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Abstract
The success of Convolutional Neural Networks
(CNNs) in computer vision is mainly driven by
their strong inductive bias, which is strong enough
to allow CNNs to solve vision-related tasks with
random weights, meaning without learning. Sim-
ilarly, Long Short-Term Memory (LSTM) has a
strong inductive bias toward storing information
over time. However, many real-world systems
are governed by conservation laws, which lead to
the redistribution of particular quantities — e.g.
in physical and economical systems. Our novel
Mass-Conserving LSTM (MC-LSTM) adheres to
these conservation laws by extending the induc-
tive bias of LSTM to model the redistribution of
those stored quantities. MC-LSTMs set a new
state-of-the-art for neural arithmetic units at learn-
ing arithmetic operations, such as addition tasks,
which have a strong conservation law, as the sum
is constant over time. Further, MC-LSTM is ap-
plied to traffic forecasting, modeling a damped
pendulum, and a large benchmark dataset in hy-
drology, where it sets a new state-of-the-art for
predicting peak flows. In the hydrology example,
we show that MC-LSTM states correlate with real
world processes and are therefore interpretable.

1. Introduction
Inductive biases enabled the success of CNNs and
LSTMs. One of the greatest success stories of deep
learning are Convolutional Neural Networks (CNNs)
(Fukushima, 1980; LeCun & Bengio, 1998; Schmidhuber,
2015; LeCun et al., 2015), whose proficiency can be at-
tributed to their strong inductive bias toward visual tasks
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(Cohen & Shashua, 2017; Gaier & Ha, 2019). The ef-
fect of this inductive bias has been demonstrated by CNNs
that solve vision-related tasks with random weights, mean-
ing without learning (He et al., 2016; Gaier & Ha, 2019;
Ulyanov et al., 2020). Another success story is Long Short-
Term Memory (LSTM) (Hochreiter, 1991; Hochreiter &
Schmidhuber, 1997), which has a strong inductive bias to-
ward storing information through its memory cells. This
inductive bias allows LSTM to excel at speech, text, and
language tasks (Sutskever et al., 2014; Bohnet et al., 2018;
Kochkina et al., 2017; Liu & Guo, 2019), as well as time-
series prediction. Even with random weights and only
a learned linear output layer, LSTM is better at predict-
ing timeseries than reservoir methods (Schmidhuber et al.,
2007). In a seminal paper on biases in machine learning,
Mitchell (1980) stated that “biases and initial knowledge
are at the heart of the ability to generalize beyond observed
data”. Therefore, choosing an appropriate architecture and
inductive bias for neural networks is key to generalization.

Mechanisms beyond storing are required for real-world
applications. While LSTM can store information over
time, real-world applications require mechanisms that go
beyond storing. Many real-world systems are governed
by conservation laws related to mass, energy, momentum,
charge, or particle counts, which are often expressed through
continuity equations. In physical systems, different types
of energies, mass or particles have to be conserved (Evans
& Hanney, 2005; Rabitz et al., 1999; van der Schaft et al.,
1996), in hydrology it is the amount of water (Freeze &
Harlan, 1969; Beven, 2011), in traffic and transportation
the number of vehicles (Vanajakshi & Rilett, 2004; Xiao &
Duan, 2020; Zhao et al., 2017), and in logistics the amount
of goods, money or products. A real-world task could be
to predict outgoing goods from a warehouse based on a
general state of the warehouse, i.e., how many goods are in
storage, and incoming supplies. If the predictions are not
precise, then they do not lead to an optimal control of the
production process. For modeling such systems, certain in-
puts must be conserved but also redistributed across storage
locations within the system. We will refer to conserved in-
puts as mass, but note that this can be any type of conserved
quantity. We argue that for modeling such systems, special-
ized mechanisms should be used to represent locations &
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whereabouts, objects, or storage & placing locations and
thus enable conservation.

