Trees with Attention for Set Prediction Tasks

Roy Hirsch! Ran Gilad-Bachrach 2

Abstract

In many machine learning applications, each
record represents a set of items. For example,
when making predictions from medical records,
the medications prescribed to a patient are a set
whose size is not fixed and whose order is arbi-
trary. However, most machine learning algorithms
are not designed to handle set structures and are
limited to processing records of fixed size. Set-
Tree, presented in this work, extends the support
for sets to tree-based models, such as Random-
Forest and Gradient-Boosting, by introducing an
attention mechanism and set-compatible split cri-
teria. We evaluate the new method empirically on
a wide range of problems ranging from making
predictions on sub-atomic particle jets to estimat-
ing the redshift of galaxies. The new method out-
performs existing tree-based methods consistently
and significantly. Moreover, it is competitive and
often outperforms Deep Learning. We also dis-
cuss the theoretical properties of Set-Trees and
explain how they enable item-level explainability.

1. Introduction

In this study, we focus on predictive tasks where each record
contains a set of items. The number of items in a set may
vary and predictions are expected to be independent of the
items’ ordering. Most modern machine learning algorithms
are not designed for processing such structures, and very few
works explicitly model them (Sutherland et al., 2012; Oliva
et al., 2013; Zaheer et al., 2017). Problems where sets of
items emerge abound in many fields, from particle physics
(Qu & Gouskos, 2020) and cosmology (Rykoff et al., 2014)
to statistics (Oliva et al., 2013) and computer graphics (Qi
et al., 2017a). In this work, we present a novel tree-based
algorithm for processing sets.

"Department of EE, Tel-Aviv University, Israel “Department
of Bio-Medical Engineering, Tel-Aviv University, Israel and the
Edmond J. Safra Center for Bioinformatics. Correspondence to:
Roy Hirsch <royhirsch@mail.tau.ac.il>, Ran Gilad-Bachrach
<rgb@tauex.tau.ac.il>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Tree-based models, such as Decision Tree (DT), Random
Forest (RF) and Gradient Boosting Decision Tree (GBT)
are broadly used in practice (Breiman et al., 1984; Breiman,
2001; Friedman, 2001). In a survey conducted by Kaggle
among data scientists in 2020, RFs and GBTs were ranked as
two of the three most commonly used ML algorithms (used
by 78.1% and by 61.4% of the data scientists respectively)
(Kaggle, 2020). They continue to serve as the state of the art
in many tabular data predictive tasks (Sandulescu & Chiru,
2016; Munkhdalai et al., 2019; Desai et al., 2020a). Despite
their ubiquity, relatively little progress has been made in
extending trees to handle varying length inputs, with some
exceptions for time series prediction tasks (Meek et al.,
2002; Douzal-Chouakria & Amblard, 2012). Few recent
works explicitly extend trees for sets, but these are restricted
to categorical features and were designed for specific tasks,
such as text classification (Lucena, 2020; Guillame-Bert
et al., 2020).

Our method, Set-Tree, is a tree-based general framework
for processing sets. We introduce set compatible split crite-
ria and an attention mechanism that allows applying them
to subsets of the input set which we refer to as attention-
sets. In a theoretical analysis we show that composing split-
criteria that are possibly applied over different attention-sets
allows expressing complex set-functions. Learning from
unordered sets is attracting growing attention in the field
of Deep Learning (DL). Recent studies have focused on
the theory of learning from sets (Segol & Lipman, 2019;
Zaheer et al., 2017) or specifically designed for computer
vision or computer graphics problems (Li et al., 2018; Qi
et al., 2017b). We empirically prove that GBeST, a gradient
boosting algorithm applied over Set-Trees, is competitive
and often outperforms DL solutions. Moreover, it provides
item-level explainability that allows quantifying the relative
importance of each item in the input set.

Our contribution can be summarized as follows: (1)
Set-Tree, a new framework based on attention and set-
compatible split criteria, that allows applying tree-based
models to problems defined over sets. (2) A theoretical
analysis of Set-Tree. (3) Empirical evaluation in diverse
domains that shows that Set-Tree consistently outperforms
other tree-based approaches and, in most cases, is on a par
or better than DL-based methods. (4) Introduce a new, item-
level explainabiity method, derived from the attention-sets.

Trees with Attention for Set Prediction Tasks

2. Related Work

Tree-based learning. Introduced by Breiman et al. (1984),
decision trees have become widespread in various domains
(Rodriguez-Galiano et al., 2015; Krauss et al., 2017; Zhang
et al., 2017; Han et al., 2018; Munkhdalai et al., 2019; De-
sai et al., 2020b). Tree learning is a greedy process that
sequentially picks split criteria based, in most cases, on in-
dividual features, to decrease a loss function. To enhance
the performance of individual trees, a common approach is
to employ ensemble methods such as Random Forests (Ho,
1998; Breiman, 2001) and Gradient Boosting Trees (Fried-
man, 2001; 2002; Friedman & Meulman, 2003). Gradient
Boosting packages such as Catboost (Prokhorenkova et al.,
2018), LightGBM (Ke et al., 2017) and XGBoost (Chen &
Guestrin, 2016) are highly popular within machine learning
practitioners. Despite the popularity and effectiveness of
tree-based methods, they are applicable to tabular data alone
with a very few exceptions.

Decision tree extensions. Several studies have extended
decision trees to handle inputs of varying lengths, most of
which are devoted to time series classification (Gonzalez
& Diez, 2000; Meek et al., 2002; Douzal-Chouakria &
Amblard, 2012; Guillame-Bert & Dubrawski, 2017). Re-
cently, several scholars have proposed methods to support
categorical-sets, a setup where the input features are cate-
gorical and take discrete values from a known vocabulary
(Lucena, 2020; Guillame-Bert et al., 2020). The very recent
work of Guillame-Bert et al. (2020) defines a categorical-set
split criterion for text classification. This work supports data
in the form of sets, but only sets of categorical features such
that S C S where S is a finite set of non-ordinal objects. In
a sense, Set-Tree extends the capabilities of their algorithm
to support sets of real valued vectors.

Multi Instance Learning (MIL). In MIL setup, labels are
assigned to bags of items (sets) where it is assumed that the
bag’s prediction is an aggregation of its items’ predictions
(Dietterich et al., 1997). The vast majority of tree-based MIL
methods are based on item-level prediction (Melki et al.,
2018; Zucker & Chevaleyre, 2000; Leistner et al., 2010).
These methods are incapable of learning features derived
from the whole bag, or from its subsets. BLRT (Komdarek &
Somol, 2018) operates directly on the entire bag. Set-Tree
generalizes BLRT’s split criterion, and can potentially learn
more complex tasks using the attention-sets.

