MC-LSTM: Appendix

A. Notation Overview

Most of the notation used throughout the paper, is summa-
rized in Tab. A.1.

B. Experimental Details

In the following, we provide further details on the experi-
mental setups.

B.1. Neural Arithmetic

Neural networks that learn arithmetic operations have re-
cently come into focus (Trask et al., 2018; Madsen & Jo-
hansen, 2020). Specialized neural modules for arithmetic
operations could play a role for complex Al systems since
cognitive studies indicate that there is a part of the brain
that enables animals and humans to perform basic arith-
metic operations (Nieder, 2016; Gallistel, 2018). Although
this primitive number processor can only perform approx-
imate arithmetic, it is a fundamental part of our ability to
understand and interpret numbers (Dehaene, 2011).

B.1.1. DETAILS ON DATASETS

We consider the addition problem that was proposed in the
original Long Short-Term Memory (LSTM) paper (Hochre-
iter & Schmidhuber, 1997). We chose input values in the
range [0, 0.5] in order to be able to use the fast standard
implementations of LSTM. For this task, 20 000 samples
were generated using a fixed random seed to create a dataset,
which was split in 50% training and 50% validation sam-
ples. For the test data, 1 000 samples were generated with a
different random seed.

A definition of the static arithmetic task is provided by
(Madsen & Johansen, 2020). The following presents this
definition and its extension to the recurrent arithmetic task
(c.f. Trask et al., 2018).

The input for the static version is a vector, x € U(1,2)°9,

consisting of numbers that are drawn randomly from a uni-
form distribution. The target, y, is computed as
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wherec € N,a <b<a+ceNandO € {+,—,-}. For
the recurrent variant , the input consists of a sequence of
T vectors, denoted by =’ € U(1,2)°,¢t € {1,...,T}, and

the labels are computed as
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For these experiments, no fixed datasets were used. Instead,
samples were generated on the fly. For the recurrent tasks,
2000 000 batches of 128 problems were created and for the
static tasks 500 000 batches of 128 samples were used in
the addition and subtraction tasks and 3 000 000 batches
for multiplication. Note that since the subsets overlap, i.e.,
inputs are re-used, this data does not have mass conservation
properties.

For a more detailed description of the MNIST addition data,
we refer to (Trask et al., 2018) and the appendix of (Madsen
& Johansen, 2020).

B.1.2. DETAILS ON HYPERPARAMETERS.

For the addition problem, every network had a single hidden
layer with 10 units. The output layer was a linear, fully con-
nected layer for all Mass-Conserving LSTM (MC-LSTM)
and LSTM variants. The Neural Addition Unit (NAU) (Mad-
sen & Johansen, 2020) and Neural ALU (NALU)/Neural
Accumulator (NAC) (Trask et al., 2018) networks used their
corresponding output layer. Also, we used a more common
Ly regularization scheme with low regularization constant
(107%) to keep the weights ternary for the NAU, rather than
the strategy used in the reference implementation from Mad-
sen & Johansen (2020). Optimization was done using Adam
(Kingma & Ba, 2015) for all models. The initial learn-
ing rate was selected from {0.1,0.05,0.01, 0.005,0.001}
on the validation data for each method individually. All
methods were trained for 100 epochs.

The weight matrices of LSTM were initialized in a standard
way, using orthogonal and identity matrices for the forward
and recurrent weights, respectively. Biases were initialized
to be zero, except for the bias in the forget gate, which was
initialized to 3. This should benefit the gradient flow for
the first updates. Similarly, MC-LSTM is initialized so that
the redistribution matrix (cf. Eq. 7) is (close to) the identity
matrix. Otherwise we used orthogonal initialization (Saxe
et al., 2014). The bias for the output gate was initialized
to -3. This stimulates the output gates to stay closed (keep
mass in the system), which has a similar effect as setting
the forget gate bias in LSTM. This practically holds for all
subsequently described experiments.
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Table A.1. Symbols and notations used in this paper.

Definition Symbol/Notation Dimension
mass input at timestep ¢ x! or xt Morl
auxiliary input at timestep ¢ a' L

cell state at timestep t ct K

limit of sequence of cell states c™®

hidden state at timestep ¢ h! K
redistribution matrix R Kx K
input gate 2 K

output gate o K

mass m K

input gate weight matrix W; K xL
input gate weight matrix W, KxL
output gate weight matrix U; Kx K
output gate weight matrix U, KxK
identity matrix K KxK
input gate bias b; K

output gate bias b, K
arbitrary differentiable function f

hypernetwork function (conditioner) g

redistribution gate bias Br KxK
stored mass Me

mass efflux mp

limit of series of mass inputs m°

timestep index t

an arbitrary timestep T

last timestep of a sequence T

redistribution gate weight tensor W, KxKXxL
redistribution gate weight tensor U, KxKxK

arbitrary feature index
arbitrary feature index
arbitrary feature index

o o R
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For the recurrent arithmetic tasks, we tried to stay as close
as possible to the setup that was used by Madsen & Johansen
(2020). This means that all networks had again a single hid-
den layer. The NAU, Neural Multiplication Unit (NMU)
and NALU networks all had two hidden units and, respec-
tively, NAU, NMU and NALU output layers. The first,
recurrent layer for the first two networks was a NAU and
the NALU network used a recurrent NALU layer. For the
exact initialization of NAU and NALU, we refer to (Madsen
& Johansen, 2020).

The MC-LSTM models used a fully connected linear layer
with Ly-regularization for projecting the hidden state to the
output prediction for the addition and subtraction tasks. A
free linear layer was used to compensate for the fact that
the data does not have mass-conserving properties. How-
ever, it is important to note that the mass conservation in
MC-LSTM is still necessary to solve this task. For the mul-
tiplication problem, we used a multiplicative, non-recurrent
variant of MC-LSTM with an extra scalar parameter to allow
the conserved mass to be re-scaled if necessary. This multi-
plicative layer is described in more detail in Appendix B.1.3.

Whereas the addition could be solved with two hidden units,
MC-LSTM needed three hidden units to solve both subtrac-
tion and multiplication. This extra unit, which we refer to
as the trash cell, allows MC-LSTMs to get rid of excessive
mass that should not influence the prediction. Note that,
since the mass inputs are vectors, the input gate has to be
computed in a similar fashion as the redistribution matrix.
Adam was again used for the optimization. We used the
same learning rate (0.001) as Madsen & Johansen (2020) to
train the NAU, NMU and NALU networks. For MC-LSTM
the learning rate was increased to 0.01 for addition and sub-
traction and 0.05 for multiplication after a manual search on
the validation set. All models were trained for two million
update steps.

In a similar fashion, we used the same models from Mad-
sen & Johansen (2020) for the MNIST addition task. For
MC-LSTM, we replaced the recurrent NAU layer with a
MC-LSTM layer and the output layer was replaced with
a fully connected linear layer. In this scenario, increas-
ing the learning rate was not necessary. This can probably
be explained by the fact that training Convolutional Neu-
ral Network (CNN) to regress the MNIST images is the
main challenge during learning. We also used a standard
Ly-regularization on the outputs of CNN instead of the im-
plementation proposed in (Madsen & Johansen, 2020) for
this task.

B.1.3. STATIC ARITHMETIC

This experiment should enable a more direct comparison
to the results from Madsen & Johansen (2020) than the
recurrent variant. The data for the static task is equivalent

to that of the recurrent task with sequence length one. For
more details on the data, we refer to Appendix B.1.1 or
(Madsen & Johansen, 2020).

