Trees with Attention for Set Prediction Tasks

A. Set-Tree model

In this appendix we provide proofs and additional details
about Set-Trees that did not fit in the main paper due to
space limitations.

A.1. Set-compatible split criteria

Table 1 summarizes some familiar statistical functions from
the family of set-compatible split criteria presented in this

study:
ISI78) (@) >0

z€S

Table 1. Examples of some of the familiar statistical functions that
can be used as split criteria.

a | B | Operator | « Jé] Operator
0|0 size -1 1 harmonic mean
110 sum 1 | geometric mean
1|1 average oo | 0/1 max

2 11 variance -oo | 0/1 min

A.2. Theoretical properties

In the following, we introduce additional proofs of the theo-
rems presented in the paper.

Theorem 2. This theorem can be proved by a reduction to
the bin packing problem which is NP-complete. Recall that
in the bin packing problem a finite set of items x1, ..., x, €
77 is given, together with a bin capacity B and the number
of bins k. The goal is to determine if the items can be
partitioned into k groups such that the sum of the items in
each group is at most B.

This problem can be converted into a set function in the
following way, we define the set:

S= {(Jju 0, 0)}?:1 U {(07 k, O)) (07 0, B)}

The function f is evaluated to True if the set of values ap-
pearing in the first coordinates of S can be partitioned into
k bins of size at most B where k is the maximal value of
the second element in every item in S and B is the maximal
value of the 37 coordinate of all the elements. It is easy to

verify that f is a set function. If there is a circuit C' € C
such that C' can compute f then C' determines the bin pack-
ing problem. However, C'is a finite circuit and therefore has
finite number of gates. Each gate has computational com-
plexity that is polynomial in the size of its input which is
3 (n + 2). Therefore, the circuit determines the bin-packing
problem in time that is |C|poly (n) which contradicts the
assumption that P # N P. O

Lemma 1. If T} and Ty are trees then there exists trees T
and T such that T computes the function Ty + Ty and
T* computes the function T1T5.

Proof. The tree T can be generated using a tensor oper-
ation: replace every leaf of T} by a copy of the tree 75.
Multiply the leafs’ values of the copy of 75 by the corre-
sponding T} leaf’s value. The tree T can be generated
using a similar tensor operation where we add the value of
the corresponding leaf of 7} to the leafs’ values of each
copy of T5 .

The correction of this construction follows since there is
one-to-one mapping from the leafs of the tensored tree and
the product/sum of the leafs of 77 and 7. An example z
arrives at a leaf (11, l2) in the tensored tree iff it arrives in the
leaf /1 in 7} and in the leaf l5 in T5. Therefore, by providing
the right value at the leafs of the tensored tree we obtain the
stated results. O

B. Experiments details

In this appendix we provide additional information about
the experiments to allow reproducibility, information that
did not fit in the main paper due to space limitations.

For all tree-based models (GBT and GBeST) and for all
tasks, we scanned a pre-defined hyperparameter search
space. Unless specified otherwise, we used 10% of the
train records as validation set. We used early-stopping when
training all of the tree-based models with patience=5 and
tolerance=0.001. We report the test results for the configu-
ration that performed the best over the validation set.

The trees’ maximal depth (d) was chosen within
{5, 6, 8,10}, the number of estimators (N,s;) was chosen
within {50, 100,200,300} and the learning rate (Ir) was
chosen within {0.2, 0.1, 0.05}. We also applied known tree-
regularization techniques, the fraction of train records sam-

Trees with Attention for Set Prediction Tasks

pled per tree (f,) was chosen within {1,0.8,0.5} and the
fraction of features sampled per tree (f) was chosen within
{1,0.8,0.5} (where 1 is using all the records).

The group of split criteria used is: O = {max, min, mean,
sum, harmonic mean, geometric mean, second moment
mean}. Unless specified otherwise we limit the attention-
set to either be the entire set or one that is generated in
the last 5 nodes leading to the current node. The attention-
set limit is marked as: ASj;m;: = 5. In a few particular
cases, we changed the search space, those cases are detailed
below (for example, the point clouds dataset, ModelNet40,
contains only three spatial features per item, therefore we
used only fr = 1). We repeated every experiment five times
using different seeds for randomized initialization. When
possible, each initialization is using a different train/test
split of the dataset. We report the mean metrics and the
standard deviation.

