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Abstract

Although stochastic optimization is central to
modern machine learning, the precise mecha-
nisms underlying its success, and in particular,
the precise role of the stochasticity, still remain
unclear. Modeling stochastic optimization algo-
rithms as discrete random recurrence relations,
we show that multiplicative noise, as it com-
monly arises due to variance in local rates of con-
vergence, results in heavy-tailed stationary be-
haviour in the parameters. Theoretical results
are obtained characterizing this for a large class
of (non-linear and even non-convex) models and
optimizers (including momentum, Adam, and
stochastic Newton), demonstrating that this phe-
nomenon holds generally. We describe depen-
dence on key factors, including step size, batch
size, and data variability, all of which exhibit
similar qualitative behavior to recent empirical
results on state-of-the-art neural network models.
Furthermore, we empirically illustrate how mul-
tiplicative noise and heavy-tailed structure im-
prove capacity for basin hopping and exploration
of non-convex loss surfaces, over commonly-
considered stochastic dynamics with only addi-
tive noise and light-tailed structure.

1. Introduction

Relatively simple stochastic optimization procedures—
in particular, those based on stochastic gradient descent
(SGD)—have become the backbone of machine learning
(ML) (Ma et al.| 2018). To improve understanding of
stochastic optimization in ML, and particularly why SGD
and its extensions work so well, recent theoretical work
has sought to study its properties and dynamics. Such
analyses typically approach the problem through one of
two perspectives. The first perspective, an optimization
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(or quenching) perspective, examines convergence either
in expectation (Chen et al.,[2019;[Zhou et al., 2018 |Gower
et al.l 2019} [Nagaraj et al.| 2019} [Fontaine et al., 2020) or
with some positive (high) probability (Roosta-Khorasani &
Mahoney, 2016; |Du et al., 2017; |[Kleinberg et al., 2018;
Ward et al.,[2019) through the lens of a deterministic coun-
terpart. This perspective inherits some limitations of de-
terministic optimizers, including assumptions (e.g., con-
vexity, Polyak-Lojasiewicz criterion, etc.) that are either
not satisfied by state-of-the-art problems, or not strong
enough to imply convergence to a quality (global) opti-
mum. More concerning, however, is the inability to ex-
plain what has come to be known as the “generalization
gap” phenomenon: increasing stochasticity by reducing
batch size appears to improve generalization performance
(Keskar et al., 2017; [Martin & Mahoney, [2018). Em-
pirically, existing strategies tend to break down for infer-
ence tasks when using large batch sizes (Golmant et al.|
2018). The second perspective, a probabilistic (anneal-
ing) perspective, examines algorithms through the lens of
Markov process theory (Freidlin & Wentzell, |1998; [Hen-
derson et al.,[2003;Nemirovski et al.,[2009). Here, stochas-
tic optimizers are interpreted as samplers from probabil-
ity distributions concentrated around optima, and annealing
the optimizer (by reducing step size) increasingly concen-
trates probability mass around global optima. Traditional
analyses trade restrictions on the objective for precise an-
nealing schedules that guarantee adequate mixing and en-
sure convergence. However, it iS uncommon in practice
to consider step size schedules that decrease sufficiently
slowly as to guarantee convergence to global optima with
probability one (Li et al., 2020). In fact, SGD based meth-
ods with poor initialization can easily get stuck near poor
local minima using a typical step decay schedule (Liu et al.,
2019).

More recent efforts conduct a distributional analysis, di-
rectly examining the probability distribution that a stochas-
tic optimizer targets for each fixed set of hyperparameters
(Mandt et al., 2016 Babichev & Bachl 2018} Dieuleveut
et al., 2017 |Giirblizbalaban et al., [2020). Here, one can
assess a stochastic optimizer according to its capacity to
reach and then occupy neighbourhoods of high-quality op-
tima in the initial stages, where the step size is large and
constant. As the step size is then rapidly reduced, tighter
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neighbourhoods with higher probability mass surrounding
nearby minima are achievable. This is most easily ac-
complished using a variational approach by appealing to
continuous-time Langevin approximations (Mandt et al.,
2016} (Chaudhari & Soatto, 2018), whose stationary dis-
tributions are known explicitly (Ma et al.| 2015). How-
ever, these approaches also require restrictive assumptions,
such as constant or bounded volatility (Mandt et al., [ 2017;
Orvieto & Lucchi, |2019). Interestingly, these assumptions
parallel the common belief that the predominant part of
the stochastic component of an optimizer is an additive
perturbation (Kleinberg et al, 2018; Zhang et al., 2019a).
Such analyses have been questioned with recent discoveries
of non-Gaussian noise (Simsekli et al., 2019} |Guirbiizbala-
ban et al., [2020) that leads to heavy-tailed stationary be-
haviour (i.e., not light-tailed, where distributions have fi-
nite Laplace transform). This behavior implies stronger
exploratory properties and an increased tendency to rapidly
reach faraway basins than earlier Langevin-centric analyses
suggest. In particular, Simsgekli et al.| (2020a) used fractal
dimension theory to show that if such heavy-tailed explo-
ration is present, then it can improve generalization, with
test accuracies typically increasing when tails are heavier.