Permutation-invariance in deep learning. The seminal
work of Zaheer et al. (2017) defines a framework for learn-
ing neural-networks that respect set symmetries. This
work was extended to incorporate attention mechanism by
Lee et al. (2019) and by others (Segol & Lipman, 2019;
Maron et al., 2020). Another line of research proposes set-
processing methods for point clouds (Qi et al., 2017a;b; Li
etal., 2018; Xu et al., 2018; Liu et al., 2019).

3. Notation and Motivation

In this work we consider classification and regression prob-
lems where the input record is a finite multi-set S =
{x1,2,...,2,} such that z; € RY and n = |S|. A
function f is a set-function if it is defined for sets of
any finite size and is permutation-invariant in the sense
that for every permutation 7: f({z1,z2,...,2,}) =
JHZr1), Zr(2),- -+ Tr(n)})- We note that it is possible
to extend the work presented here to settings in which each
record consists of several sets or contains non-set features
along with set features. However, for the sake of brevity we
consider only the single set setting.

Our goal is to learn set-functions from the data. To achieve
this we focus on learning trees. Trees are comprised of split
nodes, each of which performs a prediction on a single fea-
ture. A record traverses through the tree’s nodes following
the predictors’ results until it reaches an end node, a leaf,
whose value is the model’s prediction. For a tree to be a
set-function the split criteria should be a set-functions.

Section 4.2 introduces a class of split criteria that are set-
functions. However, many natural set-functions cannot be
represented by trees using these split criteria unless we also
allow them to apply to subsets of the set S. For example,
imagine the case where S is a set of real numbers and the
function f evaluates to True if the number of positive items
in S is at least 10 and False otherwise. To evaluate this
function using a tree, it should be able to locate the subset
of positive items and be able to count them. Therefore, we
denote by A(S) C S the attention-set to which the split
criterion is applied. In the problem introduced earlier a node
in the tree can define the attention-set that consists of all
positive numbers and another node can count the items in
this set. To preserve the tree as a set-function, we require
that the attention-sets be defined by set-functions. That
is, the inclusion/exclusion criterion for an element in S to
belong to A(S) must be invariant to the permutations of S.

4. Set-Tree

Since vanilla decision trees cannot handle sets, a common
practice is to use feature augmentation (Ramoser et al., 2000;
Bevan et al., 2014). For example, it is possible to extract
values for each feature in the set, such as the minimum,
maximum, average, sum, and etc., and apply the tree using
these features. However, as demonstrated previously, feature
augmentation alone creates trees that are limited in their
descriptive power. The mechanism of attention we introduce
addresses this issue.

4.1. Attention

Internal nodes of trees contain split criteria which control
the traversal of the tree. In most manifestations of trees

Trees with Attention for Set Prediction Tasks

the split criterion is a binary function that operates on a
single feature. In Set-Tree, the criterion is a triplet (c, A, A).
Similar to vanilla trees, c is a binary function that controls
the traversal of the tree. Unlike vanilla decision trees, in Set-
Trees the binary function operates over sets. For example,
this function can apply the max operator to the value of
the j’th feature in all items in the set and compare it to
a threshold 6. Alongside with the function ¢, the criterion
defines a function A that operates on the input set and returns
a subset of its items. Intuitively speaking, the resulting
subset contains the most significant items in the input that
trigger the function c to be True. For example, when using
¢ in the example above, the set A would consist of all items
whose j’th feature is > . A is the complementary set to A.

The tree learning algorithm assigns to each node a split crite-
rion as well as the attention-set to which the criterion should
be applied. The attention-set can be either the original set or
a subset of this set generated by the function A or A in one of
the nodes in the path leading to the current node. Note that
this creates a dependency between the nodes. For example
if node 1 is evaluated on the original set S and generates the
attention-set A (S) and node 2 uses this attention-set then it
generates the attention-set A (A1 (S)). Attention serves to
specify dependencies that cannot be specified using feature
augmentation.

4.2. Set Compatible Split Criteria

The attention mechanism can operate with diverse split crite-
ria. Here we propose a family of criteria inspired by the idea
of sample moments in statistics. Given a set S we define the
decision criterion to be:

SI77> (x>0 (1)

€S

Where a € [—00, 00| controls the degree of the moment,
B € {0, 1} controls whether to normalize by the size of the
set, j points to the index of the feature to be used for the
evaluation and 6 is a threshold. The criterion defined in (1)
generalizes several familiar functions. When o« = 1 and
8 = 0 the criterion uses the sum, whereas when o = 1 and
B = 1 the average is used. When a@ = 8 = 0 the size of
the set is used. With o = —1 and 8 = 1 the inverse of the
harmonic mean is used.

When « is finite and # 0 we can take the power of
/o from both sides of (1) to rewrite the criterion as

(ISI77 X, cs (xj)a)l/a > 6. We use this to also define
the split criterion in the limits. For & = oo we define the
split criterion to be the maximal value and for a = —o0 it
is the minimum. For &« = 0 and 5 = 1 it is the geometric
mean.

There are certain cases in which the split criterion is not
well defined. These include the cases when the set is empty

or when (x;)® is not a real number. In these cases we define
the L.H.S. of (1) to be smaller than the R.H.S. regardless
of the value of 6 (meaning, the condition is evaluated as
False). As discussed in Section 4.1, in Set-Trees every split
criterion should also be accompanied by a function A that
returns the attention-set. For the criterion defined here we
define the function A as follows:

A(S) = {x €S : ()" > |S|f_5})

The rationale behind this definition is that if every z € S
is such that (z;)® > 6/js|'~* then [S|7# Y ¢ (z;)" = 0.
For example, for « = 1 and 8 = 0 the split criterion tests if
the sum > 6§ and A(S) ={zx €S : z; > 9/s|} while if
(£ = 1 the split criterion tests whether the average > 0 and
AS)={zeS : z; >0}

4.3. Implementation Details

Parameters: using attention and the split criterion de-
scribed above, every node in the tree is parameterized by
the tuple («, 3, 7,0, h,p). The decision function (Eq.1) is
characterized by «, 3, j and €, while i and p control the
node’s attention-set. / points to one of the nodes in the
path to the current node (by convention, if this pointer is
null then the entire set is used) and p is the boolean polarity
signal that indicates whether A or A should be used.

Optimization: tree-learning algorithms are based on ex-
haustive search for the optimal nodes’ parameters. The pa-
rameters («, 3, h, p), introduced by Set-Tree, add complex-
ity to the learning process. 8 and p are boolean variables,
in practice we limit the number of nodes scanned along the
path to N, and the number of scanned «;, 3 pair values to
Niq,p51- This creates an overhead factor of 2N, g (Np, + 1)
compared to vanilla decision tree. This overhead can be fur-
ther reduced by caching and by sampling techniques. More
details about running time and acceleration techniques are
discussed in the supplementary material. Moreover, since
Set-Tree differs from vanilla tree only by the decision rule,
it can be combined with any existing tree-learning algorithm
(CART (Breiman et al., 1984), ID3 (Quinlan, 1986), ...) or
ensemble method.