Since the static task does not require a recurrent model, we
discarded the redistribution matrix in MC-LSTM. The result
is a layer with only input and output gates, which we refer to
as a Mass-Conserving Fully Connected (MC-FC) layer. We
compared this model to the results reported in (Madsen &
Johansen, 2020), using the code base that accompanied the
paper. All NALU and NAU networks had a single hidden
layer. Similar to the recurrent task, MC-LSTM required two
hidden units for addition and three for subtraction. Mathe-
matically, an MC-FC with K hidden neurons and M inputs
can be defined as MC-FC : RM — RX : & — y, where
y =diag(o) - I-x I =softmax(B;) o=o(b,),

where the softmax operates on the row dimension to get a
column-normalized matrix, I, for the input gate.

Using the log-exp transform (c.f. Trask et al., 2018), a mul-
tiplicative MC-FC with scaling parameter, ¢, can be con-
structed as follows: exp(MC-FC(log(x))+ ). The scaling
parameter is necessary to break the mass conservation when
it is not needed. By replacing the output layer with this
multiplicative MC-FC, it can also be used to solve the multi-
plication problem. This network also required three hidden
neurons. This model was compared to a NMU network with
two hidden neurons and NALU network.

All models were trained for two million updates with the
Adam optimizer (Kingma & Ba, 2015). The learning rate
was set to 0.001 for all networks, except for the MC-FC
network, which needed a lower learning rate of 0.0001, and
the multiplicative MC-FC variant, which was trained with
learning rate 0.01. These hyperparameters were found using
a manual search.

Since the input consists of a vector, the input gate predicts
a left-stochastic matrix, similar to the redistribution matrix.
This allows us to verify generalization abilities of the induc-
tive bias in MC-LSTMs. The performance was measured
in a similar way as for the recurrent task, except that gen-
eralization was tested over the range of the input values
(Madsen & Johansen, 2020). Concretely, the models were
trained on input values in [1, 2] and tested on input values
in the range [2, 6]. Table B.2 shows that MC-FC is able to
match or outperform both NALU and NAU on this task.

B.1.4. COMPARISON WITH TIME-DEPENDENT
MC-LSTM

We used MC-LSTM with a time-independent redistribution
matrix, as in Eq. (7), to solve the addition problem. This
resembles another form of inductive bias, since we know
that no redistribution across cells is necessary to solve this
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Table B.2. Results for the static arithmetic task. MC-FC is a mass-conserving variant of MC-LSTM based on fully-connected layers for
non-recurrent tasks. MC-FCs for addition and subtraction/multiplication have two and three neurons, respectively. Error bars represent

95% confidence intervals.

addition subtraction multiplication
success rate® updatesb success rate® updatesb success rate® updatesb
MC-FC  100% 9% 2.1-10° 100% *9% 1.6-10° 100% ™5t 1.4-10°
NAU/NMU 100% "9 1.8-10* 100% *9¢ 5.0-10° 98% T1% 1.4-10°
NAC 100% "5 25.10° 100% T9¢ 9.0-10° 31% Ty 2.8-10°
NALU  14% *8%  15.100 14% 5% 1.9.100 0% ok -

2 Percentage of runs that generalized to a different input range.
b Median number of updates necessary to solve the task.

problem and it results also in a more efficient model, because
less parameters have to be learned. However, for the sake of
flexibility, we also verified that it is possible to use the more
general time-dependent redistribution matrix (cf. Eq. 8).
The results of this experiment can be found in Table B.3.

Although the performance of MC-LSTM with time-
dependent redistribution matrix is slightly worse than that of
the more efficient MC-LSTM variant, it still outperforms all
other models on the generalisation tasks. This can partly be
explained by the fact that is harder to train a time-dependent
redistribution matrix, while the training budget is limited to
100 epochs.

B.1.5. COMPARISON WITH NORMALIZED AND UNITARY
NETWORKS

In order to account for the limited range of LSTMSs, normal-
ization techniques can be used to keep the data within a man-
ageable range. Therefore, we also compared MC-LSTM to
an LSTM with layer normalization (Ba et al., 2016). Al-
though the layer normalization improves the generaliza-
tion performance, it does not match the performance of
MC-LSTM (see Table B.3).

Whereas MC-LSTM preserves the L; norm, unitary RNNs
(Arjovsky et al., 2016) preserve the L, norm. To make sure
that our inductive bias on the L norm is justified, we di-
rectly compared MC-LSTM to a unitary RNN. We adopted
the hyperparameters from Arjovsky et al. (2016) and tried
fine-tuning them, but were unable to reproduce the results
on the addition problem. Nevertheless, we include the gen-
eralization performance of the best performing unitary RNN
in table B.3.

B.1.6. QUALITATIVE ANALYSIS OF THE MC-LSTM
MODELS TRAINED ON ARITHMETIC TASKS

Addition Problem. To reiterate, we used MC-LSTM
with 10 hidden units and replaced the linear output layer

by a simple summation. The model has to learn to sum all
mass inputs of the timesteps, where the auxiliary input (the
marker) equals a* = 1, and ignore all other values. At the fi-
nal timestep — where the auxiliary input equals a® = —1 —
the network should output the sum of all previously marked
mass inputs.

In our experiment, the model has learned to store the marked
input values in a single cell, while all other mass inputs
mainly end up in a single, different cell. That is, a single
cell learns to accumulate the inputs to compute the solution
and the other cells are used as trash cells. In Fig. B.1,
we visualize the cell states for a single input sample over
time, where the orange and the blue line denote the mass
accumulator and the main trash cell, respectively.

—— trash cell
main cell
other cells

cell state value
- -
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©
wn

0.0

0 20 40 60 80 100
timestep

Figure B.1. MC-LSTM cell states over time for model trained to
solve the addition problem (see Appendix B.1.1). Each line de-
notes the value of one particular cell over time, while the two
vertical grey indicator lines denote the timesteps, where the auxil-
iary input was 1 (i.e., which numbers in the sequence have to be
added).

We can see that at the last time step — where the network
is queried to return the accumulated sum — the value of
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Table B.3. Performance of different models on the LSTM addition task in terms of the MSE. MC-LSTM significantly (all p-values below
.05) outperforms its competitors, LSTM (with high initial forget gate bias), NALU, NAU a layer-normalized LSTM (LN-LSTM) and
unitary RNNs (URNN). Error bars represent 95%-confidence intervals across 100 runs.

reference® seq length® input range® count? combo®  NaNf
MC-LSTM! 0.013 +0.004 0.022+0.010 26+08 22407 13.6+40 0
MC-LSTM  0.004 £ 0.003 0.009 +£ 0.004 08+05 0.6+04 4.0+25 0
LSTM 0.008 +0.003 0.727 £0.169 2144+0.6 95+0.6 54.6+1.0 0
LN-LSTM  0.026 +0.003 0.055+0.010 245+03 75+02 620+0.5 0
URNN 0.043 £0.001 0.139 £0.133 999 +63.8 7.0+0.1 88.1+34 0
NALU 0.060 £ 0.008 0.059 £0.009 253+02 74+0.1 63.7+0.6 93
NAU 0.248 £0.019 0.252+£0.020 283+05 9.1+02 68.5+0.8 24

? training regime:

b Jonger sequence lengths:

¢ more mass in the input:

4 higher number of summands:

¢ combination of previous scenarios:

T Number of runs that did not converge.

summing 2 out of 100 numbers between 0 and 0.5.
summing 2 out of 1 000 numbers between 0 and 0.5.
summing 2 out of 100 numbers between 0 and 5.0.
summing 20 out of 100 numbers between 0 and 0.5.
summing 10 out of 500 numbers between 0 and 2.5.

f MC-LSTM with time-dependent redistribution matrix.

this mass accumulator drops to zero, i.e., the output gate
is completely open. Note that this would not be the case
for a model with a fully connected layer. After all, the
fully connected layer can arbitrarily scale the output of the
MC-LSTM layer, which allows the output gate to open only
partially. Apart from this distinction in the last timestep,
the cell states for both models behave the same way. For
all other cells (grey lines), the output gate at the last time
step is zero. This illustrates nicely how the model output is
only determined by the value of the single cell that acted as
accumulator of the marked values (orange line).