Main Contributions. We model stochastic optimizers
as Markov random recurrence relations, thereby avoiding
continuous-time approximations, and we examine their sta-
tionary distributions. The formulation of this model is de-
scribed in §2] We show that multiplicative noise, frequently
assumed away in favour of more convenient additive noise
in continuous analyses, can often lead to heavy-tailed sta-
tionary behaviour. This plays a critical role in the dynam-
ics of a stochastic optimizer, and it influences the capacity
of the algorithm to hop between basins in the loss land-
scape. In this paper, we consider heavy-tailed behavior that
assumes a power law functional form. We say that the sta-
tionary distributions of the parameters/weights W exhibit
power laws, with tail probabilities P(|W| > t) = Q(t~%)
as t — oo, for some a > 0 called the tail exponent (where
smaller tail exponents correspond to heavier tails). Further
details, including precise definitions, are in Appendix A.

To inform our analysis, in §3] we consider the special case
of constant step-size SGD applied to linear least squares,
which obeys a random linear recurrence relation display-
ing both multiplicative and additive noise. Using well-
known results (Buraczewski et al., 2016), we isolate three
regimes determining the tail behaviour of SGD (shown in
Table [T} discussed in §3)), finding stationary behaviour al-
ways exhibits a precise power law in an infinite data regime.

In §4] we extend these observations by providing sufficient
conditions for the existence of power laws arising in arbi-
trary iterative stochastic optimization algorithms, on both
convex and non-convex problems, with more precise re-

sults when updates are bilipschitz. Factors influencing tail
behaviour are examined, with existing empirical findings
supporting the hypothesis that heavier tails coincide with
improved generalization performance.

Numerical experiments are conducted in §3] illustrating
how multiplicative noise and heavy-tailed stationary be-
haviour improve the capacity for basin hopping (relative to
light-tailed stationary behaviour) in the exploratory phase
of learning. We finish by discussing impact on related
work in §6] including a continuous-time analogue of Ta-
ble[T] (shown in Table [2)).

Related Work. There is a large body of related work,
and we review only the most directly related. Analysis of
stochastic optimizers via stationary distributions of Markov
processes was recently considered in Mandt et al.[ (2016);
Babichev & Bach| (2018); [Dieuleveut et al.| (2017). The
latter, in particular, examined first and second moments of
the stationary distribution, although these can be ineffective
measures of concentration in heavy-tailed settings. Heavy
tails in ML have been observed and empirically examined
in spectral distributions of weights (Martin & Mahoney,
2017;2018;2019; 2020aib) and in the weights themselves
(Simsekli et all [2019; [Panigrahi et all [2019; [Simsekli
et al.l 2020a), but (ML style) theoretical analyses seem
limited to continuous-time examinations (Simsekli et al.|
2019; 2020b). Connections between multiplicative noise
and heavy-tailed fluctuations can be seen throughout the
wider literature (Deutsch, [1993} [Frisch & Sornette, (1997}
Sornette & Contl, [1997; Buraczewski et al., 2016). From a
physical point of view, multiplicative noise acts as an ex-
ternal environmental field, capable of exhibiting drift to-
wards low energy states (Volpe & Wehr, [2016). Hysteretic
optimization (Pall |2006) is one example of a stochastic
optimization algorithm taking advantage of this property.
Closest to our own work is |Giirblizbalaban et al.| (2020),
which conducts a detailed analysis of heavy tails in the
stationary distribution of SGD applied to least-squares lin-
ear regression. Our main objective in this paper is to pro-
vide far-reaching extensions of these results to more gen-
eral stochastic optimization algorithms and problems. To
our knowledge, no other theoretical analysis of this phe-
nomenon has been conducted in a general optimization set-
ting. Indeed, while multiplicative noise in stochastic opti-
mization has been explored in some recent empirical anal-
yses (Wu et al |2020; |[Zhang et al., 2018} Holland} |2019),
and its presence documented (Xing et al} 2018)), its im-
pact appears underappreciated, relative to the well-studied
and exploited effects of additive noise (Ge et al., 2015} Jin
et al., 2017 Du et al.| |2017; Kleinberg et al., 2018)). Sec-
tion 6] contains a discussion of additional related work in
light of our results.
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Regime Condition on A | Tails for B | Tails for 1V,
Light-tailed (§A.1) P(J[Af<1)=1] O(e™™) O(e=*t)
Heavy-tailed (multiplicative) (§A.2) | [|omin(A)]la = 1 o(t™%) Q=)
Heavy-tailed (additive) (§A.3) — Q=) Q(t=7)

Table 1: Summary of the three primary tail behaviour regimes for the stationary distribution of .

Regime

Noise

Light-tailed (Ma et al.;[2015)
Heavy-tailed (multiplicative) (Ma et al., [2015))
Heavy-tailed (additive) (Simgekli et al., 2019)

‘White noise
White noise

Condition on r Quadratic Example
lim inf || 7(w) > 0 g bounded
Hm supj o 7(w) =0 | g(w) = cVf(w)
Levy noise — arbitrary g

Table 2: Summary of three tail behaviour regimes for continuous-time models .