For all the experiments we used a machine with 2 Intel Xeon
Silver 4114 @ 2.20GHz CPUs. The deep-learning baselines
were conducted using PyTorch 1.4.0 (Paszke et al., 2019),
and trained with the Adam optimizer (Kingma & Ba, 2014)
on NVIDIA GeForce RTX 2080 Ti GPU. GBT baselines
were conducted using XGBoost 1.1.1 (Chen & Guestrin,
2016). The following sections provide additional details for
the data processing, training, and evaluation protocols of the
reported experiments.

B.1. First Quadrant

Models and training: GBeST used ir = 0.1, d = 6/10,
fs = 0.5/0.8 correspond to the 2D and to the 100D config-
urations. GBT used Ir = 0.05, d = 5, fs = 1 for the 2D
configuration and lr = 0.1, d = 8, fs = 0.8 for the 100D
configuration. We used DeepSets permutation-invariant
framework where the first component 6 is a 3-layer MLP
with sizes (64, 128, 128) with Relu activation and dropout
of p = 0.2. The second component p is a 2-layer MLP with
hidden size of 128. The models were trained for 50 epochs
with batch size of 128 and early stopping with a patience of
3 epochs. The recurrent model contained an input projection
layer with 64 hidden units, an LSTM cell with 32 hidden
units and an output projection layer. It was trained for 50
epochs with batch size of 128 witht the same early stopping
methodology.

B.2. Drug Prescription Errors

Data preparation: The raw (Johnson et al., 2016) dataset
contained 50,212 hospital stays. As described in the paper,
we limited the number of valid drug prescriptions in a set to
be between 2 to 100 and excluded drugs that were prescribed
fewer than 10 times or more than 10K times. After applying
those filtering operations we ended up with 49,811 hospital
stays and a catalog of 1,946 unique drugs.

3500

3000

2500

Number of records
o ~
% S
8 8

5
3
s

@
g
s

o

20 60 80 100

40
Number of drugs in record

Figure 1. Distribution of sets sizes for drug prescription error
prediction, derived from MIMIC-III dataset.

10°

=
L

Number of clusters
"
5

50 100 150 200 250 300
Number of galaxies in a cluster

Figure 2. Distribution of galaxies clusters sizes from the RedMap-
per DR8 dataset.

We randomly split the patients to train and test folds
(90%/10%) such that the patients in the train and test sets
are disjoint. We generated five randomly partitioned views
of the data for training and evaluation. We report the mean
results for the five views of the dataset. In Figure 1 we
present the distribution of drug prescription sets sizes used
in this task.

Models and training: GBT used Ir = 0.1,d =8, f; =1,
fr = 0.8 for MIR setup and lr = 0.1,d = 6, fs = 1,
fr = 0.8 for SIR setup. GBeST used Ir = 0.05, d = 6,
fs = 08, fy = 1 for MIR setup and lr = 0.1, d = 5,
fs =1, ff = 0.5 for SIR setup. We used DeepSets invariant
framework where the first component 6 is a 3-layer MLP
with hidden states (64 , 128, 64) with Relu activation and
dropout of p = 0.2. The second component p is a 3-layer
MLP with hidden sizes (64, 32, 16). The bidirectional
recurrent neural networks had two linear projection layers
with shape: (32, 64), the RNN cell hidden size is 32 and an
output hidden layer of 64. All DNN models were trained
for 30 epochs, with Adam optimizer with a learning rate of
le-3 and a batch size of 64. We used early stopping while
monitoring the validation loss with a patience of 3 epochs.

Trees with Attention for Set Prediction Tasks

B.3. Redshift Estimation in Galaxies Clusters

Data preparation: We used the galaxies clusters dataset
from the RedMaPPer DR8 catalog (Rykoff et al., 2014).
It contains the photometric features for 26,111 red galaxy
clusters. 70,505 of the galaxies has corresponding spectro-
scopic redshift. We processed the raw data using the Astropy
package (Astropy Collaboration & Robitaille, 2013). We
followed the same process as in (Zaheer et al., 2017) and
extracted the following photometric features: u, g, r, i and z
band measurement and their corresponding errors. We also
used the raw image measurement and its error, the galax-
ies’ location in the sky (in decimal degrees), their projected
distance (as measured from earth) and the probability of
each galaxy being the cluster center. Figure 2 visualizes the
distribution of the extracted clusters sizes.