Conservation laws should pervade machine learning
models in the physical world. Since a large part of ma-
chine learning models are developed to be deployed in the
real world, in which conservation laws are omnipresent
rather than the exception, these models should adhere to
them automatically and benefit from them. However, stan-
dard deep learning approaches struggle at conserving quan-
tities across layers or timesteps (Beucler et al., 2019b; Grey-
danus et al., 2019; Song & Hopke, 1996; Yitian & Gu,
2003), and often solve a task by exploiting spurious cor-
relations (Szegedy et al., 2014; Lapuschkin et al., 2019).
Thus, an inductive bias of deep learning approaches via
mass conservation over time in an open system, where mass
can be added and removed, could lead to a higher gener-
alization performance than standard deep learning for the
above-mentioned tasks.

A mass-conserving LSTM. In this work, we introduce
Mass-Conserving LSTM (MC-LSTM), a variant of LSTM
that enforces mass conservation by design. MC-LSTM is
a recurrent neural network with an architecture inspired by
the gating mechanism in LSTMs. MC-LSTM has a strong
inductive bias to guarantee the conservation of mass. This
conservation is implemented by means of left-stochastic
matrices, which ensure the sum of the memory cells in the
network represents the current mass in the system. These
left-stochastic matrices also enforce the mass to be con-
served through time. The MC-LSTM gates operate as con-
trol units on mass flux. Inputs are divided into a subset of
mass inputs, which are propagated through time and are
conserved, and a subset of auxiliary inputs, which serve as
inputs to the gates for controlling mass fluxes. We demon-
strate that MC-LSTMs excel at tasks where conservation of
mass is required and that it is highly apt at solving real-world
problems in the physical domain.

Contributions. We propose a novel neural network archi-
tecture based on LSTM that conserves quantities, such as
mass, energy, or count, of a specified set of inputs. We show
properties of this novel architecture, called MC-LSTM, and
demonstrate that these properties render it a powerful neu-
ral arithmetic unit. Further, we show its applicability in
real-world areas of traffic forecasting and modeling the
damped pendulum. In hydrology, large-scale benchmark
experiments reveal that MC-LSTM has powerful predictive
quality and can supply interpretable representations.

2. Mass-Conserving LSTM
The original LSTM introduced memory cells to Recurrent
Neural Networks (RNNs), which alleviate the vanishing

Figure 1. Schematic representation of the main operations in the
MC-LSTM architecture (adapted from: Olah, 2015).

gradient problem (Hochreiter, 1991). This is achieved by
means of a fixed recurrent self-connection of the memory
cells. If we denote the values in the memory cells at time t
by ct, this recurrence can be formulated as

ct = ct−1 + f(xt,ht−1), (1)

where x and h are, respectively, the forward inputs and
recurrent inputs, and f is some function that computes the
increment for the memory cells. Here, we used the original
formulation of LSTM without forget gate (Hochreiter &
Schmidhuber, 1997), but in all experiments we also consider
LSTM with forget gate (Gers et al., 2000).

MC-LSTMs modify this recurrence to guarantee the conser-
vation of the mass input.The key idea is to use the memory
cells from LSTMs as mass accumulators, or mass storage.
The conservation law is implemented by three architectural
changes. First, the increment, computed by f in Eq. (1),
has to distribute mass from inputs into accumulators. Sec-
ond, the mass that leaves MC-LSTM must also disappear
from the accumulators. Third, mass has to be redistributed
between mass accumulators. These changes mean that all
gates explicitly represent mass fluxes.

Since, in general, not all inputs must be conserved, we
distinguish between mass inputs, x, and auxiliary inputs,
a. The former represents the quantity to be conserved and
will fill the mass accumulators in MC-LSTM. The auxiliary
inputs are used to control the gates. To keep the notation
uncluttered, and without loss of generality, we use a single
mass input at each timestep, xt, to introduce the architecture.

The forward pass of MC-LSTM at timestep t can be speci-
fied as follows:

mt
tot = Rt · ct−1 + it · xt (2)

ct = (1− ot)�mt
tot (3)

ht = ot �mt
tot, (4)
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where it and ot are the input- and output gates, respectively,
and R is a positive left-stochastic matrix, i.e., 1T ·R = 1T ,
for redistributing mass in the accumulators. The total mass
mtot is the redistributed mass, Rt · ct−1, plus the mass
influx, or new mass, it · xt. The current mass in the system
is stored in ct. Finally, ht is the mass leaving the system.