Notation. We let /; denote the d x d identity matrix. Un-
less otherwise stated, we default to the following norms:
for vector x, we let ||lz| = (37, #2)1/2 denote the Eu-
clidean norm of x, and for matrix A, the norm [|A| =
sup|, =1 [ Az| denotes the (*-induced (spectral) norm.
Also, for matrix A, |A|r = |vec(A)| is the Frobenius
norm, and opin(A), omax(A) are its smallest and largest
singular values, respectively. For two vectors/matrices
A, B, we let A ® B denote their tensor (or Kronecker)
product. For z € R, log" z = logmax{1,z}. Knuth
asymptotic notation (Knuth| [1976) is adopted. The nota-
tion (2, &, P) is used to denote an appropriate underlying

probability space. For two random elements X, Y, X 2y
if X, Y have the same distribution. Finally, for random vec-
tor/matrix X, for a > 0, | X |, = (E|X[*)¥. All proofs
are relegated to Appendix D.

2. Stochastic optimization as a Markov chain

In this section, we describe how to model a stochastic op-
timization algorithm as a Markov chain — in particular,
as a random recurrence relation. This formulation is un-
common in the ML literature, but will be important for our
analysis. Consider a general single-objective stochastic op-
timization problem, where the goal is to solve problems
of the form w* = argmin, Epf(w, X) for some scalar
loss function ¢, and random element X ~ D (the data)
(Kroese et al.l 2013} §12). In the sequel, we shall assume
the weights w occupy a vector space S with norm | - ||. To
minimize ¢ with respect to w, some form of fixed point iter-
ation is typically adopted. Supposing that there exists some
continuous map ¥ such that any fixed point of E¥(+, X) is
a minimizer of ¢, the sequence of iterations

Wit1 = Ep¥(Wy, X) )]

either diverges, or converges to a minimizer of ¢ (Granas
& Dugundji, 2013). In practice, this expectation may not
be easily computed, and so one could instead consider the

. . i
sequence of iterated random functions: for X Z.(k) ~D,

Wit = \I/(Wk,Xk) k=0,1,... 2)
For example, one could consider the Monte Carlo approxi-
mation of (T):

1 (k)
Wk+1=ﬁi=21\1/(wk,xi ), 3)

which can be interpreted in the context of randomized sub-
sampling with replacement, where each (X i(k))?zl is a
batch of n subsamples drawn from a large dataset D. Sub-
sampling without replacement can also be treated in the
form (3) via the Markov chain {Wy,}?_,, where s is the
number of minibatches in each epoch.

Since will not, in general, converge to a single point,
the stochastic approximation (SA) approach of Robbins &
Monro|(1951) considers a corresponding sequence of maps
Uy, given by ¥ (w, x) = (1 — yx)w + vV (w, z), where
{vr}7_, is a decreasing sequence of step sizes. Provided ¥
is uniformly bounded, >, vx = 0 and ), 77 < o0, the se-

quence of iterates Wy 1 = n= 2> Wy (W, Xl-(k)) con-
verges in L? and almost surely to a minimizer of ¢ (Blum,
1954; Nemirovski et al., 2009). Note that this differs from
the sample average approximation (SAA) approach (Kley-
wegt et al., [2002), where a deterministic optimization al-
gorithm is applied to a random objective (e.g., gradient de-

scent on subsampled empirical risk).

Here are examples of how popular ML stochastic optimiza-
tion algorithms fit into this framework.

Example 1 (SGD & SGD with momentum). Minibatch
SGD with step size « coincides with (3) under ¥ (w, X) =
w — yV4(w, X). Incorporating momentum is possible by
considering the augmented space of weights and velocities
together. In the standard setup, letting v denote velocity,
and w the weights, ¥((v,w), X) = (nv + V&(w, X),w —
Y(nv + Vi(w, X))).
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Example 2 (Adam). Using state-space augmentation, the
popular first-order Adam optimizer (Kingma & Bal 2015)
can also be cast into the form of (2)). Indeed, for 31, 82, € >
0, letting g(w, X) = > | Vl(w, X;), for M(m,w, X) =
Bim +n~ 1 - B)g(w, X), V(v,w, X) = Bov + (1 —
Ba)n~2g(w, X)?, By(b) = 1 — By(1 — b), Ba(b) = 1 —
B2(1 —b), and

M(m,w, X)/Bi(by)
VV(0,w, X)/Ba(ba) + ¢’

W(by,be, m,v,w, X) =w—n

iterations of the Adam optimizer satisfy Wygi1 =
U (W, Xi),  where  W((b1, by, m,v,w),X) =
(B1(b1), Ba(b), M(m,w, X),V(v,w, X),

W (b1, ba,m,v,w, X)).

Example 3 (Stochastic Newton). The formulation () is
not limited to first-order stochastic optimization. In-
deed, for g(w, X) = X", Vl(w, X;) and H(w, X) =
S V2(w, X;), the choice ¥(w,X) = w —
vH (w, X) tg(w, X) coincides with the stochastic New-
ton method (Roosta-Khorasani & Mahoneyl, 2016)).