Also note the accumulating behaviour of the main trash
cell (blue line). This can become a problem for very long
sequences, because the logistic sigmoid in the output gate
can never be perfectly 1 or 0. This means that if the value
in the trash cell grows too large, it might effectively leak
into the output. However, this undesired behaviour could
be countered by, e.g., Lo regularisation on the cell states, or
in case of continuous prediction, adding an extra output as
outlet for unnecessary mass (see Sec. B.4.2). This should
push the network to dump the trash cell to the output at
timesteps where the output is not used.

Recurrent Arithmetic. In the following we take a closer
look at the solution that is learned with MC-LSTM. Con-
cretely, we look at the weights of a MC-LSTM model that
successfully solves the following recurrent arithmetic task:

(a6 +a5) O Y (ah +ab),

1 t=1

y:

T T
(
t=

where [J € {—, +}, given a sequence of input vectors = €
R10 (the only purpose of the colors is to provide an aid to
readers). We highlight the following observations:

1. For the addition task (i.e., [0 = +), MC-LSTM has
two units (see Appendix B.1.2 for details on the experi-
ments). Trask et al. (2018); Madsen & Johansen (2020)
fixed the number of hidden units to two with the idea
that each unit can learn one term of the addition opera-
tion ([J). However, if we take a look at the input gate
of our model, we find that the first cell is used to accu-
mulate (2% +. ..+ + 0.5z +0.5:L + 2§+ 2t) and
the second cell collects (0.5z) + =% + 0.5x%). Since
the learned redistribution matrix is the identity matrix,
these accumulators operate individually.

This means that, instead of computing the individ-
ual terms, MC-LSTM directly computes the solution,
scaled by a factor 2 in its second cell. The first cell
accumulates the rest of the mass, which it does not
need for the prediction. In other words, it operates
as some sort of trash cell. Note that due to the mass-
conservation property, it would be impossible to com-
pute each side of the operation individually. After all,
xL appears on both sides of the central operation (),
and therefore the data is not mass conserving.

The output gate is always open for the trash cell and
closed for the other cell, indicating that redundant mass
is discarded through the output of the MC-LSTM in
every timestep and the scaled solution is properly ac-
cumulated. However, in the final timestep — when the
prediction is to be made, the output gate for the trash
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cell is closed and opened for the other cell. That is, the
accumulated solution is passed to the final linear layer,
which scales the output of MC-LSTM by a factor of
two to get the correct solution.

2. For the subtraction task (i.e., [0 = —), a similar be-
havior can be observed. In this case, the final model
requires three units to properly generalize. The first
two cells accumulate = and ., respectively. The last
cell operates as trash cell and collects (x} + ...+ xk +
rt4zh+2t,). The redistribution matrix is the identity
matrix for the first two cells. For the trash cell, equal
parts (0.4938) are redistributed to the two other cells.
The output gate operates in a similar fashion as for ad-
dition. Finally, the linear layer computes the difference
between the first two cells with weights 1, -1 and the
trash cell is ignored with weight 0.

Although MC-LSTM with two units was not able to
generalize well enough for the Madsen & Johansen
(2020) benchmarks, it did turn out to be able to provide
a reasonable solution (albeit with numerical flaws).
With two cells, the network learned to store (0.5z¢ +
... +0.5z + 25 +0.525 +0.525 4 0.52% ) in one cell,
and (0.5z¢ +...40.5254+0.50L +2L +0.525 +0.52)
in the other cell. With a similar linear layer as for the
three-unit variant, this solution should also compute a
correct solution for the subtraction task.

B.2. Inbound-outbound Traffic Forecast

Traffic forecasting considers a large number of different
settings and tasks (Tedjopurnomo et al., 2020). For ex-
ample whether the physical network topology of streets
can be exploited by using graph neural networks combined
with LSTMs (Cui et al., 2019). Within traffic forecasting
mass conservation translates to a conservation-of-vehicles
principle. Generally, models that adhere to this principle
are desired (Vanajakshi & Rilett, 2004; Zhao et al., 2017)
since they could be useful for long-term forecasts. Many
recent benchmarking datasets for traffic forecasts are usually
uni-directional and are measured at few streets. Thus con-
servation laws cannot be directly applied (Tedjopurnomo
et al., 2020).

We demonstrate how MC-LSTM can be used in traffic fore-
casting settings. A typical setting for vehicle conservation is
when traffic counts for inbound and outbound roads of a city
are available. In this case, all vehicles that come from an
inbound road must either be within a city or leave the city on
an outbound road. The setting is similar to passenger flows
in inbound and outbound metro (Liu et al., 2019), where
LSTMs have also prevailed. We were able to extract such
data from a recent dataset based on GPS-locations (Kreil
et al., 2020) of vehicles at a fine geographic grid around
cities, which represents good approximation of a vehicle

conserving scenario.

An approximately mass-conserving traffic dataset
Based on the data for the traffic4cast 2020 challenge (Kreil
et al., 2020), we constructed a dataset to model inbound and
outbound traffic of three different cities: Berlin, Istanbul
and Moscow. The original data consists of 181 sequences
of multi-channel images encoding traffic volume and speed
for every five minutes in four (binned) directions. Every
sequence corresponds to a single day in the first half of the
year. In order to get the traffic flow from the multi-channel
images at every timestep, we defined a frame around the
city and collected the traffic-volume data for every pixel
on the border of this frame. This is illustrated in Fig. 3.
For simplicity, we ignored the fact that a single-pixel frame
might have issues with fast-moving vehicles.

By taking into account the direction of the vehicles, the
inbound and outbound traffic can be combined for every
pixel on the border of our frame. To get a more tractable
dataset, we additionally combined the pixels of the four
edges of the frame to end up with eight values: four values
for the incoming traffic, i.e: one for each border of the
frame, and four values for the outgoing traffic. The inbound
traffic would be the mass input for MC-LSTM and the target
outputs are the outbound traffic along the different borders.
The auxiliary input is the current daytime, encoded as a
value between zero and one.

To model the sparsity that is often available in other traffic
counting problems, we chose three time-slots (6 am, 12 pm
and 6 pm) for which we use fifteen minutes of the actual
measurements — i.e., three timesteps. This could for ex-
ample simulate the deployment of mobile traffic counting
stations. The other inputs are imputed by the average in-
bound traffic over the training data, which consists of 181
days. Outputs are only available when the actual measure-
ments are used. This gives a total of 9 timesteps per day on
which the loss can be computed. For training, this dataset is
randomly split in 85% training and 15% validation samples.

