z))] {Train ĥ}
8: θ ← argminθ′ ES [`(y, ĥη(φθ′(x)))] {Train φ}
9: until convergence

B. General Optimization Issues
B.1. Initialization

Because acquiring human labels is expensive, it is important to initialize φ to map to a region of the representation space in
which there is variation and consistency in human reports, such that gradients lead to progress in subsequent rounds.

In some representation spaces, such as our 2D projections of noisy 3D rotated images, this is likely to be the case (almost
any 3D slice will retain some signal from the original 2D image). However, in 4+ dimensions, as well as with the subset
selection and avatar tasks, there are no such guarantees.

To minimize non-informative queries, we adopt two initialization strategies:

1. Initialization with a computer-only model: In scenarios in which the representation space is a (possibly discrete)
subset of input space, such as in subset selection, the initialization problem is to isolate the region of the input space
that is important for decision-making. In this situation, it can be useful to initialize with a computer-only classifier.
This classifier should share a representation-learning architecture with φ but can have any other classifying architecture
appended (although simpler is likely better for this purpose). This should result in some φ which at least focuses on the
features relevant for classification, if not necessarily in a human-interpretable format.

2. Initialization to a desired distribution with a WGAN: In scenarios in which the initialization problem is to isolate
a region of representation space into which to map all inputs, as in the avatar example, in which we wish to test
a variety of expressions without creating expression combinations which will appear overly strange to participants,
it can be useful to hand-design a starting distribution over representation space and initialize φ with a Wasserstein
GAN (Arjovsky et al., 2017). In this case, we use a Generator Network with the same architecture as φ but allow the
Discriminator Network to be of any effective architecture. As with the previous example, this results in an φ in which
the desired distribution is presented to users, but not necessarily in a way that reflects any human intuitive concept.

B.2. Convergence

As is true in general of gradient descent algorithms, the M◦M framework is not guaranteed to find a global optimum but
rather is likely to end up at a local optimum dependent on both the initialization of φ and ĥ. In our case, however, the
path of gradient descent is also dependent on the inherently stochastic selection and behavior of human users. If users
are inconsistent or user groups at different iterations are not drawn from the same behavior distribution, it is possible that
learning at one step of the algorithm could result in convergence to a suboptimal distribution for future users. It remains for
future work to test how robust machine learning methods might be adapted to this situation to mitigate this issue.

B.3. Regularization/Early Stopping

As mentioned in Section 3, training φ will in general shift the distribution of the representation space away from the region
on which we have collected labels for ĥ in the previous iterations, resulting in increasing uncertainty in the predicted
outcomes. We test a variety of methods to account for this, but developing a consistent scheme for choosing how best to
maximize the information in human labels remains future work.
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Figure 5. Images of x-o interface

• Regularization of ĥ: We test regularization of ĥ both with Dropout and L2 regularization, both of which help in
preventing overfitting, especially in early stages of training, when the representation distribution is not yet refined. As
training progresses and the distribution φθ(x) becomes more tightly defined, decreasing these regularization parameters
increases performance.

• Training ĥ with samples from previous iterations: We also found it helpful in early training iterations to reuse
samples from the previous human labeling round in training ĥ, as inspired by [Bobu et al. 2018]. 12 We weight these
samples equally and use only the previous round, but it may be reasonable in other applications to alter the weighting
scheme and number of rounds used.

• Early stopping based on Bayesian Linear Regression: In an attempt to quantify how the prediction uncertainly
changes as θ changes, we also implement Bayesian Linear Regression, found in [Riquelme et al., 2018] 13 to be a
simple but effective measure of uncertainty, over the last layer of ĥ(φθ) as we vary θ through training. We find that in
early iterations of training, this can be an effective stopping criterion for training of φ. Again, as training progresses,
we find that this mostly indicates only small changes in model uncertainty.

B.4. Human Input

Testing on mTurk presents various challenges for testing the M◦M framework:

• In some applications, such as loan approval, mTurk users are not experts. This makes it difficult to convince them that
anything is at stake (we found that bonuses did not meaningfully affect performance). It is also difficult to directly
measure effort, agency, trust, or autonomy, all of which result in higher variance in responses.

• In many other applications, the ground truth is generated by humans to begin with (for example, sentiment analysis).
Since we require ground truth for training, in these task it cannot be expected of humans to outperform machines.