The iterations (2)) are also sufficiently general to incorpo-
rate other random effects, e.g., dropout (Srivastava et al.|
2014). Instead of taking the SA approach, in our analy-
sis we will examine the original Markov chain (2)), where
hyperparameters (including step size) are fixed. This will
provide a clearer picture of ongoing dynamics at each stage
within an arbitrary learning rate schedule (Babichev &
Bachl 2018)). Also, assuming reasonably rapid mixing,
global tendencies of a stochastic optimization algorithm,
such as the degree of exploration in space, can be exam-
ined through the stationary distribution of (2).

3. The linear case with SGD

As a warmup to our main results, let us first consider the
special case of ridge regression, i.e., least squares linear
regression with L? regularization, using vanilla SGD, as
treated in |Glirblizbalaban et al.| (2020). Let D denote a
dataset comprised of inputs z; € R? and corresponding
labels y; € R™. Supposing that (X,Y") is a pair of ran-
dom vectors uniformly drawn from D, for A > 0, we seek
a solution to

M* = argmin ;Ep[[Y — MX|” + SAIM7. )
Applying minibatch SGD to solving (@) with constant
(sufficiently small) step size results in a Markov chain
{M}%_, in the estimated parameter matrix. We start with
the following immediate, but important, observation.

Lemma 1. Letr n denote the size of each minibatch
(Xik, Yir)?_y comprised of independent and identically
distributed copies of (X,Y) for k = 1,2,.... For Wy, the

vectorization of My, iterations of minibatch SGD undergo
the following random linear recurrence relation

Wi = AWy + By, 6]

where A, = L, @ (1= Ay)Ig—yn~t >0, Xix X)), and
B, = yn~! Z?:l Yir ® Xig. If Ag, By are non-atomic,
log™ | Ag|, log™ | By|| are integrable, and Ep log | Ax| <
0, then () is ergodic.

Note that SGD possesses multiplicative noise in the form of
the factor Ay, as well as nonzero additive noise in the form
of the factor By,. Under the conditions of Lemmal[T} the ex-
pectations of (3) converge to M*. Although the dynamics
of this process, as well as the shape of its stationary dis-
tribution, are not as straightforward, random linear recur-
rence relations are among the most well-studied discrete-
time processes, and as multiplicative processes, are well-
known to exhibit heavy-tailed behaviour. In Appendix A,
we discuss classical results on the topic. The three pri-
mary tail regimes are summarized in Table [I} where each
a, B, A\, p denotes a strictly positive value. There are two
possible mechanisms by which the stationary distribution
of (B can be heavy-tailed. Most discussions about SGD fo-
cus on the additive noise component By, (Kleinberg et al.,
2018)). In this case, if By, is heavy-tailed, then the stationary
distribution of (3)) is also heavy-tailed. This is the assump-
tion considered in |[Simsekli et al.| (2019; [2020b). However,
this is not the only way heavy-tailed noise can arise. In fact,
we have the following result.

Lemma 2. Assuming the distribution of X has full support
on RY, there exists o > 0 such that |omin(Ag)|a = 1.
If ) is ergodic, its stationary distribution is heavy-tailed
with tail exponent at most «, that is, P(|[Wy| > t) =
Co(1 +t)~* for some Cy, > 0 and any t = 0.

Lemma [2] suggests that heavy-tailed fluctuations could be
more common than previously considered. This is per-
haps surprising, given that common Langevin approxima-
tions of SGD applied to this problem exhibit light-tailed
stationary distributions (Mandt et al.,[2016}; /Orvieto & Luc-
chi, 2019). A basic reasoning behind Lemma @] is as fol-
lows: for B > «, |omin(Ak)|lg > 1, so iterating (5) im-
plies |[Wy| g — oo, hence the limiting distribution must be
heavy-tailed. The multiplicative heavy-tailed regime illus-
trates how a power law can arise from light-tailed data (in
fact, even from data with finite support). Important to note
here is that if By, displays (not too significant) heavy-tailed
behaviour, the tail exponent of the stationary distribution
is entirely due to the recursion and properties of the multi-
plicative noise Aj. Here, the heavy-tailed behaviour arises
due to intrinsic factors to the stochastic optimization, and
they tend to dominate over time.  Similar observations
were reported in |Giirbiizbalaban et al.| (2020), followed by
a thorough investigation into the tail exponent «.. Increas-
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ing step size, decreasing batch size, and increasing dimen-
sion were all shown to result in heavier tails. Our primary
objective is to extend these ideas to more general settings.

4. Power laws for general objectives and
optimizers

In this section, we consider the general case @), and we ex-
amine how heavy-tailed stationary behaviour can arise for
any stochastic optimizer, applied to both convex and non-
convex problems. As in Section [3] here we are most in-
terested in the presence of heavy-tailed fluctuations due to
multiplicative factors. The case when heavy-tailed fluctua-
tions arise from the additive noise case is clear: if, for every
w € RY, W(w, X) is heavy-tailed/has infinite ath-moment,
then for each k = 1,2, ..., Wy is heavy-tailed/has infinite
ath moment also, irrespective of the dynamics of W.