During inference, all 288 timesteps of the inbound and
outbound measurements are used to find out which model
learned the traffic dynamics from the sparse training data
best. For this purpose, we used the 18 sequences of vali-
dation data from the original dataset as test set, which are
distributed across the second half of the year. In order to
enable a fair comparison between LSTM and MC-LSTM,
the data for LSTM was normalized to zero mean and unit
variance for training and inference (using statistics from the
training data). MC-LSTM does not need this pre-processing
step and is fed the raw data.

Model and Hyperparameters For the traffic prediction,
we used LSTM followed by a fully connected layer as base-
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line (c.f. Zhao et al., 2017; Liu et al., 2019). For MC-LSTM,
we chose to enforce end-to-end mass conservation by using
a MC-FC output layer, which is described in detail in Ap-
pendix B.1.3. For the initialization of the models, we refer
to the details of the arithmetic experiments in Appendix B.1.

For each model and for each city, the best hyperparame-
ters were found by performing a grid search on the val-
idation data. This means that the hyperparameters were
chosen to minimize the error on the nine 5-minute inter-
vals. For all models, the number of hidden neurons was
chosen from {10, 50, 100} and for the learning rate, the op-
tions were {0.100, 0.050,0.010, 0.005, 0.001}. All models
were trained for 2 000 epochs using the Adam optimizer
(Kingma & Ba, 2015). Additionally, we considered values
in {0, 5} for the initial value of the forget gate bias in LSTM.
For MC-LSTM, the extra hyperparameters were the initial
cell state value (€ {0,100}) — i.e., how much cars are in
each memory cell at timestep zero — and whether or not
the initial cell state should be trained via backpropagation.
The results of the hyperparameter search can be found in
Tab. B.4.

The idea behind tuning the initial cell state, is that unlike
with LSTM, the cell state in MC-LSTM directly reflects
the number of cars that can drive out of a city during the
first timesteps. If the initial cell state is too high or too low,
this might negatively affect the prediction capabilities of
the model. If it would be possible to estimate the number
of cars in a city at the start of the sequence, this could
also be used to get better estimates for the initial cell state.
However, from the results of the hyperparameter search (see
Tab. B.4), we might have overestimated the importance of
these hyperparameters.

Results. All models were evaluated on the test data, us-
ing the checkpoint after 2 000 epochs for fifty runs. An
example of what the predictions of both models look like
for an arbitrary day in an arbitrarily chosen city is displayed
in Fig. B.2. The average Root MSE (RMSE) and Mean
Absolute Error (MAE) are summarized in Tab. B.5. The re-
sults show that MC-LSTM is able to generalize significantly
better than LSTM for this task. The RMSE of MC-LSTM
is significantly better than LSTM (p-values 4e—10, 8e—3,
and 4e—10 for Istanbul, Berlin, and Moscow, respectively,
Wilcoxon test).

B.3. Damped Pendulum

In the area of physics, we consider the problem of modeling
a swinging pendulum with friction. The conserved quantity
of interest is the total energy. During the movement of
the pendulum, kinetic energy is converted into potential
energy and vice-versa. Neglecting friction, the total energy
is conserved and the movement would continue indefinitely.
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Figure B.2. Traffic forecasting models for outbound traffic in
Moscow. An arbitrary day has been chosen for display. Note
that both models have only been trained on data at timesteps 71-73,
143-145, and 215-217. Colors indicate the four borders of the
frame, i.e., north, east, south and west. Left: LSTM predictions
shown in dashed lines versus the actual traffic counts (solid lines).
Right: MC-LSTM predictions shown in dashed lines versus the
actual traffic counts (solid lines).
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Table B.4. The hyperparameters resulting from the grid search for the traffic forecast experiment.

hidden Ir forget bias initial state  learnable state
Berlin LSTM 10 0.01 0 - -
MC-LSTM 100  0.01 - 0 True
Istanbul LSTM 100  0.005 5 - -
“OMCLSTM 50 0.01 - 0 False
M LSTM 50  0.001 5 - -
OSCOW MceLsSTM 10 0.01 - 0 False

Table B.5. Results on outbound traffic forecast avg RMSE and MAE with 95% confidence intervals over 50 runs

Istanbul Berlin Moscow
RMSE MAE RMSE MAE RMSE MAE
MC-LSTM 73+0.1 28+2 13.6 1.8 66+1 255411 27.8=+1.1
LSTM 1426+44 84+3 1354+50 84 +3 456+0.8 31.7+0.5

Accounting for friction, energy dissipates and the swinging
slows over time until a fixed point is reached. This type
of behavior presents a difficulty for machine learning and
is impossible for methods that assume the pendulum to
be closed systems, such as Hamiltonian Neural Networks
(HNNs) (Greydanus et al., 2019). We postulated that both
energy conversion and dissipation can be fitted by machine
learning models, but that an appropriate inductive bias will
allow to generalize from the learned data with more ease.

To train the model, we generated a set of timeseries us-
ing the differential equations for a pendulum with fric-
tion. For small angles, this problem is equivalent to the
harmonic oscillator and an analytic solution exists with
which we can compare the models (Iten et al., 2020). We
used multiple different settings for initial angle, length of
the pendulum, the amount of friction, the length of the
training-period and with and without Gaussian noise. Each
model received the initial kinetic and potential energy of
the pendulum and must predict the consecutive timesteps.
The time series starts always with the pendulum at the
maximum displacement — i.e., the entire energy in the
system is potential energy. We generated timeseries of
potential- and kinetic energies by iterating the following
settings/conditions: initial amplitude ({0.2,0.4}), pendu-
lum length ({0.75, 1}), length of training sequence in terms
of timesteps ({100, 200, 400}), noise level ({0,0.01}), and
dampening constant ({0.0,0.1, 0.2, 0.4,0.8}). All combina-
tions of those settings were used to generate a total of 120
datasets, for which we train both models (the autoregressive
LSTM and MC-LSTM).

We trained an autoregressive LSTM that receives its current
state and a low-dimensional temporal embedding (using

nine sinusoidal curves with different frequencies) to predict
the potential and kinetic energy of the pendulum. Similarly,
MC-LSTM is trained in an autoregressive mode, where a
hypernetwork obtains the current state and the same tempo-
ral embedding as LSTM. The model-setup is thus similar
to an autoregressive model with exogenous variables from
classical timeseries modelling literature. To obtain suitable
hyperparameters we manually adjusted the learning rate
(0.01), hidden size of LSTM (256), the hypernetwork for es-
timating the redistribution (a fully connected network with
3 layers, ReLU activations and hidden sizes of 50, 100, and
2 respectively), optimizer (Adam, Kingma & Ba, 2015) and
the training procedure (crucially, the amount of additionally
considered timesteps in the loss after a threshold is reached.
See explanation of the used loss below), on a separately
generated validation dataset.

For MC-LSTM, a hidden size of two was used so that each
state directly maps to the two energies. The hypernetwork
consists of three fully connected layers of size 50, 100
and 4, respectively. To account for the critical values at
the extreme-points of the pendulum (i.e. the amplitudes —
where the energy is present only in the form of potential
energy — and the midpoint — where only kinetic energy
exists), we slightly offset the cell state from the actual pre-
dicted value by using a linear regression with a slope of 1.02
and an intercept —0.01.