We release an implementation of our proposed method
for the community and for reproducibility. The code is
available at: https://github.com/TAU-MLwell/
Set-Tree.

4.4. Theoretical Properties

The following theorem shows that if we restrict the do-
main of a set function, then Set-Trees can express any set-
function.

Theorem 1. Let R C R be a finite set. Let f be a set-
function defined over R. For every M there exists a Set-Tree

https://github.com/TAU-MLwell/Set-Tree
https://github.com/TAU-MLwell/Set-Tree

Trees with Attention for Set Prediction Tasks

T such that for every set S of size at most M from R it holds
that T'(S) = f(S).

Note that throughout the paper the term “set” refers to multi-
sets; that is, each item may appear multiple times. There-
fore, when we measure the size of a set we count all the
items and their repetitions. It should be noted that Set-Trees
are not limited to expressing the set-functions described in
Theorem 1. Rather, this theorem shows that Set-Trees can
express a rich collection of set-functions.

Proof. Let R = {rq,...,7} be afinite set. We can iden-
tify a set over R with (r;"*,... rX") where n; is the
number of times the item r; appears in the set and therefore

the size of the setis > n;.

For a set over R, let f be a set-function. W.l.0.g. we can
assume that for every S such that [S| > M it holds that
f(S) = 0. Therefore, we can write f as:

f&= >

ny,...ip o n; <M

f((rlxnlﬂ s a’r7>7<1nm)) H IN{,(S):H{,

where Iy, (s)—n, is the function that returns 1 if the number
of copies of r; in S is n; and returns 0 otherwise.

Set-Trees are closed under addition and multiplication
(proof provided in the supplementary material) and there-
fore, to complete the proof it is sufficient to show that
there is a tree that computes the function Iy, (s)—p,. Let
0 be the minimal distance between two items in R. Con-
sider a tree with the following 4 decision nodes: [Node 1]:
max(S) > r; — 9/2. [Node 2]: min(A;(S)) < r; + 9/2
where A;(S) is the attention-set generated by Node 1.
[Node 3]: size(A2(A1(S))) > n; — 0.5 where A2(A1(8S))
is the attention-set generated by Node 2. [Node 4]:
size(Aa3(A1(S))) < n; +0.5.

All the leaves of this tree are assigned the value 0 with
the only exception being the leaf that is reached if all the
decision nodes evaluate to True. This node is assigned the
value of 1. It is easy to see that the first two nodes select
only the elements in the set that have the value r; and the
latter nodes will both evaluate to True only if the number of
items in this selection is n;. Therefore, this tree computes
the function I, (sy—,, Which completes the proof. O

However, in the most general case, without additional re-
strictions, Set-Trees cannot express every set-function.

Theorem 2. Let C be the class of circuits that operate on
sets and evaluate to a Boolean value such that every gate in
this circuit has a polynomial computational complexity with
respect to the size of the set and the number of features in
each element in the set. If P # N P then there exists a set
Sfunction f that cannot be computed by any circuit in C.

Since a Set-Tree is a circuit in C, defined in the theorem,
and also every ensemble of Set-Trees is a circuit in that
class, this implies that there are set-functions that cannot
be expressed by Set-Trees or ensembles of such trees. Full
proof is provided in the supplementary material.

5. Empirical Evaluation

In this section, we examine the applicability of Set-Trees to
various tasks. We consider synthetic and real-world tasks
from diverse domains and a variety of objective functions
(see Table 1 for a quick summary of these tasks). We primar-
ily focus on comparing Set-Trees to tree-based algorithms
but include comparison to deep-learning algorithms too. We
describe here the main algorithms used.

Gradient Boosted Set Tree (GBeST): gradient boosting ap-
plied over Set-Trees. We limit the subset of («, 3) pairs
which correspond to the following group of operators:
(0] :{max, min, mean, sum, harmonic mean, geometric
mean, second moment mean}. To further reduce the compu-
tational complexity, the attention-set is either the entire set
or one that was generated in the last 5 nodes leading to the
current node.

Gradient Boosting Tree (GBT): gradient boosting applied
over vanilla trees using XGBoost (Chen & Guestrin, 2016).
Features augmentation is used to allow prediction over sets.
We use O, the same group of operators as in GBeST, to
represent the set. This baseline can also be viewed as an
ablated version of Set-Tree, without using the attention-sets.

For all the tree-based models (GBT and GBeST) and for all
the tasks, we scanned a pre-defined hyperparameter search
space. we used 10% of the training data as validation for
the hyperparameters tuning. The trees’ maximal depth was
chosen within {5, 6, 8,10}, the number of estimators was
chosen within {50, 100, 200, 300} and the learning rate was
chosen within {0.2,0.1,0.05}. We also applied known tree
regularization techniques, the fraction of train records sam-
pled per tree was chosen within {1, 0.8, 0.5} and the fraction
of features sampled per tree was chosen within {1, 0.8,0.5}
(where 1 is using all the records).

DeepSets: (Zaheer et al., 2017) a popular deep learning
framework for learning functions on sets. The framework
is made up of two sub-networks. The first is a network ¢
that operates on each element of the set independently. The
second is a network p that operates on the sum of the outputs
of ¢ such that the entire network computes p(> g ¢(z)).
In the experiments ¢ and p are Multi Layer Perceptrons
(MLPs) (Hastie et al., 2009)). This model can be further
extended when using different set-compatible aggregation
operators. We scanned the following operators {sum, max,
mean} and report their results.

Trees with Attention for Set Prediction Tasks

Table 1. Summary of experiments: # Items: number of items in a
set. # Features: number of features in an item. Task: 'BC’ - binary
classification, "MC’ - multi-class classification, 'R’ - regression.

Experiment [#Items | # Features | Task |
First quadrant 20-300 2/100 BC
Drug prescriptions 2-100 18 B/MC
Redshift 24-309 17 R
Jets 1-99/1-148 7 BC
Two-sample 4-50 1 BC
Point clouds 100 3 MC
Poker hands 5 2 B/MC

-9~ 1sT™™
—#— DeepSets (mean)
~4— DeepSets (sum)
—#- DeepSets (max)
GBeST

Accuracy

PR PLLEPSLLELS PP AP OSSP PP

A
Test sets sizes Test sets sizes

O O
D

Figure 1. First quadrant classification accuracy, Left: results for
sets of 2D points, right: results for sets of 100D points. All models
were trained with a constant set size of n = 20 and tested with
varying sets sizes. Shaded area represents the standard deviation.