In our main result (Theorem E]), we illustrate how power
laws arise in general smooth stochastic optimization algo-
rithms that are contracting on average and also strongly
convex near infinity with positive probability.

Theorem 1. Let (S,| - |) be a separable Banach space.
Assume that ¥ : S x Q — S is a random function on S
such that ¥ is a.s. Lipschitz and has probability measure
with a positively supported absolutely continuous compo-
nent with respect to a o-finite non-null probability measure
on S. Let Ky denote a random variable such that Ky (w)
is the Lipschitz constant of ¥ (-, w) for each w € ). Assume
that Ky is integrable, and |¥(w) — w|| is integrable for
some w* € S. Suppose there exist non-negative random
variables ky, My such that, almost surely, for all w € S,

Bl — w| - My < [¥(w) ~ U(*)]| < Koo —w*].

(6)
IfElog Ky < 0, then the Markov chain given by Wi1 =
U (Wi),k = 0,1,..., where each Uy, is an indepen-
dent and identically distributed copy of U, is geometrically
ergodic with Wy, = limy_,o, Wy, satisfying the distribu-
tional fixed point equation Wy, 2 U(Wy). Furthermore,
if kg > 1 with positive probability and | ¥ (w*)|, < oo for
any o > 0, then:

1. There exist ji,v,Cy, C, > 0 such that C,,(1 + t)™* <
P(|Ws| > t) < Cut™", forallt > 0.

2. There exist o, § > 0 suchthat |Ky|pg = 1and |kg | =
1 and for 6 > 0, 0 < limsup,_,, t*TP(|Wy]| > t),
and limsup,_, ., t*~¢P(|[Wx| > t) < o

Geometric rates of convergence in the Prohorov and to-
tal variation metrics to stationarity are discussed in |Dia-
conis & Freedman| (1999); |Alsmeyer (2003). From The-
orem [I] we find that the presence of expanding multi-
plicative noise implies the stationary distribution of (@) is

stochastically bounded between two power laws. This sug-
gests that smooth stochastic optimizers satisfying (6) and
P(ky > 1) > 0 can conduct wide exploration of the loss
landscape. To our knowledge, these conditions for heavy-
tailed stationary behaviour are significantly weaker than
the present literature suggests (Giirbiizbalaban et al., 2020
Mirekl 2011; Buraczewski et al.| [2016).

Example 4 (Heavy tails in SGD). For example, condition
(6) holds for SGD for any loss ¢ that is strongly convex
outside of a bounded region (e.g. when weight decay is
added). In this case,

ky = liminf ouin (I — vV (w, X)), and,  (7a)

|w|—c0

Ky = sup |1 —yV2{(w, X)) (7b)

In the linear case , kg reduces to omin (A4), hence, using
Theorem|[I} we can recover Lemma[2] Extending Lemma 2]
to the general case, vanilla SGD exhibits heavy-tailed be-
haviour when V2/(w, X ) has unbounded spectral distribu-
tion (as might be the case when X has full support on R?).

Conditions for stochastic Newton are similar, albeit more
complex. In particular, stochastic Newton exhibits heavy-
tailed behaviour when the Jacobian of H (w, X )~ tg(w, X)
has unbounded spectral distribution. Adaptive optimizers
such as momentum and Adam incorporate geometric decay
that can prevent heavy-tailed fluctuations, potentially lim-
iting exploration while excelling at exploitation to nearby
optima. It has been suggested that these adaptive aspects
should be turned off during an initial warmup phase (Liu
et al.| [2020), implying that exacerbating heavy-tailed fluc-
tuations and increased tail exponents could aid exploratory
behaviour in the initial stages of training. On the other
hand, if heavy-tailed behaviour is so extreme as to be detri-
mental for exploiting nearby optima, adaptive optimizers
can prove effective (Zhang et al., |2019b).

To treat other stochastic optimizers that are not Lipschitz,
or do not satisfy the conditions of Theorem [T} we present
in Lemma([3|an abstract sufficient condition for heavy-tailed
stationary distributions of ergodic Markov chains.

Lemma 3. For a general metric space S, suppose that W

is an ergodic Markov chain on S with W, z Wy as k —
oo, and let f : S — R be some scalar-valued function. If
there exists some € > 0 such that inf,,es P(| f(¥(w))| >
(I+¢)|f(w)]) > 0, then f(Wy,) is heavy-tailed.

Under our model, Lemma [3] says that convergent con-
stant step-size stochastic optimizers will exhibit heavy-
tailed stationary behaviour if there is some positive prob-
ability of the optimizer moving further away from an opti-
mum, irrespective of how near or far you are from it. To
our knowledge, this is the first time that variational conse-
quences of this property have been considered in stochas-
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tic optimization. Analyses concerning stochastic optimiza-
tion algorithms typically consider rates of contraction to-
wards a nearby optimum, quantifying the exploitative be-
haviour of a stochastic optimizer. In the convex setting,
that stochastic optimization algorithms could, at any stage,
move away from any optimum, appears detrimental, but is
critical in non-convex settings, where exploration (rather
than exploitation to a local optimum) is important. Indeed,
we find that it is this behaviour that directly determines
the tails of the stochastic optimizer’s stationary distribu-
tion, and therefore, its exploratory behaviour.