12Bobu, Andreea, et al. ”Adapting to continuously shifting domains.” (2018).
13Riquelme, Carlos, George Tucker, and Jasper Snoek. ”Deep bayesian bandits showdown.” International Conference on Learning

Representations. 2018.
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• As the researchers found in (Lage et al., 2018), there can be a large variance in the time users take to complete a given
task. Researchers have found that around 25% of mTurk users complete several tasks at once or take breaks during
HITs [Moss and Litman, 2019].14 making it difficult to determine how closely Turkers are paying attention to a given
task. We use requirements of HIT approval rate greater than 98%, US only, and at least 5,000 HITs approved, as well
as a simple comprehension check.

• Turker populations can vary over time and within time periods, again leading to highly variable responses, which can
considerably effect the performance of learning.

• Recently, there have been concerns regarding the usage of automated bots within the mTurk communiy. Towards this
end, we incorporated in the experimental survey a required reading comprehension task and as well as a CAPTCHA
task, and filtered users that did not succeed in these.

C. Experimental Details
C.1. Decision-compatible 2D projections

In the experiment, we generate 1,000 examples of these point clouds in 3D. The class of φ is a 3x3 linear layer with no bias,
where we add a penalization term on φTφ− I during training to constrain the matrix to be orthogonal. Humans are shown
the result of passing the points through this layer and projecting onto the first two dimensions. The class of ĥ is a small
network with 1 3x3 convolutional layer creating 3 channels, 2x2 max pooling, and a sigmoid over a final linear layer. The
input to this network is a soft (differentiable) 6x6 histogram over the 2D projection shown to the human user.

We tested an interactive command line query and response game on 12 computer science students recruited on Slack and
email. Users filled out a consent form online, watched an instructional video, and then completed a training and testing
round, each with up to 5 rounds of 15 responses. Due to the nature of the training process, achieving 100% accuracy results
in φ not updating in the following round. With this in mind, if a user reached 100% accuracy in training, they immediately
progressed to testing. If a user reached 100% accuracy in testing, the program exited. φ was able to find a representation
that allowed for 100% accuracy 75% of the time, with an average 5 round improvement of 23% across all participants.
Many times the resulting projection appeared to be an ‘x’ and ‘o’, as in Figure 5, but occasionally it was user-specific. For
example, a user who associates straight lines with the ‘x’ may train the network to learn any projection for ‘x’ that includes
many points along a straight line.

The architecture of φ and ĥ are described in Section 4. For training, we use a fixed number of epochs (500 for ĥ and 300 for
φ) with base learning rates of .07 and .03, respectively, that increase with lower accuracy scores and decrease with each
iteration. We have found these parameters to work well in practice, but observed that results were not sensitive to their
selection. The interface allows the number of rounds and examples to be determined by the user, but often 100% accuracy
can be achieved after about 5 rounds of 15 examples each.

C.2. Decision-compatible algorithmic avatars

C.2.1. DATA PREPROCESSING.

We use the Lending Club dataset, which we filter to include only loans for which we know the resolution (either default or
paid in full, not loans currently in progress) and to remove all features that would not have been available at funding time.
We additionally drop loans that were paid off in a single lump sum payment of at least 5 times the normal installment. This
results in a dataset that is 49% defaulted and 51% repaid loans. Categorical features are transformed to one-hot variables.
There are roughly 95,000 examples remaining in this dataset, of which we split 20% into the test set.

C.2.2. LEARNING ARCHITECTURE AND PIPELINE.

The network φ takes as input the standardized loan data. Although the number of output dimension are R9, φ outputs vectors
in R11. This is because the some facial expressions do not naturally coexist as compound emotions, i.e., happiness and
sadness [Du et al., 2014]. 15 Hence, we must add some additional constraints to the output space, encoded in the extra

14A. J. Moss and L. Litman. How do most mturk workers work?, Mar 2019.
15Shichuan Du, Yong Tao, and Aleix M Martinez. Compound facial expressions of emotion. Proceedings of the National Academy of

Sciences, 111(15):E1454–E1462, 2014.
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Figure 6. Visualization of reconstruction component

(a) Loss in training ĥ over 3 rounds (b) Validation Accuracy in training φ over 3 rounds

Figure 7. ĥ does not necessarily have to match h well to lead to an increase in accuracy

dimensions. For example, happiness and sadness are split into two separate parameters (rather than using one dimension
with positive for happiness and negative for sadness). The same is true of “happy surprise”, which is only allowed to
coincide with happiness, as opposed to “sad surprise.” For parameters which have positive and negative versions, we use a
tanh function as the final nonlinearity, and for parameters which are positive only, we use a sigmoid function as the final
nonlinearity.