Models and training: GBT used lr = 0.05, N5 = 50,
d =25, ff = 0.5and f; = 0.5. GBeST used Ir = 0.2,
Nest =100, d =6, fr = 0.8 and f, = 0.8. The DeepSets
and the MLP results are taken from (Zaheer et al., 2017).

B.4. Jets Tagging

Data preparation: We considered two datasets for this task.
Quark-Gluon tagging dataset comprised from jets initiated
by quarks and by gluons. The number of particles in each jet
varied between 1 to 148 and each particle is characterized
by its four-momentum vector (px, py, pz, E). We followed
the preprocessing pipeline of (Qu & Gouskos, 2020) and
extract seven variables from the 4-momentum vector for
each particle. We followed the splitting of 1.6M/200k/200k
records for training, validation, and test. Top Tagging dataset
includes jets derived from hadronically decaying top quarks.
It contains 2M jets with varying lengths between 1 and
99. The original data is separated to 1.2M/400K/400K data
splits correspond to train/validation/test. Each particle is
identified by its 4-momentum vector.

Models and training: For Quark-Gluon tagging dataset,
GBT used Ir = 0.1,d =5, ff = 0.5 and f; = 1. GBeST
used used Ir = 0.2, d = 5, ff = 1 and f; = 0.8. For
Top Tagging dataset, GBT used Ir = 0.1, d = 6, fr =
0.5 and f; = 0.8. GBeST used used Ir = 0.1, d = 10,
fr = 0.8 and f, = 0.8. The results for the reported deep-
learning baselines PFN and ParticleJet are taken from (Qu
& Gouskos, 2020).

B.5. Two-sample Hypothesis Testing

Models and training: Since the sets it this task has only a
single feature, we used fy = 1 for all the tree-based models.
GBT used Ir = 0.05, d = 5 and f; = 1. GBeST used
Ilr =0.1,d = 6 and f; = 0.5. The DeepSets models’ first
component 6 is a 2-layer MLP with hidden sizes (25, 50)
and the second component p is a 2-layer MLP with hidden

sizes (25, 2). We trained the models with Adam optimized
and a learning rate of 1e-3 for 30 epochs. We used batch
size of 64 and applied early stopping with a patience of 5
epochs.

B.6. Point Cloud Classification

Models and training: For this task we set fy = 1. GBeST
used Ir = 0.1, N.g; = 200, d = 6 and fs = 1 and for GBT
Ir = 0.05, Nesy = 200, d = 6 and f; = 0.8. DeepSets
baseline results are taken from Zaheer et al. (2017).

B.7. Poker Hands Classification

Models and training: For this task we set f = 1. For the
two setups, GBT used lr = 0.2, d = 8 and f; = 1. GBeST
used Ir = 0.2, d = 8 and f; = 0.5. DeepSets baseline
comprised from two components. The first component 6 is a
MLP with hidden sizes of (32, 64, 128) and the second com-
ponent p is a MLP with hidden size of 64. DeepSets models
were trained with Adam optimized and with a learning rate
of 1e-3 for 50 epochs.

C. Implementation

In this appendix, we report Set-Tree’s runtime and compare
it to the runtime of the baselines presented in the paper.
The current implementation is sub-optimal in terms of run-
time, it was primarily designed for research and prototyping.
Nevertheless, we recognize the importance of reporting the
runtime of the current implementation. We are currently
developing a more efficient implementation of Set-Tree that
will be available for the benefit of the community.

We implemented a vanilla decision tree in our tree-learning
framework and we compare Set-Tree’s runtime to this model
(named DT). We also compare the runtime of Set-Tree
against Sklearn (Pedregosa et al., 2011) and XGBoost (Chen
& Guestrin, 2016). During the tree-learning process, Set-
Tree uses caching in order to avoid excessive calculations of
the statistical moments. The statistical moments for every
node’s attention-set are stored on a first-in-first-out (FIFO)
memory queue. We also compare Set-Tree to an ablated
version in which the caching mechanism is disabled (we
name this baseline Set-Tree-NC).

For the runtime evaluation we used the synthetic data gen-
erated for the first quadrant experiment and a subset of the
drugs prescription errors dataset generated from MIMIC-III
database (Johnson et al., 2016). We generated 10K ran-
dom records from the first quadrant dataset for the two
configurations of 2D/100D, each record consisted of 20
items. We trained the models with the following hyperpa-
rameters: number of trees N s = 1, maximal number of
leafs Nieafs = 10/50 (for the two configurations), num-
ber of (a, B) pairs N, g = 7 and the attention-set limit

Trees with Attention for Set Prediction Tasks

Table 2. Runtime performances, measured in seconds. OH stands for overhead, the ratio between the model’s runtime and the runtime of
the baseline DT. Set-Tree-NC is an ablated version of Set-Tree without using the caching mechanism.