Factors influencing the tail exponent. Using bounds
from Theorem [T} we may extend observations in |Giir-
btizbalaban et al.| (2020) to the general case. According to
Theorem [I] the following factors play a role in decreasing
the tail exponent (generally, increasing kv, Ky in expecta-
tion or dispersion implies decreased ) resulting in heavier-
tailed noise. In each case (excluding step size, which is
complicated since step size also affects stability), the litera-
ture supports the hypothesis that factors influencing heavier
tails coincide with improved generalization performance;
see/Martin & Mahoney|(2018); Jastrzebski et al.|(2018) and
references therein.

Decreasing batch size / increasing step size: As the mini-
batch size n — o0 or step size ¥ — 0, Var(ky) — 0 and so
P(ky > 1) — 0if W is ergodic. Conversely, by Theorem
decreasing batch size or increasing step size results in an
decreased (i.e., heavier) tail exponent for ergodic stochastic
optimizers, keeping in mind that step sizes also affect sta-
bility of the algorithm. This is in line with Jastrzebski et al.
(2018); [Yao et al.| (2018)) and it suggests a relationship to
the generalization gap phenomenon. The relationship be-
tween step and batch sizes has received attention (Balles
et al.,[2017; Smith et al.| 2018)); choosing these parameters
to increase heavy-tailed fluctuations while keeping varia-
tion sensible could yield a valuable exploration strategy.

More dispersed data: Increasing dispersion in the data im-
plies increased dispersion for the distribution of ky, Ky,
and hence heavier tails. For the same model trained to dif-
ferent datasets, a smaller tail exponent may be indicative of
richer data, not necessarily of higher variance, but exhibit-
ing a larger moment of some order. Data augmentation is a
strategy to achieve this (Wang & Perez, [2017)).

Increasing regularization: Provided W remains ergodic,
the addition of a large explicit L2-regularizer to the ob-
jective function (known to help avoiding bad minima
(Liu et al.l 2019)) results in larger kg, and hence, heavier-
tailed noise.

Increasing dimension: The effect of dimension is note-
worthy for ML, albeit not so straightforward at higher gen-
erality, where direct comparison between model classes be-

comes complex. For neural networks in the SGD case,
a Wishart+Wigner Hessian model (Pennington & Bahri}
2017) together with suggests that ky should increase
(and the tail exponent decrease) with dimension — see Ap-
pendix B for details. Later in Figure[3] we show empirically
that increasing depth within the same architecture class also
yields heavier tails.

5. Numerical Experiments

To illustrate the advantages that multiplicative noise and
heavy tails offer in non-convex optimization, in particu-
lar for exploration (of the entire loss surface) versus ex-
ploitation (to a local optimum), we first consider stochas-
tic optimization algorithms in the non-stationary regime.
To begin, in one dimension, we compare perturbed gradi-
ent descent (GD) with additive light-tailed and heavy-tailed
noise against a version with additional multiplicative noise.
That is,

(ab) wri1 = wi —y(f (wi) + (1 + 0)Zy),
© wysr = wy, — (1 +0Z0) f (wy) + 27,

where f : R — R is the objective function, 7,0 > 0,
Zi, 2V, 22 % N(0,1) in (a) and (c), and in (b), Z
are i.i.d. t-distributed (heavy-tailed) with 3 degrees of free-
dom, normalized to have unit variance. Algorithms (a)-(c)
are applied to the objective f(z) = f52? + 1 — cos(z?),
which achieves a global (wide) minimum at zero. Itera-
tions of (a)-(c) have expectation on par with classical GD.
For fixed step size v = 1072 and initial wy = —4.75, the
distribution of 10° successive iterates are presented in Fig-
ure [T] for small (¢ = 2), moderate (¢ = 12), and strong
(o = 50) noise. Both (b) and (c) readily enable jumps be-
tween basins. However, while the additive noise optimizers
(a), (b) smooth the effective loss landscape, making it eas-
ier to jump between basins, it also has the side effect of
reducing resolution in the vicinity of minima. On the other
hand, the multiplicative noise optimizer (c) maintains close
proximity (peaks in the distribution) to critical points.

Figure [I] also illustrates exploration/exploitation benefits
of multiplicative noise (and associated heavier tails) over
additive noise (and associated lighter tails). While rapid
exploration may be achieved using heavy-tailed additive
noise (Simsekli et al., [2019), since reducing the step size
may not reduce the tail exponent, efficient exploitation of
local minima can become challenging, even for small step
sizes. On the other hand, multiplicative noise has the ben-
efit of behaving similarly to Gaussian additive noise for
small step sizes (Rubin et al., [2014). We can see evidence
of this behaviour in the leftmost column in Figure[I] where
the size of the multiplicative noise is small. As the step size
is annealed to zero, multiplicative noise resembles the con-
volutional nature of additive noise (Kleinberg et al.,[2018]).
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Figure 1: Histograms (blue) of 106 iterations of GD with combinations of small (left), moderate (center), and strong (right)
versus light additive (a), heavy additive (b), and multiplicative noise (c), applied to a non-convex objective (black). (Red)

Initial starting location for the optimization.