We also compare to other relevant baselines that are tuned
for specific tasks, these are described separately for each ex-
periment. All DNN-based models were trained using Adam
optimizer (Kingma & Ba, 2014) and a learning rate of le-3.
We used early stopping while monitoring the validation loss
with a patience of 3 epochs. Unless specified otherwise, we
used 10% of the training data as validation for hyperparam-
eters tuning. The test results for the models with the best
validation performances are reported. Each experiment was
repeated five times, we report the mean metrics and standard
deviations for all of the experiments. The supplementary
material contains more details about the data processing and
training protocols for all of the experiments.

5.1. First Quadrant

We tested the item-level discriminative power of the dif-
ferent methods using a synthetic anomaly detection task.
We uniformly sampled sets of items from the unit cube
[-1,1]P < RP. Positive and negative sets differed in
that in negative sets all items in the 18t quadrant were re-
moved (items where all coordinates are positive), while
for the positive sets exactly one item in the 18t quadrant
was kept. Positive and negative sets were sampled evenly.
The training set consisted of 100K records, each with 20
items. We tested over 10K test records with various set
sizes (n € {10, 20, 30, ..., 100, 150, 200, 300}). We ran the

experiments with two configurations where D = 2, 100.

In this experiment, LSTM Neural-Networks were used as
additional benchmark (Hochreiter & Schmidhuber, 1997).
The results, presented at Figure 1, show that GBeST signif-
icantly outperformed the of the tested baselines and is on
par with DeepSets (max). It achieved perfect accuracy in
the 2D case. In the 100D case it achieved perfect accuracy
when the test set size was < 150 there was a slight degrada-
tion of accuracy. GBT, in comparison, failed to achieve an
accuracy > 0.7 on any sets size. LSTM and DeepSets with
sum and mean operators had perfect accuracy for small set
sizes (< 50) but as the set sizes increased their accuracies
dropped.

5.2. Drug Prescription Errors

Next, we considered the task of detecting drug prescription
errors. Prescription errors are estimated to account for 1
out of 854 inpatient deaths in the U.S. (Kohn LT, 2000).
Recent studies claim that machine-learning holds promise
for improving drug prescription errors detection (Segal et al.,
2019; Rozenblum et al., 2020).

Data were generated using the MIMIC-III database (John-
son et al., 2016), a large database containing medical records
of patients admitted to critical care units. We randomly split
the 39, 360 patients into train and test (90%/10%). Each
patient could have multiple hospital stays, we only consid-
ered hospital stays where 2-100 drugs were prescribed and
ended up with 49, 811 stays. We excluded drugs that were
prescribed fewer than 10 times or more than 10K times.
Each stay was converted into one positive record and one
negative record. The positive records contained the set of
drugs prescribed during the hospital stay. The negative
records contained the same set of drugs but n,., of them
were replaced by uniformly sampled ones from the catalog.
We considered two setups: Single Item Replacement (SIR)
where n,., = 1, and Multiple Items Replacement (MIR)
where 1,4 uniformly sampled from {1, 2, 3,4, 5}.

Each item (drug) in the set was represented as a 18-
dimensional vector corresponding to the 18 top-level cate-
gories of the International Classification of Diseases code
(ICD-9). We used the fact that every hospital stay is associ-
ated with an ICD-9 code and counted the number of times
each drug in the training set was prescribed for each of the
18 diagnosis categories. These 18 counts are normalized to
sum to one and are used as the feature vector for the drug.

We compared GBeST to GBT, DeepSets (Zaheer et al.,
2017) and against bidirectional recurrent neural networks:
BiLSTM and BiGRU (Huang et al., 2015) (which outper-
formed unidirectional recurrent neural networks in this task).
Due to space limitations more details are deferred to the
supplementary material. Table 2 summarizes the results

Trees with Attention for Set Prediction Tasks

Table 2. Mean and std. of test AUC for drugs prescription errors
prediction. We consider two setups: Single Item Replacement
(SIR), and Multiple Items Replacement (MIR).

Table 3. Results for the redshift regression problem. The single
experimental setup did not use cluster information whereas the
cluster setup did use this additional information. Results for MLP
and DeepSets are taken from (Zaheer et al., 2017) and the results

] Model \ SIR AUC \ MIR AUC \

BiLSTM .804 £ .005 .884 4+ .006
BiGRU .793 + .01 .896 + .02
DeepSets (sum) .804 + 0.01 .914 £+ .06
DeepSets (mean) | .809 + 0.06 .910 £ .06
DeepSets (max) | .845 + 0.02 .916 £+ .03

GBT .791 +£.003 | .898 £ 0.002

GBeST .825 +£.002 | .922 +.003

for Regression model are taken from (Connolly et al., 1995).

[Setup [Model | MSE [Avg. Scatter |
S Regression - 0.025
b MLP - 0.026
“ GBT 0.002 (4e-5) | 0.0190 (4e-3)
5 DeepSets - 0.023
2 GBT 0.001 (6e-5) | 0.0157 (3e-3)
S GBeST 0.001 (5e-5) | 0.0147 (4e-3)

for the experiment. GBeST outperforms GBT by a margin
for the two setups. GBeST outperfoms GBT and the DL
contenders by 1 — 3 percentage points for the MIR setup,
DeepSets (max) outperfoms GBeST by 2 points for the SIR
setup. A critical component of our model, in compare to
DeepSets, is its natural interpretability. In Section 6 a way
to use the attention mechanism to make the predictions of
GBeST intelligible is presented. In medical applications,
this property is of particular importance.

5.3. Redshift Estimation in Galaxies Clusters

Cosmological redshift is a physical phenomenon where
wavelengths become longer when observing objects that
are moving apart. Redshift is used to measure cosmologi-
cal objects’ recession velocity and distance. Two sources
of observations are used to measure redshift: photometric
and spectroscopic. The latter is assumed to provide a more
accurate estimate, but is more expensive to acquire. We con-
sidered the problem of estimating a galaxy’s redshift from
photometric measurements using regression models (Con-
nolly et al., 1995). Since galaxies are clustered (Rykoff et al.,
2014), information about the cluster can be used to improve
the predictions. For each galaxy, 17 photometric features
were collected from the RedMaPPer DRS8 catalog (Rykoff &
S., 2014). The catalog contains photometric measurements
for 70,505 galaxies and their corresponding spectroscopic
redshift in 26,111 clusters of 24 to 309 galaxies.

To measure the contribution of cluster information, two
experiments were conducted. In the first, cluster information
was not used and every record was a single galaxy, a vector
in R'7. We refer to this experiment as the single setup. In
the second experiment cluster information was provided,
and a record was a set of galaxies’ representations. We refer
to this experiment as the cluster setup. In the cluster setup,
we added a binary feature for every galaxy that was set to 1
for the galaxy whose redshift was to be predicted and 0 for
any other galaxy in the cluster.