For both models, we used a combination of Pearson’s corre-
lation of the energy signals and the MSE as a loss function
(by subtracting the former mean from the latter). Further, we
used a simple curriculum to deal with the long autoregres-
sive nature of the timeseries (Bengio et al., 2015): Starting at
a time window of eleven we added five additional timesteps
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whenever the combined loss was below —0.9.

Overall, MC-LSTM has significantly outperformed LSTM
with a mean MSE of 0.01 (standard deviation 0.02) com-
pared to 0.07 (standard deviation 0.14; with a p-value
4.7e—10, Wilcoxon test).

B.3.1. QUALITATIVE ANALYSIS OF THE MC-LSTM
MODELS TRAINED FOR A PENDULUM

In the following, we analyse the behavior of the simplest
pendulum setup, i.e., the one without friction. Special to
the problem of the pendulum without friction is that there
are no mass in- or outputs and the whole dynamic of the
system has to be modeled by the redistribution matrix. The
initial state of the system is given by the displacement of the
pendulum at the start, where all energy is stored as potential
energy. Afterwards, the pendulum oscillates, converting
potential to kinetic energy and vice-versa.

In MC-LSTM, the conversion between the two forms of
energy has to be learned by the redistribution matrix. More
specifically, the off-diagonal elements denote the fraction
of energy that is converted from one form to the other. In
contrast, the diagonal elements of the redistribution matrix
denote the fraction of energy that is not converted.

In Fig. B.3, we visualize the off-diagonal elements of the
redistribution matrix (i.e., the conversion of energy) for the
pendulum task without friction, as well as the modeled po-
tential and kinetic energy. We can see that an increasing
fraction of energy is converted into the other form, until
the total energy of the system is stored as either kinetic or
potential energy. As soon as the total energy is e.g. con-
verted into kinetic energy, the corresponding off-diagonal
element (the orange line of the upper plot in Fig. B.3) drops
to zero. Here, the other off-diagonal element (the blue line
of the upper plot in Fig. B.3) starts to increase, meaning
that energy is converted back from kinetic into potential
energy. Note that the differences in the maximum values
of the off-diagonal elements is not important, since at this
point the corresponding energy is already approximately
ZEero.

B.3.2. COMPARISON WITH HAMILTONIAN NEURAL
NETWORKS

We aimed at a comparison with HNN in the case of the
friction-free pendulum. To this end, we use the data
generation process by (Greydanus et al., 2019). We use
amplitudes of {0.2,0.3,0.4, 1}, training sequence length
{100, 200, 400}, and noise level {0,0.01}, which leads to
24 time-series. We adhere to the HNN reference implemen-
tation, which contains a gravity constant of ¢ = 6 and mass
m = 0.5. In the case of the pendulum with friction, the as-
sumptions of HNNs are not met which leads to problematic
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Figure B.3. Redistribution of energies in a pendulum learned by
MC-LSTM. The upper plot shows the fraction of energy that is
redistributed between the two cells that model E,,; and Ey;y, over
time. The continuous redistribution of energy results in the two
time series of potential and kinetic energy displayed in the lower
plot.

modeling behavior (see Figure B.4).

The HNNs directly predict the symplectic gradients that
provide the dynamics for the pendulum. These gradients
can then be integrated to obtain position and momentum
for future timesteps. From these prediction, we compute
the potential and kinetic energy over time. For MC-LSTM
we used the autoregressive version as described above and
used position and momentum, both rescaled to amplitude
1, as auxiliary inputs. Note that HNNs are feed-forward
networks, and the dynamics are obtained by integrating
over their predictions. This implies that due to the peri-
odicity of the data, the samples in the test set could also
be in the training data. Moreover, there is only noise on
the input data, i.e., position and momentum, but not on the
time derivatives, such that HNNs receive non-noisy labels.
Therefore the training could be considered less noisy for
HNN compared to MC-LSTMs. The mean-squared error of
the predictions for the potential and kinetic energy is com-
pared against the analytic solution. Concretely, the average
MSE of MC-LSTM is 4.3e—4, and the MSE of HNNSs is
3.0e—4. On 11 out of 24 datasets, MC-LSTM outperformed
HNN, which indicates that there is no significant difference
between the two methods (p-value 0.84, binomial test).

B.4. Hydrology

Modeling river discharge from meteorological data (e.g.,
precipitation, temperature) is one of the most important
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Figure B.4. Example of modeling a pendulum with friction with
a HNN. HNNs assume a closed system and cannot model the
pendulum with friction, from which energy dissipates.

tasks in hydrology, and is necessary for water resource man-
agement and risk mitigation related to flooding. Recently,
Kratzert et al. (2019b; 2020) established LSTM-based mod-
els as state-of-the-art in rainfall runoff modeling, outper-
forming traditional hydrological models by a large margin
against most metrics (including peak flows, which is critical
for flood prediction). However, the hydrology community
is still reluctant to adopt these methods (e.g. Beven, 2020).
A recent workshop on ‘Big Data and the Earth Sciences’
(Sellars, 2018) reported that “/m Jany participants who have
worked in modeling physical-based systems continue to
raise caution about the lack of physical understanding of
ML methods that rely on data-driven approaches.”

One of of the most basic principles in watershed modeling
is mass conservation. Whether water is treated as a resource
(e.g. droughts) or hazard (e.g. floods), a modeller must be
sure that they are accounting for all of the water in a catch-
ment. Thus, most models conserve mass (Todini, 1988), and
attempt to explicitly implement the most important physical
processes. The downside of this ‘model everything’ strategy
is that errors are introduced for every real-world process
that is not implemented in a model, or implemented incor-
rectly. In contrast, MC-LSTM is able to learn any necessary
behavior that can be induced from the signal (like LSTM)
while still conserving the overall water budget.

B.4.1. DETAILS ON THE DATASET

The data used in all hydrology related experiments is the
publicly available Catchment Attributes and Meteorology
for Large-sample Studies (CAMELS) dataset (Newman
et al., 2014; Addor et al., 2017b). CAMELS contains data
for 671 basins and is curated by the US National Center
for Atmospheric Research (NCAR). It contains only basins

with relatively low anthropogenic influence (e.g., dams and
reservoirs) and basin sizes range from 4 to 25 000 km?. The
basins cover a range of different geo- and eco-climatologies,
as described by Newman et al. (2015) and Addor et al.
(2017a). Out of all 671 basins, we used 447 — these are the
basins for which simulations from all benchmark models
are available (see Sec. B.4.5). To reiterate, we used bench-
mark hydrology models that were trained and tested by other
groups with experience using these models, and were there-
fore limited to the 447 basis with results for all benchmark
models. The spatial distribution of the 447 basins across the
contiguous USA (CONUS) is shown in Fig. B.5.

For each catchment, roughly 30 years of daily meteorologi-
cal data from three different products exist (DayMet, Maurer,
NLDAS). Each meteorological dataset consist of five differ-
ent variables: daily cumulative precipitation, daily minimum
and maximum temperature, average short-wave radiation
and vapor pressure. We used the Maurer forcing data be-
cause this is the data product that was used by all benchmark
models (see Sec. B.4.5). In addition to meteorological data,
CAMELS also includes a set of static catchment attributes
derived from remote sensing or CONUS-wide available data
products. The static catchment attributes can broadly be
grouped into climatic, vegetation or hydrological indices, as
well as soil and topological properties. In this study, we used
the same 27 catchment attributes as Kratzert et al. (2019b).
Target data were daily averaged streamflow observations
originally from the USGS streamflow gauge network, which
are also included in the CAMELS dataset.