This same basin hopping behaviour can be observed heuris-
tically in SGD for higher-dimensional models with the aid
of principal component analysis (PCA), although jumps be-
come much more frequent. To see this, we consider fitting
a two-layer neural network with 16 hidden units for classi-
fication of the Musk data set (Dietterich et al.l [1997) (168
attributes; 6598 instances) with cross-entropy loss without
regularization and step size ¥ = 1072, Two stochastic
optimizers are compared: (a) SGD with a single sample
per batch (without replacement), and (b) perturbed GD (Jin
et al., 2017), where the state-independent covariance of it-
erations in (b) is chosen to approximate that of (a) on aver-
age. PCA-projected trajectories are presented in Figure [2]
SGD frequently exhibits jumps between basins, a feature
not shared by perturbed GD with only additive noise.

Finally, to illustrate the effect of depth on tail exponents,
we examine stationary behaviour of the magnitude of SGD
steps |wg+1 — wg| (by triangle inequality, at stationarity,
the tail exponent of steps is the same as the weights them-
selves). We plot histograms of four common wide ResNet
architectures trained on CIFAR10 in Figure 3] and provide
maximum likelihood estimates of the tail exponents. See
Appendix C for implementation details and further numer-
ical analyses of this form supporting claims in §4]

6. Discussion

Heavy tails and generalization. In a recent series of
papers (Martin & Mahoney, [2018; 2019} [2020aib), an
empirical (or phenomenological) theory of heavy-tailed
self-regularization is developed, proposing that sufficiently
complex and well-trained deep neural networks exhibit
heavy-tailed mechanistic universality: the spectral distri-
bution of large weight matrices display a power law whose
tail exponent is negatively correlated with generalization
performance. If true, examination of this tail exponent
provides an indication of model quality, and factors that
are positively associated with improved test performance,
such as decreased batch size. From random matrix theory,
these heavy-tailed spectral distributions may arise due to
strong correlations arising in the weight matrices (Borde-
nave et al. 2011), or heavy-tailed distributions arising in
each of the weights over time (Arous & Guionnet, [2008)).
The reality may be some combination of both; here, in line
with |Simsekli et al.| (2019} [2020a); |Giirbtizbalaban et al.
(2020), we have illustrated that the second avenue is at
least possible, and relationships between factors of the op-
timization and the tail exponent agree with the present find-
ings. Theorem|T]implies the general existence of power law
tail exponents in the fluctuations of stochastic optimizers,
while [Simgekli et al.| (2020a) have shown, both theoreti-
cally and empirically, that these tail exponents correlate
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Figure 2: PCA scores for trajectories of SGD over 10 epochs versus perturbed GD with additive noise across the same

number of iterations along principle components 2, 3, 4.
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Figure 3: Histograms of ~ 10% SGD steps |[wy+1 — wg|, number of parameters, and estimate of the corresponding tail
exponent « for four ResNet architectures. Note that the tail exponents decrease with depth.

with generalization performance. Proving that heavy-tailed
behaviour can arise in spectral distributions of the weights
(as opposed to their probability distributions, which we
have treated here) is a challenging problem, and remains
the subject of future work. Casting the evolution of spectral
distributions into the framework of iterated random func-
tions could prove fruitful in this respect.

Lazy training, implicit renewal theory, and the catapult
phase. Theory concerning random linear recurrence re-
lations can be extended directly to SGD applied to objec-
tive functions whose gradients are “almost” linear, such

as those seen in lazy training (Chizat et al} 2019), due
to the implicit renewal theory of (1991). How-

ever, it seems unlikely that multilayer networks should ex-
hibit the same tail exponent between each layer, where the
conditions of Breiman’s lemma (see Appendix A) break
down. Significant discrepancies between tail exponents
across layers were observed in other appearances of heavy-
tailed noise (Martin & Mahoney}, 20200}, [Simsekli et all}
[2019). From the point of view of tail exponents, it appears
that most practical finite-width deep neural networks do
not exhibit lazy training. This observation agrees with the
poor relative generalization performance exhibited by lin-

earized neural networks (Chizat et al., 2019, [Oymak et al.}
2019). Indeed, recent efforts have referred to hyperpa-

rameter regimes where stochastic optimization differs from
(exploitation-focused) lazy training as the catapult phase
(Cewkowycz et all, 2020). Our analysis suggests that the
underlying mechanism for this phenomenon could be at-
tributed to multiplicative noise effects.