Note the differences between Eq. (1) and Eq. (3). First,
the increment of the memory cells no longer depends on
ht. Instead, mass inputs are distributed by means of the
normalized i (see Eq. 5). Furthermore, Rt replaces the
implicit identity matrix of LSTM to redistribute mass among
memory cells. Finally, Eq. (3) introduces 1− ot as a forget
gate on the total mass, mtot. Together with Eq. (4), this
assures that no outgoing mass is stored in the accumulators.
This formulation has some similarity to Gated Recurrent
Units (GRU) (Cho et al., 2014), however MC-LSTM gates
are used to split off the output instead of mixing the old and
new cell state.

Basic gating and redistribution. The MC-LSTM gates
at timestep t are computed as follows:

it = softmax(W i · at +U i ·
ct−1

‖ct−1‖1
+ bi) (5)

ot = σ(W o · at +Uo ·
ct−1

‖ct−1‖1
+ bo) (6)

Rt = softmax(Br), (7)

where the softmax operator is applied column-wise, σ is
the logistic sigmoid function, and W i, bi, W o, bo, and
Br are learnable model parameters. The normalization of
the input gate and redistribution is required to obtain mass
conservation. Note that this can also be achieved by other
means than using the softmax function. For example, an
alternative way to ensure a column-normalized matrix Rt

is to use a normalized logistic, σ̃(rkj) =
σ(rkj)∑
n σ(rkn)

. Also
note that MC-LSTMs directly compute the gates from the
memory cells. This is in contrast with the original LSTM,
which uses the activations from the previous time step. In
this sense, MC-LSTM relies on peephole connections (Gers
& Schmidhuber, 2000), instead of the activations from the
previous timestep for computing the gates. The accumulated
values from the memory cells, ct, are normalized to counter
saturation of the sigmoids and to supply probability vectors
that represent the current distribution of the mass across cell
states. We use this variation e.g. in our experiments with
neural arithmetics (see Sec. 5.1).

Time-dependent redistribution. It can also be useful to
predict a redistribution matrix for each sample and timestep,
similar to how the gates are computed:

Rt = softmax

(
Wr · at + Ur ·

ct−1

‖ct−1‖1
+Br

)
, (8)

where the parameters Wr and Ur are weight tensors and
their multiplications result in K ×K matrices. Again, the
softmax function is applied column-wise. This version col-
lapses to a time-independent redistribution matrix if Wr and
Ur are equal to 0. Thus, there exists the option to initialize
Wr and Ur with weights that are small in absolute value
compared to the weights of Br, to favour learning time-
independent redistribution matrices. We use this variant in
the hydrology experiments (see Sec. 5.4).

Redistribution via a hypernetwork. Even more general,
a hypernetwork (Schmidhuber, 1992; Ha et al., 2017) that
we denote with g can be used to procure R. The hypernet-
work has to produce a column-normalized, square matrix
Rt = g(a0, . . . ,at, c0, . . . , ct−1). Notably, a hypernet-
work can be used to design an autoregressive version of
MC-LSTMs, if the network additionally predicts auxiliary
inputs for the next time step. We use this variant in the
pendulum experiments (see Sec. 5.3).

3. Properties
Conservation. MC-LSTM guarantees that mass is con-
served over time. This is a direct consequence of connecting
memory cells with stochastic matrices. The mass conserva-
tion ensures that no mass can be removed or added implicitly,
which makes it easier to learn functions that generalize well.
The exact meaning of mass conservation is formalized in
the following Theorem.

Theorem 1 (Conservation property). Let mτ
c =

∑K
k=1 c

τ
k

be the mass contained in the system and mτ
h =

∑K
k=1 h

τ
k

be the mass efflux, or, respectively, the accumulated mass
in the MC-LSTM storage and the outputs at time τ . At any
timestep τ , we have:

mτ
c = m0

c +

τ∑
t=1

xt −
τ∑
t=1

mt
h. (9)

That is, the change of mass in the memory cells is the differ-
ence between the input and output mass, accumulated over
time.

The proof is by induction over τ (see Appendix C). Note
that it is still possible for input mass to be stored indefinitely
in a memory cell so that it does not appear at the output.
This can be a useful feature if not all of the input mass is
needed at the output. In this case, the network can learn that
one cell should operate as a collector for excess mass in the
system.