First Quadrant Drug Prescription Errors
2D 100D SIR MIR
Model Runtime OH Runtime OH Runtime OH Runtime OH
Sklearn 1.292+1.5¢e-3 - 9.556+0.208 - 1.311+0.145 - 1.970+0.135 -
XGBoost 1.8714+0.412 - 7.08140.871 - 1.866+0.022 - 1.77240.865 -
DT 1.487+0.011 - 16.158+0.644 - 2.812+0.261 - 1.992+0.3177 -
Set-Tree-NC | 26.063+0.570 | 17.5 | 254.761+0.199 | 15.76 || 98.971+£0.314 | 35.19 | 105.170£2.204 | 35.15
Set-Tree 15.77341.013 | 10.61 | 179.984+7.459 | 11.12 || 87.301+8.561 | 31.04 | 93.1924+0.317 | 31.14

ASjimit = 5. For the drugs prescription errors runtime ex-
periment we subsampled 10K random records from the two
configurations, Single Item Replacement (SIR), and Multi-
ple Items Replacement (MIR). We trained the models with
the following hyperparameters: Neg; = 1, Nieqps = 100,
Nia,5) = 7and ASjimie = 5. We run each experiment 10
times and report the mean runtime and the standard devia-
tion. We conducted all tests on a single CPU and without
using multi-threading. The runtime calculation for the non-
set-compatible models is including the prepossessing step
(the extraction of the statistical moments). Table 2 summa-
rizes the runtime performances.

We consider two sources for computational overhead, sub-
optimal implementation and the additional complexity in-
troduced by Set-Tree. For mitigating the first, we compare a
tree model trained with Sklearn to DT (vanilla decision tree
implemented with our current framework). As can be seen
from Table 2 DT’s runtime is greater by a factor of 1.15-
2.14 in compare to the same model trained with Sklearn.
This performance gap will be closed in the next version
of our framework. For measuring the computational over-
head of Set-Tree, we compare its runtime to DT. For the 2D
first quadrant experiment, Set-Tree’s runtime is 10.61 times
greater than DT and for the 100D configuration itis 11.12
times greater. When the caching mechanism is disabled,
the runtime overhead for the two configurations is 17.5 and
15.76. The computational overhead for the drug prescrip-
tion errors experiment is greater (a factor of ~ 31) because
this task is more complex and the number of leafs per tree
is greater (Njeqfs = 100 in compare to Njeqrs = 10/50).
Utilizing split criteria accelerations, such as using multi-
threading or GPU compatible implementation, can further
reduce those overheads.

When learning a tree ensemble such as GBeST, another
method that can be used to further reduce the runtime is ”op-
eration dropout”. Meaning, given the family of split criteria
parameterized by pairs of («, 3), sample a subset of pairs
for each learned tree. This technique allows GBeST to cover
large group of optional split criteria while restricting the
training runtime. This method is also a form of regulariza-

tion, similar to subsampling the features in vanilla decision
trees. In a future work, we intend to further investigate those
methods.

References

Astropy Collaboration and Robitaille. Astropy: A commu-
nity Python package for astronomy. 558, October 2013.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd inter-
national conference on knowledge discovery and data
mining, pp. 785-794, 2016.

Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L.-w. H.,
Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Celi,
L. A., and Mark, R. G. Mimic-iii, a freely accessible
critical care database. Scientific data, 3:160035, 2016.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pp. 8024—
8035. Curran Associates, Inc., 2019.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825-2830, 2011.

Qu, H. and Gouskos, L. Jet tagging via particle clouds.
Physical Review D, 101(5), Mar 2020.

Rykoff, E. S., Rozo, E., Busha, M. T., Cunha, C. E.,
Finoguenov, A., Evrard, A., Hao, J., Koester, B. P., Leau-
thaud, A., Nord, B., and et al. redmapper. i. algorithm

Trees with Attention for Set Prediction Tasks

and sdss dr8 catalog. The Astrophysical Journal, 785(2),
Apr 2014.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. In
Advances in neural information processing systems, pp.
3391-3401, 2017.