Continuous-time models. Probabilistic analyses of
stochastic optimization often consider continuous-time
approximations, e.g., for constant step size, a stochastic
differential equation of the form (Mandt et all 2016}
[Orvieto & Lucchi}, [2019; [Fontaine et al., [2020)

AWy = =V f(Wy)dt + g(Wy)d Xy, ®)
where f : R4 — R, g : R* — R¥*?  The most com-
mon of these are Langevin models where X is Brown-
ian motion (white noise), although heavy-tailed noise has
also been considered (Simgekli et all 2019} 2020b). In
the case where ¢ is diagonal, as a corollary of

et al} 2014; Ma et al, 2015), we may determine condi-

tions for heavy-tailed stationary behaviour. Letting r(w) =
|g(w)~2V f(w)]|, in Table 2| we present a continuous time
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analogue of Table[l| with examples of choices of g that re-
sult in each regime when f is quadratic. Langevin algo-
rithms commonly seen in the literature (Mandt et al., 2016
Orvieto & Lucchil 2019) assume constant or bounded
volatility (g), resulting in light-tailed stationary distribu-
tions for L2-regularized loss functions. However, even
a minute presence of multiplicative noise (unbounded g)
can yield a heavy-tailed stationary distribution (Bird &
Jakovac, [2005). Fortunately, more recent analyses are al-
lowing for the presence of multiplicative noise in their ap-
proximations (Cheng et al., 2020; |[Fontaine et al., 2020).
Based on our results, it seems clear that this trend is critical
for adequate investigation of stochastic optimizers using
the continuous-time approach. On the other hand, |Simsekli
et al.| (2019} [2020b) invoked the generalized central limit
theorem (CLT) to propose a continuous-time model with
heavy-tailed (additive) Levy noise, in response to the ob-
servation that stochastic gradient noise is frequently heavy-
tailed. In their model, the heaviness of the noise does not
change throughout the optimization. Furthermore, (Pani-
grahi et al.l 2019) observed that stochastic gradient noise
is typically Gaussian for large batch sizes, which is in-
compatible with generalized CLT. We have illustrated how
multiplicative noise also yields heavy-tailed fluctuations.
Alternatively, heavy tails in the stochastic gradient noise
for fixed weights could be log-normal instead, which are
known to arise in deep neural networks (Hanin & Nical
2019). A notable consequence of the Levy noise model
is that exit times for basin hopping are essentially indepen-
dent of basin height, and dependent instead on basin width,
which is commonly observed with SGD (Xing et al.,[2018]).
In the absence of heavy-tailed additive noise, we observed
similar behaviour in our experiments for large multiplica-
tive noise, although precise theoretical treatment remains
the subject of future work.

Stochastic gradient MCMC. As mentioned in [Mandt
et al| (2017), the differences between a stochastic opti-
mizer and its corresponding SG-MCMC variant lie in a
step-size schedule, and possibly the inclusion of further ad-
ditive noise. Therefore, the same principles discussed here
also apply to stochastic gradient MCMC (SG-MCMC) al-
gorithms (Ma et al., 2015). The presence of multiplicative
noise due to data subsampling suggests that the actual sta-
tionary distribution of SG-MCMC can be heavy-tailed, re-
gardless of the chosen target distribution.

Geometric properties of multiplicative noise. It has
been suggested that increased noise in SGD acts as a form
of convolution, smoothing the effective landscape (Klein-
berg et al., 2018). This appears to be partially true. As
seen in Figure [I] smoothing behaviour is common for ad-
ditive noise, and reduces resolution in the troughs. Mul-
tiplicative noise, which SGD also exhibits, has a different

effect. As seen in [Rubin et al.| (2014), in the continuous-
time setting, multiplicative noise equates to conducting ad-
ditive noise on a modified (via Lamperti transform) loss
landscape. There is also a natural interpretation of mul-
tiplicative noise through choice of geometry in Rieman-
nian Langevin diffusion (Girolami & Calderhead, 2011}
Ma et al) 2015). Under either interpretation, it appears
multiplicative noise shrinks the width of peaks and widens
troughs in the effective loss landscape, potentially negating
some of the undesirable side effects of additive noise.

7. Conclusion

A theoretical analysis on the relationship between mul-
tiplicative noise and heavy-tailed fluctuations in stochas-
tic optimization algorithms has been conducted. We pro-
pose that viewing stochastic optimizers through the lens
of Markov process theory and examining stationary be-
haviour is key to understanding exploratory behaviour on
non-convex landscapes in the initial phase of training. Our
results suggest that heavy-tailed fluctuations may be more
common than previous analyses have suggested, and they
further the hypothesis that such fluctuations are correlated
to improved generalization performance. From this view-
point, we maintain that multiplicative noise should not be
overlooked in future analyses on the subject. We have
made efforts to develop as general an analysis as possi-
ble, however, there remain some limitations. The time-
homogeneous Markov chain model (2)) is not sensible when
data is cycled through in the same order between epochs.
Here, a dynamical systems point-of-view is more sensible,
with stationary behaviour examined as limit cycles (Chaud-
hari & Soatto, |2018). It is likely that tighter bounds on the
tail exponents could be achieved through more fine-grained
analyses on specific model classes. In particular, tighter es-
timates illuminate more precise relationships between tail
exponents and specific factors, most notably dimension.
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