We compared GBeST to GBT, DeepSets, MLP model pre-
sented by Zaheer et al. (2017) and a to a regression model

Table 4. Jets classification results for two tasks: Quark-Gluon
tagging and Top Tagging. The reported results for PFN and Parti-
cleNet are from (Qu & Gouskos, 2020).

Quark-Gluon Top tagging
Model Acc. AUC Acc. AUC
PFN - 0.8911 - 0.9819
ParticleNet | 0.826 | 0.8993 | 0.937 | 0.9844
GBT 0.7823 | 0.8559 | 0.8459 | 0.9199
GBeST 0.8117 | 0.8863 | 0.9226 | 0.9765

presented by Connolly et al. (1995). DeepSets with sum op-
erator is the only configuration to which we present results,
as the other configurations yielded inferior results. The data
were randomly split into 90% train and 10% test and the
models were optimized to minimize the square-loss. Table 3
presents the average square-loss on the test set and the av-
erage scatter where scatter is |2spec—2preal/(142,,..), where
Zspec 1 the accurate spectroscopic measurement and 2y,.¢q
is the model’s photometric estimation. The avg. scatter of
GBeST was the smallest, 0.0147, compared to 0.023 for
DeepSets (a reduction of 34%). It is interesting to note that
the tree-based models outperformed DL models even in the
single setup in which no clusters information was provided
(avg. scatter of 0.0190 compared to 0.026 for MLP - a
reduction of 27%).

5.4. Jets Tagging

A jet is a narrow cone of scattered particles produced in
a collision event that occurs in particle collider. Jets are
measured in particle detectors and studied to determine the
properties of sub-atomic particles. One of the most impor-
tant questions about a jet is what kind of elementary particle
initiates it (known as jet tagging). Many deep-learning-
based solutions have been proposed for this task (Cogan
etal.,, 2015; Almeida et al., 2015; Guest et al., 2016; Louppe
et al., 2019). Recent works have suggested modeling the
data as sets (Komiske et al., 2019; Qu & Gouskos, 2020),
an alternative that is more natural for this data structure.

Trees with Attention for Set Prediction Tasks

We used two popular jet classification datasets: Quark-
Gluon tagging (Komiske et al., 2019) and Top Tagging
(Kasieczka et al., 2019). The two are synthetic datasets
generated by particle physics simulation software and are
widely used. The Quark-Gluon tagging dataset is comprised
of jets initiated by quarks and by gluons. The number of
particles in each jet varies from 1 to 148 and each particle is
characterized by a four-momentum vector. The data were
split into 1.6M/200k/200k records for train/validation/test.
The Top Tagging dataset included jets derived from hadroni-
cally decaying top quarks. It contained 2M jets with 1-99
particles. The data were split into 1.2M/400K/400K for
train/validation/test. Each particle was characterized by
seven features following Qu & Gouskos (2020).

Table 4 presents the results of these experiments. GBeST
and GBT are compared to two DL-based solutions: Parti-
cle Flow Network (PFN) (Komiske et al., 2019) which is
derived from DeepSets, and ParticleNet (Qu & Gouskos,
2020) which is derived from Dynamic Graph Convolutional
Neural Network (Wang et al., 2019). GBeST outperformed
GBT baseline and was within 1 percentage point of the DL
solutions that were optimized for these specific tasks.

5.5. Two-Sample Hypothesis Testing

The next experiment used the two-sample hypothesis testing
task. Here, a record was formed from two subsets of i.i.d.
items, and the task was to identify whether the two subsets
were drawn from the same distribution or not. We added to
each item an additional binary feature that marked whether
this item belonged to the first or the second subset.

We experimented with a few variants of this task (1) Dif-
ferent distributions families: the subsets were drawn from
Normal(0, 1) or from Laplace(0, 1). In half of the cases, the
two subsets were drawn from the same distribution, and in
half of the cases the two were drawn from the two different
distributions. Given a record, the task was to predict whether
the same distribution was used in both subsets or not. (2)
Normal distribution with different means: The two sub-
sets were drawn from Normal(js1, 1) and Normal(ps, 1). 1y
and 2 were uniformly sampled from [0, 1]. For half of the
records, 1 equaled ps, and the task was to discriminate
whether the two subsets shared the same mean. (3) Normal
distribution with different variances: items were drawn
from Normal(0, 03) and Normal(0, o2), the task was to
discriminate whether the two subsets shared the same 2.
0% and 03 were uniformly sampled from [0, 1]. We repeated
each variant several times with different numbers of items
in each set. Each experiment involved 50K train and 5K
test records.

Figure 2 presents the test predictions’ accuracies of GBeST,
GBT and DeepSets. For brevity we only report the results
for the best performing DeepSets configurations (using sum,

@ r] e ®

08 e- GBeST - eert® "“__.-
. -0 ..

. GBT . e . JI
Bo7{ "+ DeepSets .« A SR P R 4 -
5 5 e LS TE R
g - e H &
< o6 B L] b

o
0.5

4 10 20 30 40 504 10 20 30 40 504 10 20 30 40 50

Set size Set size Set size

Figure 2. Results for two-sample hypothesis testing for varying set
sizes. Each point is a model trained with a different number of
items within a set. Left: different distributions families (Normal(0,
1) and Laplace(0, 1)). Center: normal distributions with different

means. Right: normal distributions with different variances

Table 5. Poker hands test classification accuracy. Results for the
binary classification setup (BC) and for the multi-class setup (MC).
We report results for two GBT baselines, a setup where we prepro-
cessed the data and extracted its statistical moments (GBT) and a
setup with the flattened raw features (GBT-flat).

y Model [BC Ace. (%) | MC Ace. (%) |

MLP 49.1 £ 0.8 49.8 + 0.3
DeepSets (sum) 66.3 £0.2 60.2 +0.1
DeepSets (mean) 66.9 +£0.1 55.6 £0.1
DeepSets (max) 62.2 +£0.2 67.5+0.5
GBT-flat 85.9+0.7 75.9+0.3
GBT 90.6 + 0.2 88.1 +0.2
GBeST 100 98.9+0.1

mean and sum aggregation operations for the three tasks
accordingly). GBeST consistently outperformed GBT and
DeepSets on all tasks and all set sizes. The differences were
more pronounced as sets grew in size. When sets consisted
of 50 items, GBeST was 7 — 12 percentage points more
accurate than DeepSets.