Training, validation and test set. Following the calibra-
tion and test procedure of the benchmark hydrology models,
we trained on streamflow observations from 1 October 1999
through 30 September 2008 and tested on observations from
1 October 1989 to 30 September 1999. The remaining pe-
riod (1 October 1980 to 30 September 1989) was used as
validation period for hyperparameter tuning.

B.4.2. DETAILS ON THE TRAINING SETUP AND
MC-LSTM HYPERPARAMETERS

The general model setup follows insights from previous stud-
ies (Kratzert et al., 2018; 2019b;a; 2020), where LSTMs
were used for the same task. We use sequences of 365
timesteps (days) of meteorological inputs to predict dis-
charge at the last timestep of the sequence (sequence-to-
one prediction). The mass input z in this experiment was
catchment averaged precipitation (mm/day) and the auxil-
iary inputs a were the 4 remaining meteorological variables
(min. and max. temperature, short-wave radiation and vapor
pressure) as well as the 27 static catchment attributes, which
are constant over time.

We tested a variety of MC-LSTM model configurations and
adaptions for this specific task, which are briefly described
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Figure B.5. Spatial distribution of the 447 catchments considered in this study. The color denotes the Nash-Sutcliffe Efficiency of the
MC-LSTM ensemble for each basin, where a value of 1 means perfect predictions.

1. Processing auxiliary inputs with LSTM: Instead of

directly using the auxiliary inputs in the input gate
(Eq. 5), output gate (Eq. 6) and time-dependent mass
redistribution (Eq. 8), we first processed the auxiliary
inputs a with LSTM and then used the output of this
LSTM as the auxiliary inputs. The idea was to add
additional memory for the auxiliary inputs, since in its
base form only mass can be stored in the cell states
of MC-LSTM. This could be seen as a specific adap-
tion for the rainfall runoff modeling application, since
information about the weather today and in the past
ought to be useful for controlling the gates and mass
redistribution. Empirically however, we could not see
any significant performance gain and therefore decided
to not use the more complex version with an additional
LSTM.

. Auxiliary output + regularization to account for
evapotranspiration: Of all precipitation falling in a
catchment, only a part ends as discharge in the river.
Large portions of precipitation are lost to the atmo-
sphere in form of evaporation (from e.g. open water
surfaces) and transpiration (from e.g. plants and trees),
and to groundwater. One approach to account for this
“mass loss” is the following: instead of summing over
outgoing mass (Eq. 4), we used a linear layer to con-

below: nect the outgoing mass to two output neurons. One

neuron was fitted against the observed discharge data,
while the second was used to estimate water loss due
to unobserved sinks. A regularization term was added
to the loss function to account for this. This regular-
ization term was computed as the difference between
the sum of the outgoing mass from MC-LSTM and
the sum over the two output neurons. This did work,
and the timeseries of the second auxiliary output neu-
ron gave interesting results (i.e. matching the expected
behavior of the annual evapotranspiration cycle), how-
ever results were not significantly better compared to
our final model setup, which is why we rejected this
architectural change.

. Explicit trash cell Another way to account for evap-

otranspiration that we tested is to allow the model to
use one memory cell as explicit “trash cell”. That is,
instead of deriving the final model prediction as the
sum over the entire outgoing mass vector, we only cal-
culate the sum over all but e.g. one element (see Eq. 4).
This simple modification allows the model to use e.g.
the first memory cell to discard mass from the system,
which is then ignored for the model prediction. We
found that this modification improved performance,
and thus integrated it into our final model setup.

. Input/output scaling to account for input/output

uncertainty: Both, input and output data in our ap-
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plications inherit large uncertainties (Nearing et al.,
2016), which is not ideal for mass-conserving models
(and likely one of the reasons why LSTM performs so
well compared to all other mass-conserving models).
To account for that, we tried three different adaptions.
First, we used a small fully connected network to de-
rive time-dependent scaling weights for the mass input,
which we regularized to be close to one. Second, we
used a linear layer with positive weights to map the
outgoing mass to the final model prediction, where all
weights were initialized to one and the bias to zero.
Third, we combined both. Out of the three, the input
scaling resulted in the best performing model, however
the results were worse than not scaling.

. Time-dependent redistribution matrix variants:
For this experiment, a time-dependent redistribution
matrix is necessary, since the underlying real-world
processes (such as snow melt and thus conversion from
snow into e.g. soil moisture or surface runoff) are time-
dependent. Since using the redistribution matrix as
proposed in Eq. 8 is memory-demanding, especially
for models with larger numbers of memory cells, we
also tried to use a different method for this experiment.
Here, we learned a fixed matrix (as in Eq. 7) and only
calculated two vectors for each timestep. The final re-
distribution matrix was then derived as the outer prod-
uct of the two time-dependent vectors and the static
matrix. This resulted in lower memory consumption,
however the model performance deteriorated signifi-
cantly, which could be a hint toward the complexity
required to learn the redistributing processes in this
problem.

. Activation function of the redistribution matrix:
We tested several different activation functions for the
redistribution matrix in this experiment. Among those
were the normalized sigmoid function, the softmax
function (as in Eq. 8) and the normalized ReL.U acti-
vation function (see Eq. 9). We could achieve the best
results using the normalized ReLL.U variant and can
only hypothesize the reason for that: In this applica-
tion (rainfall-runoff modelling) there are several state
processes that are strictly disconnected. One example
is snow and groundwater: groundwater will never turn
into snow and snow will never transform into ground-
water (not directly at least, it will first need to percolate
through upper soil layers). Using normalized sigmoids
or softmax makes it numerically harder (or impossible)
to not distributed at least some mass between every
cell — because activations can never be exactly zero.
The normalized ReLLU activation can do so, however,
which might be the reason that it worked better in this
case.

7. Activation function of the input gate: Similar to the
redistribution matrix, different activation functions can
be used for the input gate. We tested the same three
functions as for the redistribution matrix. For the input
gate, the normalized sigmoid function resulted in the
best performing model which was therefore used.

As an extension to the standard MC-LSTM model intro-
duced in Eq. (5) to Eq. (8), we also used the mass input
(precipitation) in all gates. The reason is the following:
Different amounts of precipitations can lead to different
processes. For example, low amounts of precipitation could
be absorbed by the soil and stored as soil moisture, leading
to effectively no immediate discharge contribution. Large
amounts of precipitation on the other hand, could lead to
direct surface runoff, if the water cannot infiltrate the soil at
the rate of the precipitation falling down. Therefore, it is cru-
cial that the gates have access to the information contained
in the precipitation input. The final model design used in
all hydrology experiments is described by the following
equations:

m! =R -1+t a2t (1)
c=(1-o)oml, ()
h' =o' om!, (3)
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where 7 is the normalized logistic function and ReL.U is the
normalized rectified linear unit (ReLU) that we define in
the following. The normalized logistic function defined of
the input gate is defined by:

- o U(ik)
(i) = = 8)

In this experiment, the activation function for the redistribu-
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tion gate is the normalized ReLU function defined by:

P

ReLU(sy) = (0 0)

= 9
> max(sy,0)’ ©)
where s is some input vector to the normalized ReL.U func-
tion.