These parameters are programmatically mapped to a series of Webmorph (DeBruine & Tiddeman, 2016) transformation text
files, which are manually loaded into the batch transform/batch edit functions of Webmorph. We use base emotion images
from the CFEE database [Du et al., 2014] and trait identities from [Oosterhof and Todorov, 2008].16 This forms ρ for this
experiment.

The network φ is initialized with a WGAN to match a distribution of parameters chosen to output a fairly uniform distribution
of feasible faces. To achieve this, each parameter was chosen to be distributed according to one of the following: a clipped
N (0, 4), U [0, 1], or Beta(1,2). The choice of distribution was based on inspection as to what would give reasonable coverage
over the set of emotional representations we were interested in testing. In this initial version of φ, x values end up mapped
randomly to representations, as the WGAN has no objective other than distribution matching.

The hidden layer sizes of φ and ĥ were chosen via cross validation. For φ, we use the smallest architecture out of those
tested capable of recreating a wide distribution of representations z as the generator of the WGAN. For ĥ, we use the
smallest architecture out of those tested that achieves low error both in the computer-only simulation and with the first round
of human responses.

In the first experiment, we collect approximately 5 labels each (with minor variation due to a few mTurk users dropping out
mid-experiment) for the LASSO feature subset of 400 training set x points and their φ0 mappings (see Figure 9). a is taken
to be the percentage of users responding “approve” for each point.

16Nikolaas N Oosterhof and Alexander Todorov. The functional basis of face evaluation. Proceedings of the National Academy of
Sciences, 105(32):11087–11092, 2008.
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(a) Training Rounds (‘Overall‘ here is average per user
score, rather than the score of the average response per
question)

(b) Test Round

Figure 8. Results by Reported User Type

To train ĥ, we generate 15 different training-test splits of the collected {z, a} pairs and compare the performance of variations
of ĥ in which it is either initialized randomly or with the ĥ from the previous iteration, trained with or without adding the
samples from the previous iteration, and ranging over different regularization parameters. We choose the training parameters
and number of training epochs which result in the lowest average error across the 15 random splits. In the case of random
initialization, we choose the best out of 30 random seeds over the 15 splits.

To train φ, we fix ĥ and use batches of 30,000 samples per epoch from the training set, which has 75,933 examples in total.
To prevent mode collapse, wherein faces “binarize” to two prototypical exemplars, we add a reconstruction regularization
term R(x) = ‖x−ψ(φ(x))‖22 to the binary cross entropy accuracy loss, where ψ is a decoder implemented by an additional
neural network (see Figure 6). φ here also features a constraint penalty that prevents co-occurrence of incompatible emotions.

We train φ for 2,000 epochs with the Adam optimizer for a variety of values of α, where we use α to balance reconstruction
and accuracy loss in the form Ltotal = αLacc + (1− α)Lrec. We choose the value of α per round that optimally retains x
information while promoting accuracy by inspecting the accuracy vs. reconstruction MSE curve. We then perform Bayesian
Linear Regression over the final layer of the current ĥ for every 50th epoch of φ training and select the number of epochs to
use by the minimum of either 2,000 epochs or the epoch at which accuracy uncertainty has doubled. In all but the first step,
this resulted in using 2,000 epochs. At each of the 2-5th epochs, we choose only 200 training points to query. In the 6th
epoch we use 200 points from the test set.

(a) (b)

Figure 9. Images from mTurk questionnaire
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C.2.3. SELF-REPORTED USER TYPE.

In the end of the survey, we ask users to report their decision method from among the following choices:

• I primarily relied on the data available

• I used the available data unless I had a strong feeling about the advice of the computer system

• I used both the available data and the advice of the computer system equally

• I used the advice of the computer system unless I had a strong feeling about the available data

• I primarily relied on the advice of the computer system

• Other

The percentage of users in each of these groups varied widely from round to round.