5.6. Point Clouds Classification

Point cloud is a set of points in space that represent a 3D
shape. Point clouds are extensively used in computer graph-
ics and robotics as a compact way to represent 3D objects.
We experimented with a multi-class point cloud classifi-
cation task based on the ModelNet40 dataset (Wu et al.,
2015). The task consisted of 9, 843 training and 2, 468 test
instances belonging to 40 classes of objects. Each instance
was a set of 10K points, where each point was a 3D vector
(X, y, z). Following Zaheer et al. (2017) 100 points were
sampled from the 10K points for each instance. GBeST
achieved an accuracy of 72.8 + 0.5% and outperformed
GBT (68.7 4 0.7%). However DeepSets significantly out-
performed GBeST with an accuracy of 82 + 2%. We ac-
knowledge the superiority of DeepSets over our method,
however it is important to note that GBeST results are not
trivial. As far as our knowledge goes, this is the first attempt
at processing raw point clouds using a tree-based models.

Trees with Attention for Set Prediction Tasks

5.7. Poker Hands Classification

In this task each record was a poker hand consisting of
5 cards drawn from a standard 52 card deck. We used the
poker hands dataset introduced in Cattral et al. (2002) which
contains 25K train records and 1M test records. Each card
is represented by 5 features: a one-hot-encoding of the
card’s suit and another feature indicating the value of the
card in the range of 1 to 13. A 10 class classification of the
type of hand is defined (empty-hand, one-pair, two-pairs,...).
We also derived a binary classification task of predicting
whether the hand was empty or non-empty.

We compare GBeST to GBT and DeepSets with differ-
ent configurations. Since the set size is fixed and small
we also compared to a MLP baseline, from Yang et al.
(2018). We also compared to a GBT baseline that was
trained over the flattened fixed-size features (without the
statistical moments extraction, we named this setup GBT-
flat). The results are presented at Table 5. GBeST achieved
perfect results for the binary setup and near-perfect results
(98.9%) for the multi-class case. GBT achieved an accu-
racy of 90.6%/88.1% in the two setups whereas the best
performing DeepSets achieved 66.9%/67.5% and the MLP
achieved only 49.1%/49.8%.

6. Item-Level Explainability

When the input record is a set of items, an important ques-
tion arises: which items make a significant impact on the
prediction? Set-Trees enable this item-level explainabil-
ity by measuring the frequency each item occurs in the
attention-sets. By examining the items’ importance in dif-
ferent problems, we show that they provide useful insights
and help in explaining the models’ predictions.

First we rank the items according to their frequency of
occurrence on a single Set-Tree’s attention-sets. For a set
S, let Ay,..., A be all the attention-sets in the path of S
when evaluated by the tree. Let rank(x|S) = rif 2 € S'is
the » most frequent item to appear in the attention-sets. L.e.
ifc(z) = #{A; : x € A;} and assume that rank(z) is the
position of ¢(z) in the sorted list of [c(z') : 2’ € S] (in
descending order).'

When acquiring ranks from an ensemble of trees, we first
compute the ranks for each tree individually. We then weight
the rankings based on the importance of each tree. Let
rank,, (x|S) be the rank of « in the m’th tree in the ensemble.
Since the magnitude of leaf values may be different between
trees, especially when gradient boosting is used (Vinayak
& Gilad-Bachrach, 2015), the ranks are weighted according
to the leafs values. Let v,,, be the prediction that the m’th

'If there is a tie such that all the items from position 71 to 72
have the same count then each of them is ranked (r1+72)/2.

tree assigns to S. We define the importance score that the
ensemble model assigns to x € S as:

Zm |,Um|2—rankm(i\S)
Dowres Do [Um |27k (718

such that the importance is non-negative and sums to 1.

Importance(z|S) =

The importance score can be applied to any type of data
and visualized according to the task and data type. In the
following we present applications of the importance score
to a few of the experiments detailed in Section 5 (Figure 3
presents corresponding visualizations to most of them).

First quadrant (Sec. 5.1). We studied the 2D task of identi-
fying the existence of a point in the 18t quadrant. Figure 3(a)
shows the average importance scores on all points in the test
set. For visualisation purposes the region [—1, 1] x [—1,1]
is quantized into 50 x 50 bins. As expected, points in the
first quadrant were the most important and points on the
boarderline of this region had moderate importance.

Two-sample problem (Sec. 5.5). This task was to identify
whether two subsets were sampled from the same distribu-
tion or not. We used Laplace(0, 1) or Normal(0, 1) as the
possible source distributions. For visualization, the [—4, 4]
interval was broken to 800 bins. The mean importance score
of the points in range are presented in Figure 3(b). The vi-
sualization shows that the model is focused on the tails of
the distributions and on their mod (around 0). The model
emphasizes those regimes since the differences between the
two PDFs are more evident in those areas.

Binary poker hands classification (Sec. 5.7). In this task,
the model was trained to distinguish between empty and
non-empty poker hands without additional knowledge of
poker rules. As the set size was constant and relatively small,
we aggregated the importance scores per items’ tuple (and
not per individual items). That is, instead of looking at the
importance of each item, we looked for the most prominent
attention-set. For example, for a hand that contains a ’pair’
(two cards with the same rank and different suit) the highest
ranked subset includes exactly the two cards (see Figure 3(c)
for more examples). Moreover, when the hand was empty,
in 87% of the cases the most important subset consisted of
only one card. For non-empty hands, the most important
subset consisted of two or more cards 77% of the time.

Drug prescription errors (Sec. 5.2). In this task we trained
GBeST to distinguish between compatible and incompatible
sets of drugs prescriptions. We measured how often an
incompatible drug appeared in the top k ranked items for
k = 1,5. We considered a ’hit’ if an incompatible item
appeared among the k& most important items. The mean
hit rate (HR@k) is reported as the average hit rate among
all the incompatible test records. For the Multiple Item
Replacement setup, HR@ 1/5= 73.2%/93.3%, and for the

Trees with Attention for Set Prediction Tasks

1.0

—— Normal(0, 1)

044 —— Laplace(0,1)
w
08 € 02 08
0.0 1
6

1 134 Three ofakind
(6#)11¢ 48 (68109 Pair

0.6
— 10714
S
S
0.4 \a
< 10-3

(64 3¢ 8¢ 74 9@)Fiush
' 10 16 19 Full House

o

il

©> (39 36 34 3%#)124 Fourofakind

0.0 -4 -3 -2 -1 1

(®)

2 3 3 00

(©)

Figure 3. Visualizations of item-level importance. (a) First quadrant, mean importance for points in [—1, 1]2. (b) Two-sample problem,
mean importance for points in [—4, 4]. (c) Binary poker hands classification, the most important subsets are highlighted.

Single Item Replacement setup: HR@ 1/5= 48.1%/77.2%,

The newly developed item-level explainability method is
useful for quantifying the importance of each item in the set.
In combination with existing tools for explaining tree-based
models, it provides high transparency to the algorithmic
decision-making process.