We manually tried different sets of hyperparameters, be-
cause a large-scale automatic hyperparameter search was
not feasible. Besides trying out all variants as described
above, the main hyperparameter that we tuned for the final
model was the number of memory cells. For other param-
eters, such as learning rate, mini-batch size, number of
training epochs, we relied on previous work using LSTMs
on the same dataset.

The final hyperparameters are a hidden size of 64 memory
cells and a mini-batch size of 256. We used the Adam
optimizer (Kingma & Ba, 2015) with a scheduled learning
rate starting at 0.01 then lowering the learning rate after 20
epochs to 0.005 and after another 5 epochs to 0.001. We
trained the model for a total number of 30 epochs and used
the weights of the last epoch for the final model evaluation.
All weight matrices were initialized as (semi) orthogonal
matrices (Saxe et al., 2014) and all bias terms with a constant
value of zero. The only exception was the bias of the output
gate, which we initialized to —3, to keep the output gate
closed at the beginning of the training.

B.4.3. DETAILS ON THE EVALUATION METRICS

Table B.6 lists the definition of all metrics used in the hydrol-
ogy experiments as well as the corresponding references.

B.4.4. DETAILS ON THE LSTM MODEL

For LSTM, we largely relied on expertise from previous
studies (Kratzert et al., 2018; 2019b;a; 2020). The only
hyperparameter we adapted was the number of memory
cells, since we used fewer basins (447) than in the previous
studies (531). We found that LSTM with 128 memory cells,
compared to the 256 used in previous studies, resulted in
slightly better results. Apart from that, we trained LSTMs
with the same inputs and settings (sequence-to-one with a
sequence length of 365) as described in the previous section
for MC-LSTM. We used the standard LSTM implementa-
tion from the PyTorch package (Paszke et al., 2019), i.e.,
with forget gate (Gers et al., 2000). We manually initialized
the bias of the forget gate to be 3 in order to keep the forget
gate open at the beginning of the training.

B.4.5. DETAILS ON THE BENCHMARK MODELS

The benchmark models were first collected by Kratzert et al.
(2019b). All models were configured, trained and run by

several different research groups, most often the respective
model developers themselves. This was done to avoid any
potential to favor our own models. All models used the
same forcing data (Maurer) and the same time periods to
train and test. The models can be classified in two groups:

1. Models trained for individual watersheds. These are
SAC-SMA (Newman et al., 2017), VIC (Newman
etal., 2017), three different model structures of FUSE!,
mHM (Mizukami et al., 2019) and HBV (Seibert et al.,
2018). For the HBV model, two different simulations
exist: First, the ensemble average of 1000 untrained
HBYV models (lower benchmark) and second, the en-
semble average of 100 trained HBV models (upper
benchmarks). For details see (Seibert et al., 2018).

2. Models trained regionally. For hydrological models,
regional training means that one parameter transfer
model was trained, which estimates watershed-specific
model parameters through globally trained model func-
tions from e.g. soil maps or other catchment attributes.
For this setting, the benchmark dataset includes simu-
lations of the VIC model (Mizukami et al., 2017) and
mHM (Rakovec et al., 2019).

B.4.6. DETAILED RESULTS

Table B.7 provides results for MC-LSTM and LSTM aver-
aged over the n = 10 model repetitions.

B.5. Ablation Study

In order to demonstrate that the design choices of
MC-LSTM are necessary together to enable accurate pre-
dictive models, we performed an ablation study. In this
study, we make the following changes to the input gate, the
redistribution operation, and the output gate, to test if mass
conservation in the individual parts is necessary.

1. Input gate: We change the activation function of the
input gate from a normalized sigmoid function to the
standard sigmoid function, thus resulting in the input
gate of a standard LSTM. Since the sigmoid function
is bounded to (0, 1), the mass input x at every timestep
t that is added into the system can be scaled between
(0,n % xt).

2. Redistribution matrix: We remove the normalized ac-
tivation function from the redistribution matrix and
instead use a linear activation function. This allows
for unconstrained and scaled flow of mass from each
memory cell into each other memory cell.

3. Output gate: Instead of removing the outgoing mass
(o' ® m! ) from the cell states at each timestep ¢,

"Provided by Nans Addor on personal communication
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Table B.6. Definition of all metrics used in the hydrology experiments. The NSE is defined as the R? between simulated, ¢/, and observed,
vy, runoff and is listed for completion. FHV and FLV are both derived from the flow duration curve, which is a cumulative frequency curve
of the discharge. H for the FHV and L for the FLV correspond to the 2% highest flow and the 30% lowest flow, respectively.

Metric Reference Equation
Nash-Sutcliff-Efficiency (NSE)*  Nash & Sutcliffe (1970) 1— %
t=1
[-NSE Decomposition® Gupta et al. (2009) IS 1y — Hy) /Oy
Top 2% peak flow bias (FHV)® Yilmaz et al. (2008) W % 100
h=1 3
30% low flow bias (FLV)? Yilmaz et al. 2008) i@ los(@r))—Fiz, Goely) “los(wr)) o 10

3212 (log(yr) —log(yr.))

: Nash-Sutcliffe efficiency: (—oo, 1), values closer to one are desirable.
®: B-NSE decomposition: (—o0, o0), values closer to zero are desirable.
°: Top 2% peak flow bias: (—oo, 00), values closer to zero are desirable.
4: Bottom 30% low flow bias: (—oo, 00), values closer to zero are desirable.

Table B.7. Model robustness of MC-LSTM and LSTM results over the n = 10 different random seeds. For all n = 10 models, we
calculated the median performance for each metric and report the mean and standard deviation of the median values in this table.

MC? NSE? B-NSE¢ FLV¢ FHV®
MC-LSTM Single v 0.726:£0.003 -0.0214+0.003 -38.7+3.2 -13.9+0.7
LSTM Single X 0.73740.003 -0.035+0.005 13.6+3.4 -14.8+1.0

4 Mass conservation (MC).

: Nash-Sutcliffe efficiency: (—oo, 1], values closer to one are desirable.

: B-NSE decomposition: (—00, 00), values closer to zero are desirable.

: Bottom 30% low flow bias: (—oo, 00), values closer to zero are desirable.

b
d
¢: Top 2% peak flow bias: (—oo, 00), values closer to zero are desirable.
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Table B.S. Ablation study results of the hydrology experiment.
Models are trained for five, random basin with nine model repeti-
tions. We computed the median over the repetitions and then the
mean over the five basins.

MC? NSEP
MC-LSTM v 0.635 +£0.102
MC-LSTM w. softmax v 0.650 £ 0.095
MC-LSTM — input X 0.603 +£0.123
MC-LSTM — output X 0.55 £+ 0.097
MC-LSTM — redis.© X —4.229 4 8.982

4 Mass conservation (MC).

P Nash-Sutcliffe efficiency: (—oo, 1], values closer to
one are desirable.

¢: For one out of five basins, all nine model repetitions
resulted into NaNs during training. Here, we report the
statistics calculated from only the four successful basins.

we leave the cell states unchanged and keep all mass
within the system.