We consider the first two conditions to be the ‘Data’ group, the third to be the ‘Equal’ group, and the next two to be the
‘Computer Advice’ group. Although the trend is not statistically significant (at p = 0.05), likely due to the small number of
subjects per type per round, we find it interesting that the performance improved on average over training rounds for all
three types, of which the equal-consideration type performed best. For the data-inclined users, whose performance improved
to surpass that of the no-advice condition in as early as round two, this implies at least one of the following: users misreport
their decision method; users believe they are not influenced by the advice but are in fact influenced; or, as the algorithmic
evidence becomes apparently better, only the population of users who are comparatively skilled at using the data continue to
do so.

C.2.4. DIVERSITY IN AVATAR REPRESENTATION.

Figure 10 presents examples of visualized avatars. Avatars correspond to examples having either low or high human-
predicted probability (averaged across users) (top figure), and either low or high machine-predicted probability (lower
figure). For visualization purposes, avatars are aligned according to a uni-dimensional PCA projection of the inputs, so that
their spatial positioning captures the variance in the data. As can be seen, avatars are different for each predictive category
(positive or negative; human or machine), but also vary considerably within each predictive category, with variance eminent
across multiple facial dimensions.

We believe the additional dimensionality of the avatar representation relative to a numerical or binary prediction of default
is useful for two reasons. Most importantly, high dimensionality allows users to retain an ability to reason about their
decisions. In particular, avatars are useful because people likely have shared, mental reference points for faces. Moreover,
users with a more sophisticated mental reference space may be able to teach the advising system over time to match specific
reasoning patterns to specific characteristics. Additionally, when the advising system does not have a strong conviction
about a prediction, presenting neutral advice should encourage the user to revisit the data, whereas percentages above or
below the base rate of default (or 50%) may suffer from the anchoring effect.

C.2.5. FURTHER DETAILS ON INFORMATION LEARNED BY z.

Using cross-validated ridge regression to predict individual x variables from individual z variables results in the coefficients
of determination R2 (to 2 significant figures) shown in Table 2.

Using cross-validated ridge regression to predict individual x variables from all z variables (both standardized to mean 0,
std 1) results in the variable coefficients (to 2 significant figures) shown in Table 3.
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Figure 10. Richness of avatar representation. A visualization of 200 avatars randomly sampled from the held-out test set, grouped by
either human (top) or machine (bottom) predictive probability (0.2 in blue, 0.8 in orange, with a tolerance of 0.05). Avatars are positioned
based on a 1D PCA dimensionality reduction of their corresponding feature vectors z, along which a ‘gradient’ of facial changes can
be observed. Top: Here avatars are grouped by human predictive probability. The figure shows how for the same human decisions,
learning results in avatars of varied and complex facial expressions, conveying rich high-dimensional information. Interestingly, avatars
corresponding to loan denial exhibit more variance, suggesting that there may be more ‘reasons’ for denying a loan than for approving
one. Bottom: Here avatars are grouped by machine predictive probability. Since all examples in each group have the same predictive
probability, they are equally similar, which does not facilitate a clear notion for reasoning. In contrast, avatars maintain richness in
variation, and can be efficiently used for reasoning (e.g., via similarity arguments) and other downstream tasks.
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C.3. Incorporating Side Information

C.3.1. DATA GENERATION.

A directed graph showing the variable correlations is shown in Figure 11. The data in the side-information experiment is
generated as follows: A latent variable l0 ∼ N (.3, .1) introduces a low correlation between xi and xr by setting a common
mean for their Bernoulli probabilities l1, l2:

• l1, l2 ∼ Unif(max(l0 − .3, 0),min(l0 + .3, 1))

• xi ∼ Bernoulli(1− l1)

• xr ∼ Bernoulli(1− l2)

An additional latent variable l3 provides a similar correlation between xc and xd, which also correlate, respectively, with xi
and xr:

• l3 ∼ Unif(.5, .7)

• xc ∼ Bernoulli(l3 + xi)

• xd ∼ Bernoulli(l3 + xr)

Side information s is highly correlated with xr and xi but noisy: s is drawn from a normal distribution centered at xr + xi
before rounding to an integer value between 0 and 3.