7. Conclusions

In this study, we introduced Set-Tree, to allow tree-based
models to operate on sets by using an attention mecha-
nism. We presented a theoretical analysis of the model
and provided a comprehensive empirical evaluation. We
demonstrated that learning using Set-Trees consistently out-
performed other methods based on trees, and frequently
outperformed deep learning methods. We also introduced
a new item-level explainability method for Set-Trees and
demonstrated how it makes the predictions of Set-Trees
intelligible.

Since problems in which records containing sets are com-
mon, as demonstrated in this work, we believe that Set-Trees
may have large influence on machine-learning practitioners.
Moreover, the approaches presented here can be extended
to other types of data structures such as graphs or "mixed”
records with both set and non-set features.

Acknowledgements

We wish to thank Prof. Abner Soffer and Dr. Emilie Bertho-
let (Tel Aviv University, Department of Particle Physics) for
their inspiring ideas and helpful discussions. The research
reported in this work was supported by a grant from the Tel
Aviv University Center for Al and Data Science (TAD).

References

Almeida, L. G., Backovié¢, M., Cliche, M., Lee, S. J., and
Perelstein, M. Playing tag with ann: boosted top identifi-
cation with pattern recognition. Journal of High Energy
Physics, 2015(7):1-21, 2015.

Bevan, A., Golob, B., Mannel, T., Prell, S., Yabsley, B., Abe,
K., Aihara, H., Anulli, F., Arnaud, N., Ausheyv, T., et al.
The Physics of the B Factories, volume 74, chapter 9, pp.
3026. Springer Science and Business Media LLC, 2014.

Breiman, L. Random forests. Machine learning, 45(1):
5-32,2001.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A.
Classification and regression trees. CRC press, 1984.

Cattral, R., Oppacher, F., and Deugo, D. Evolutionary data
mining with automatic rule generalization. Recent Ad-
vances in Computers, Computing and Communications,
1(1):296-300, 2002.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd inter-
national conference on knowledge discovery and data
mining, pp. 785-794, 2016.

Cogan, J., Kagan, M., Strauss, E., and Schwarztman, A.
Jet-images: computer vision inspired techniques for jet
tagging. Journal of High Energy Physics, 2015(2), Feb
2015.

Connolly, A. J., Csabai, L., Szalay, A. S., Koo, D. C., Kron,
R. G., and Munn, J. A. Slicing through multicolor space:
Galaxy redshifts from broadband photometry. The Astro-
nomical Journal, 110:2655, Dec 1995.

Desai, R. J., Dejene, S., Jin, Y., Liu, J., and Kim, S. C.
Comparative risk of diabetes mellitus in patients with
rheumatoid arthritis treated with biologic or targeted syn-
thetic disease-modifying drugs: A cohort study. ACR
Open Rheumatology, 2(4):222-231, 2020a.

Desai, R. J., Wang, S. V., Vaduganathan, M., Evers, T.,
and Schneeweiss, S. Comparison of machine learning
methods with traditional models for use of administrative
claims with electronic medical records to predict heart
failure outcomes. JAMA Network Open, 3(1):e1918962—
€1918962, 2020b.

Trees with Attention for Set Prediction Tasks

Dietterich, T. G., Lathrop, R. H., and Lozano-Pérez, T. Solv-
ing the multiple instance problem with axis-parallel rect-
angles. Artificial intelligence, 89(1-2):31-71, 1997.

Douzal-Chouakria, A. and Amblard, C. Classification trees
for time series. Pattern Recognition, 45(3):1076-1091,
2012.

Friedman, J. H. Greedy function approximation: a gradient
boosting machine. Annals of statistics, pp. 1189—-1232,
2001.

Friedman, J. H. Stochastic gradient boosting. Computa-
tional statistics & data analysis, 38(4):367-378, 2002.

Friedman, J. H. and Meulman, J. J. Multiple additive regres-
sion trees with application in epidemiology. Statistics in
medicine, 22(9):1365-1381, 2003.

Gonzalez, C. J. A. and Diez, J. J. R. Time series classifi-
cation by boosting interval based literals. Inteligencia
Artificial. Revista Iberoamericana de Inteligencia Artifi-
cial, 4(11):2-11, 2000.

Guest, D., Collado, J., Baldi, P., Hsu, S.-C., Urban, G.,
and Whiteson, D. Jet flavor classification in high-energy
physics with deep neural networks. Physical Review D,
94(11), Dec 2016.

Guillame-Bert, M. and Dubrawski, A. Classification of
time sequences using graphs of temporal constraints. The
Journal of Machine Learning Research, 18(1):4370-4403,
2017.

Guillame-Bert, M., Bruch, S., Mitrichev, P., Mikheev, P.,
and Pfeifer, J. Modeling text with decision forests using
categorical-set splits. arXiv preprint arXiv:2009.09991,
2020.

Han, T., Jiang, D., Zhao, Q., Wang, L., and Yin, K. Compar-
ison of random forest, artificial neural networks and sup-
port vector machine for intelligent diagnosis of rotating
machinery. Transactions of the Institute of Measurement
and Control, 40(8):2681-2693, 2018.

Hastie, T., Tibshirani, R., and Friedman, J. The Elements of
Statistical Learning: Data Mining, Inference, and Predic-
tion. Springer series in statistics. Springer, 2009.

Ho, T. K. The random subspace method for constructing
decision forests. IEEE transactions on pattern analysis
and machine intelligence, 20(8):832-844, 1998.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735-1780, 1997.

Huang, Z., Xu, W., and Yu, K. Bidirectional Istm-crf models
for sequence tagging. arXiv preprint arXiv:1508.01991,
2015.

Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L.-w. H.,
Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Celi,
L. A., and Mark, R. G. Mimic-iii, a freely accessible
critical care database. Scientific data, 3:160035, 2016.

Kaggle. Kaggle state of machine learning and data science
2020, 2020.

Kasieczka, G., Plehn, T., Thompson, J., and Rus-
sel, M. Top quark tagging reference dataset,
2019. URL https://zenodo.org/record/
2603256#.X-xjV9gzabg.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma,
W., Ye, Q., and Liu, T.-Y. Lightgbm: A highly efficient
gradient boosting decision tree. In Advances in neural
information processing systems, pp. 3146-3154, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kohn LT, Corrigan JM, D. M. To Err is Human: Building
a Safer Health System. National Academies Press (US),
2000.

Komarek, T. and Somol, P. Multiple instance learning with
bag-level randomized trees. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in
Databases, pp. 259-272. Springer, 2018.

Komiske, P. T., Metodiev, E. M., and Thaler, J. Energy flow
networks: deep sets for particle jets. Journal of High
Energy Physics, 2019(1), Jan 2019.

Krauss, C., Do, X. A., and Huck, N. Deep neural networks,
gradient-boosted trees, random forests: Statistical arbi-
trage on the s&p 500. European Journal of Operational
Research, 259(2):689-702, 2017.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and
Teh, Y. W. Set transformer: A framework for attention-
based permutation-invariant neural networks. In Interna-
tional Conference on Machine Learning, pp. 3744-3753.
PMLR, 2019.