We test these variants on data from the hydrology experi-
ment. We chose 5 random basins to limit computational
expenses and trained nine repetitions for each configuration
and basin. The results are compared against the full mass-
conserving MC-LSTM architecture as described in App.
B.4.2 and reported in Table B.8. The results of the ablation
study indicate that the design of the input gate, redistribution
matrix, and output gate, are necessary together for proficient
predictive performance. The strongest decrease in perfor-
mance is observed if redistribution matrix does not conserve
mass, and smaller decreases if input or output gate do not
conserve mass. We also tested a variant, where we used
the softmax activation function in the input gate, instead of
the normalized sigmoid that was used in the hydrology ex-
periments (see Sec. B.4.2). Both mass conserving variants,
once with normalized sigmoid as activation function and
once with softmax, achieve similar performance, while the
variant with softmax is slightly better. However, as stated
in Sec. B.4.2, we also tested this variant on the multi-basin
version that we trained for the hydrology experiments. Here,
the normalized sigmoid activation function resulted in better
model performance. This emphasizes that both variants are
viable options and the exact design of the MC-LSTM might
be task dependent.

B.6. Runtime

Section 3 provides a comparison of MC-LSTM and LSTM
in terms of computational complexity. Since this compari-
son is rather abstract, we also conducted an empirical evalu-
ation of the runtime. The empirical runtimes of the forward
pass for a single batch for both MC-LSTM and LSTM are

: Appendix
| CPU  GPU
MC-LSTM | 9517} 236%°
LSTM | 20575, 12179

Table B.9. Median runtime in ms of 5 forward passes with indica-
tion of 25 and 75% quantiles. Timings were executed on a PC with
AMD Ryzen 7 2700 CPU and Nvidia GTX 1070Ti GPU.

listed in table B.9. Note that the backward pass should scale
similarly to the forward pass.

We used the prototypical architecture for the hydrology
experiments. Concretely, both models received 1 mass input,
30 auxiliary inputs and had 64 hidden units. A batch of 256
sequences was used, where each sequence has 365 timesteps.
To keep the comparison fair, we used a custom LSTM rather
than the highly optimised default implementation that is
available in pytorch (Paszke et al., 2019).

C. Theorems & Proofs

Theorem 1 (Conservation property). Let m] =), cj. and
mj, =, hj, be, respectively, the mass in the MC-LSTM
storage and the outputs at time T. At any timestep T, we
have:

T T
T __ 0 t t
mc—mc—i—gx—gmh.
t=1 t=1

That is, the change of mass in the cell states is the difference
between input and output mass, accumulated over time.

Proof. The proof is by induction and we use my; = R' -

=1 +4' -zt from Eq.(2).

For 7 = 0, we have m® = m? + 320 2t — 30 mi,

which is trivially true when using the convention that
0

2i=1 =0

Assuming that the statement holds for 7 = 7', we show that

it must also hold for 7 =T + 1.

Starting from Eq. (3), the mass of the cell states at time
T + 1 is given by:

K

mi =" "(1—-0)

k=1

T+1

T+1
Tntot,k

K
= E :mtot,k
k=1

K
T+1
- § : Okmtot,k7
k=1

where m! , , is the k-th entry of the result from Eq. (2) (at
timestep t). The sum over entries in the first term can be



MC-LSTM: Appendix

simplified as follows:
K

T+1

Motk

K
k=1 k=1 \j=1
K
Jj=1

The final simplification is possible because R and ¢ are (left-
)stochastic. The mass of the outputs can then be computed
from Eq. (4):

K
T+1 _ T+1
my = Z OkMyoy k-
k=1
Putting everything together, we find

K K
T41 T41 T41
me = § :mtot,k - E :Okmtot,k
k=1 k=1

= mCT + T — mf“
T T
:m2+ g zt — E mf,,JrzTHfmZ:H
t=1 t=1
T+1 T+1

—_ 0 t t
=m., + E xr — E my,
t=1 t=1

By the principle of induction, we conclude that mass is
conserved, as specified in Eq. (9). O

Corollary 1. In each timestep T, the cell states cj, are
bounded byTthe sum of mass inputs 22:1 7 +mY, that
is |cf| < >°1_, x™ +m0. Furthermore, if the series of mass
inputs converges lim,_, 22:1 7 = m2°, then also the
sum of cell states converges.

Proof. Since ¢}, > 0, z* > 0 and m!, > 0 for all k and ¢,
K
Rl = <> cg=mi<d a"+md,  (10)

where we used Theorem 1. Convergence follows immedi-
ately through the comparison test. O

D. On Random Markov Matrices.

When initializing an MC-LSTM model, the entries of the re-
distribution matrix R of dimension K x K are created from
non-negative and iid random variables (s;;)1<; j<x With
finite means m and variances o2 and bounded fourth mo-
ments. We collect them in a matrix S. Next we assume that
those entries get column-normalized to obtain the random
Markov matrix R.

Properties of Markov matrices and random Markov
matrices. Let A;,...,A\x be the eigenvalues and
s1,- .., Sk be the singular values of R, ordered such that
[Adi]l > ... > |Ak|and s > ... > si. We then have the
following properties for any Markov matrix (not necessarily
random):

e )\ =1.
e 1"TR=17.

® S — ||R||2 S \/K.
Furthermore, for random Markov matrices, we have

e limy , s1 = 1 (Bordenave et al., 2012, Theorem
1.2)

For the reader’s convenience we briefly discuss further se-
lected interesting properties of random Markov matrices in
the next paragraph, especially concerning the global behav-
ior of their eigenvalues and singular values.

Circular and Quartercircular law for random Markov
matrices. In random matrix theory one major field of in-
terest concerns the behavior of eigenvalues and singular
values when K — oco. One would like to find out how the
limiting distribution of the eigenvalues or singular values
looks like. To discuss the most important results in this di-
rection for large Markov matrices R, let us introduce some
notation.

e §, denotes the Dirac delta measure centered at a.

e Byurp= % Zszl d, we denote the empirical spec-
tral density of the eigenvalues of R.

e Similarly we define the empirical spectral density of
the singular values of R as: vg = = -, J,.

e Q. denotes the quartercircular distribution on the in-
terval [0, o] and

e U, the uniform distribution on the disk {z € C : |z| <

o}
Then we have as K — oo:

e Quarter cirular law theorem: (Bordenave et al.,
2012, Theorem 1.1): v /zp — Q. almost surely.

e Cirular law theorem: (Bordenave et al., 2012, Theo-
rem 1.3): vz p — U, almost surely.
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The convergence here is understood in the sense of
weak convergence of probability measures with respect to
bounded continuous functions. Note that those two famous
theorems originally appeared for \/%S instead of VK R.
Of course much more details on those results can be found
in Bordenave et al. (2012).

Gradient flow of MC-LSTM for random redistributions.
Here we provide a short note on the gradient dynamics of
the cell state in a random MC-LSTM, hence, at initialization
of the model. Specifically we want to provide some heuris-
tics based on the arguments about the behavior of large
stochastic matrices. Let us start by recalling the formula for

ct:

c=1-0")o (R -t +i-2h). (11)
Now we investigate the gradient of || % ||l2 in the limit

K — oo. We assume that for K — 0o, o ~ 0 and it~0
for all ¢. Thus we approximately have:

t
122 o~ 1R (12)
R' is a stochastic matrix, and s; = ||R'||z is its largest
singular value. Theorem 1.2 from Bordenave et al. (2012)
ensures that ||R'|; = 1 for K — oo under reasonable
moment assumptions on the distribution of the unnormal-
ized entries (see above). Thus we are able to conclude
I % |l2 = 1 for large K and all ¢, which can prevent the
gradients from exploding.
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