• scont ∼ N (xr + xi, .5)

• s = max(0,min(3, round(scont)))

The integer outcome variable y is the sum of xc, xd, and s. The binary outcome variable ybin is thresholded at y > 3.

y = xc + xd + s; ; ybin = 1{y > 3}

C.3.2. LEARNING ARCHITECTURE.

The network φ contains a single linear layer with no bias which takes a constant (1) as an input and outputs a number zi for
each data dimension i.

The network ĥ takes as input (x,w, y). It contains one linear layer with no bias which takes as input [x, y] and outputs a
single number ŝ. The second linear layer (with bias) takes as input w and outputs the sigmoid activation of a single number,
switch, representing the propensity to incorporate s at w. It then outputs wᵀx+ switch · ŝ.

Table 2. Coefficients of Determination R2, predicting each x variable from each final z variable.
RATE TERM DT REC INC EMP

happiness 0.00 -0.15 -0.14 0.00 -0.01 0.00
sadness -0.01 -0.06 -0.10 0.00 -0.04 -0.07
trustworthiness 0.57 0.17 0.01 0.00 -0.01 -0.01
dominance 0.00 -0.01 0.03 -0.01 0.01 -0.01
hue 0.48 0.29 -0.02 0.00 -0.04 -0.02
eye gaze 0.42 0.46 -0.04 -0.40 -0.04 -0.17
age 0.23 0.22 -0.12 -0.21 0.17 0.04
anger -0.01 -0.02 -0.05 -0.02 -0.01 0.00
fear 0.04 0.00 -0.03 0.00 -0.01 -0.01
surprise -0.18 0.04 -0.01 -0.02 0.00 -0.04
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Figure 11. Relationship of variable correlations in the side information experiment

C.3.3. BASELINES.

• Machine Only: The best possible linear model (with bias) trained to predict y from x1 . . . x4.

• h(Machine): The human model h applied to the best possible linear model (with bias) trained to predict y from
x1 . . . x4.

h(Machine) = β0 + h(x, β1, . . . , β4, s)

where β are the coefficients selected by the machine-only regression.

C.3.4. HUMAN MODELS

• Always: The human always fully incorporates the side information,

h(x,w, s) = wᵀx+ s

• Never: The human never incorporates the side information,

h(x,w, s) = wᵀx

• Or: The human becomes less likely to incorporate side information as weight is put on xi, xr,

h(x,w, s) = wᵀx+ σ(1/max(max(xi, xr), .0001)− 2). · s

Note that max(.0001) is required to prevent numerical overflow, and -2 recenters the sigmoid to allow for values < .5.

• Coarse: The human incorporates s as in Or, but uses a coarse, noisy version of s, s′ = 2 · 1{s ≥ 2}

h(x,w, s) = wᵀx+ σ(1/max(max(xi, xr), .0001)− 2). · s′

Table 3. Coefficients of Ridge Regression, predicting each x variable from all final z variables.
RATE TERM DT REC INC EMP

happiness -0.07 -0.29 -0.10 -0.06 0.21 -0.07
sadness 0.16 0.07 0.07 -0.01 0.13 0.07
trustworthiness -0.62 -0.28 -0.05 -0.23 0.31 0.16
dominance 0.05 0.16 0.12 -0.13 -0.02 0.04
hue 0.27 0.20 0.19 0.03 0.01 -0.08
eye gaze 0.13 0.28 -0.10 0.13 -0.29 -0.04
age -0.09 0.14 0.12 -0.09 0.67 0.40
anger 0.00 0.00 0.00 0.00 0.00 0.00
fear 0.19 0.12 0.08 -0.07 0.04 0.00
surprise 0.07 0.12 0.03 -0.07 -0.06 0.13



Learning Representations by Humans, for Humans

D. Select Turker quotes
• “I wasn’t always looking at just happiness or sadness. Sometimes the expressions seemed disingenuously happy, and

that also threw me off. I don’t know if that was intentional but it definitely effected my gut feeling and how I chose.”

• “In my opinion, the level of happiness or sadness, the degree of a smile or a frown, was used to represent applications
who were likely to be payed back. The more happy one looks, the better the chances of the client paying the loan off
(or at least what the survey information lead me to believe).”

• “I was more comfortable with facial expressions than numbers. I felt like a computer and I didn’t feel human anymore.
Didn’t like it at all.”
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