Leistner, C., Saffari, A., and Bischof, H. Miforests:
Multiple-instance learning with randomized trees. In
European Conference on Computer Vision, pp. 29-42.
Springer, 2010.

Li, Y., Bu, R., Sun, M., Wu, W., Di, X., and Chen, B.
Pointcnn: Convolution on x-transformed points. In Ad-
vances in neural information processing systems, pp. 820—
830, 2018.

Liu, X., Guo, Z., You, J., and Kumar, B. Attention con-
trol with metric learning alignment for image set-based
recognition. arXiv preprint arXiv:1908.01872, 2019.

https://zenodo.org/record/2603256#.X-xjV9gzabg
https://zenodo.org/record/2603256#.X-xjV9gzabg

Trees with Attention for Set Prediction Tasks

Louppe, G., Cho, K., Becot, C., and Cranmer, K. Qcd-aware
recursive neural networks for jet physics. Journal of High
Energy Physics, 2019(1), Jan 2019.

Lucena, B. Exploiting categorical structure using tree-based
methods. In International Conference on Artificial Intel-
ligence and Statistics, pp. 2949-2958. PMLR, 2020.

Maron, H., Litany, O., Chechik, G., and Fetaya, E. On learn-
ing sets of symmetric elements. In International Con-
ference on Machine Learning, pp. 6734—6744. PMLR,
2020.

Meek, C., Chickering, D. M., and Heckerman, D. Autore-
gressive tree models for time-series analysis. In Proceed-
ings of the 2002 SIAM International Conference on Data
Mining, pp. 229-244. SIAM, 2002.

Melki, G., Cano, A., and Ventura, S. Mirsvm: multi-instance
support vector machine with bag representatives. Pattern
Recognition, 79:228-241, 2018.

Munkhdalai, L., Munkhdalai, T., Namsrai, O.-E., Lee, J. Y.,
and Ryu, K. H. An empirical comparison of machine-
learning methods on bank client credit assessments. Sus-
tainability, 11(3):699, 2019.

Oliva, J., Péczos, B., and Schneider, J. Distribution to
distribution regression. In International Conference on
Machine Learning, pp. 1049-1057, 2013.

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V.,
and Gulin, A. Catboost: unbiased boosting with categori-
cal features. In Advances in neural information process-
ing systems, pp. 6638—-6648, 2018.

Qi, C. R, Su, H,, Mo, K., and Guibas, L. J. Pointnet: Deep
learning on point sets for 3d classification and segmenta-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 652—-660, 2017a.

Qi, C. R, Yi, L., Su, H., and Guibas, L. J. Pointnet++:
Deep hierarchical feature learning on point sets in a met-
ric space. Advances in neural information processing
systems, 30:5099-5108, 2017b.

Qu, H. and Gouskos, L. Jet tagging via particle clouds.
Physical Review D, 101(5), Mar 2020.

Quinlan, J. R. Induction of decision trees. Machine learning,
1(1):81-106, 1986.

Ramoser, H., Muller-Gerking, J., and Pfurtscheller, G. Op-
timal spatial filtering of single trial eeg during imagined
hand movement. [EEE transactions on rehabilitation
engineering, 8(4):441-446, 2000.

Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo,
M., and Chica-Rivas, M. Machine learning predictive
models for mineral prospectivity: An evaluation of neural
networks, random forest, regression trees and support
vector machines. Ore Geology Reviews, 71:804-818,
2015.

Rozenblum, R., Rodriguez-Monguio, R., Volk, L. A.,
Forsythe, K. J., Myers, S., McGurrin, M., Williams, D. H.,
Bates, D. W., Schiff, G., and Seoane-Vazquez, E. Using
a machine learning system to identify and prevent med-
ication prescribing errors: A clinical and cost analysis
evaluation. The Joint Commission Journal on Quality
and Patient Safety, 46(1):3 — 10, 2020.

Rykoff, E. R. and S., E. redmapper ii: X-ray and sz perfor-
mance benchmarks for the sdss catalog. The Astrophysi-
cal Journal, 783(2):80, Feb 2014.

Rykoff, E. S., Rozo, E., Busha, M. T., Cunha, C. E.,
Finoguenov, A., Evrard, A., Hao, J., Koester, B. P., Leau-
thaud, A., Nord, B., and et al. redmapper. i. algorithm
and sdss dr8 catalog. The Astrophysical Journal, 785(2),
Apr 2014.

Sandulescu, V. and Chiru, M. Predicting the future relevance
of research institutions-the winning solution of the kdd
cup 2016. arXiv preprint arXiv:1609.02728, 2016.

Segal, G., Segev, A., Brom, A., Lifshitz, Y., Wasserstrum,
Y., and Zimlichman, E. Reducing drug prescription errors
and adverse drug events by application of a probabilistic,
machine-learning based clinical decision support system
in an inpatient setting. Journal of the American Medical
Informatics Association, 26(12):1560-1565, 2019.

Segol, N. and Lipman, Y. On universal equivariant set
networks. arXiv preprint arXiv:1910.02421, 2019.

Sutherland, D. J., Xiong, L., Péczos, B., and Schneider,
J. Kernels on sample sets via nonparametric divergence
estimates. arXiv preprint arXiv:1202.0302, 2012.

Vinayak, R. K. and Gilad-Bachrach, R. Dart: Dropouts
meet multiple additive regression trees. In Artificial Intel-
ligence and Statistics, pp. 489—497. PMLR, 2015.

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M.,
and Solomon, J. M. Dynamic graph cnn for learning on

point clouds. Acm Transactions On Graphics (tog), 38
(5):1-12, 2019.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang,
X., and Xiao, J. 3d shapenets: A deep representation for
volumetric shapes. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 1912—
1920, 2015.

Trees with Attention for Set Prediction Tasks

Xu, Y., Fan, T., Xu, M., Zeng, L., and Qiao, Y. Spidercnn:
Deep learning on point sets with parameterized convolu-
tional filters. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 87-102, 2018.

Yang, Y., Morillo, I. G., and Hospedales, T. M. Deep neural
decision trees. arXiv preprint arXiv:1806.06988, 2018.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. In

Advances in neural information processing systems, pp.
3391-3401, 2017.

Zhang, C., Liu, C., Zhang, X., and Almpanidis, G. An
up-to-date comparison of state-of-the-art classification
algorithms. Expert Systems with Applications, 82:128—
150, 2017.

Zucker, J.-D. and Chevaleyre, Y. Solving multiple-instance
and multiple-part learning problems with decision trees
and decision rules. Application to the mutagenesis prob-
lem. PhD thesis, LIP6, 2000.