Boundedness of cell states. In each timestep τ , the mem-
ory cells, cτk, are bounded by the sum of mass inputs∑τ
t=1 x

t +m0
c , that is |cτk| ≤

∑τ
t=1 x

t +m0
c . Furthermore,

if the series of mass inputs converges, limτ→∞
∑τ
t=1 x

τ =
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m∞x , then also the sum of cell states converges (see Ap-
pendix, Corollary 1).

Initialization and gradient flow. MC-LSTM with Rt =
I has a similar gradient flow to LSTM with forget gate (Gers
et al., 2000). Thus, the main difference in the gradient flow
is determined by the redistribution matrix R. The forward
pass of MC-LSTM without gates ct = Rtct−1 leads to
the following backward expression ∂ct

∂ct−1 = Rt. Hence,
MC-LSTM should be initialized with a redistribution matrix
close to the identity matrix to ensure a stable gradient flow as
in LSTMs. For random redistribution matrices, the circular
law theorem for random Markov matrices (Bordenave et al.,
2012) can be used to analyze the gradient flow in more
detail, see Appendix, Section D.

Computational complexity. Whereas the gates in a tradi-
tional LSTM are vectors, the input gate and redistribution
matrix of an MC-LSTM are matrices in the most general
case. This means that MC-LSTM is, in general, compu-
tationally more demanding than LSTM. Concretely, the
forward pass for a single timestep in MC-LSTM requires
O(K3 +K2(M + L) +KML) Multiply-Accumulate op-
erations (MACs), whereas LSTM takes O(K2 + K(M +
L)) MACs per timestep. Here, M , L and K are the num-
ber of mass inputs, auxiliary inputs and outputs, respec-
tively. When using a time-independent redistribution ma-
trix cf. Eq. (7), the complexity reduces to O(K2M +
KML) MACs. An empirical runtime comparison is pro-
vided in appendix B.6.

Potential interpretability through inductive bias and ac-
cessible mass in cell states. The representations within
the model can be interpreted directly as accumulated mass.
If one mass or energy quantity is known, the MC-LSTM
architecture would allow to force a particular cell state to
represent this quantity, which could facilitate learning and
interpretability. An illustrative example is the case of rain-
fall runoff modelling, where observations, say of the soil
moisture or groundwater-state, could be used to guide the
learning of an explicit memory cell of MC-LSTM.

4. Special Cases and Related Work
Relation to Markov chains. In a special case MC-LSTM
collapses to a finite Markov chain, when c0 is a probability
vector, the mass input is zero xt = 0 for all t, there is no in-
put and output gate, and the redistribution matrix is constant
over time Rt = R. For finite Markov chains, the dynamics
are known to converge, if R is irreducible (see e.g. Hairer
(2018, Theorem 3.13.)). Awiszus & Rosenhahn (2018) aim
to model a Markov Chain by having a feed-forward network
predict the next state distribution given the current state
distribution. In order to insert randomness to the network, a

random seed is appended to the input, which allows to sim-
ulate Markov processes. Although MC-LSTMs are closely
related to Markov chains, they do not explicitly learn the
transition matrix, as is the case for Markov chain neural
networks. MC-LSTMs would have to learn the transition
matrix implicitly.

Relation to normalizing flows and volume-conserving
neural networks. In contrast to normalizing flows
(Rezende & Mohamed, 2015; Papamakarios et al., 2019),
which transform inputs in each layer and trace their density
through layers or timesteps, MC-LSTMs transform distri-
butions and do not aim to trace individual inputs through
timesteps. Normalizing flows thereby conserve informa-
tion about the input in the first layer and can use the in-
verted mapping to trace an input back to the initial space.
MC-LSTMs are concerned with modeling the changes of
the initial distribution over time and can guarantee that a
multinomial distribution is mapped to a multinomial dis-
tribution. For MC-LSTMs without gates, the sequence
of cell states c0, . . . , cT constitutes a normalizing flow if
an initial distribution p0(c0) is available. In more detail,
MC-LSTM can be considered a linear flow with the map-
ping ct+1 = Rtct and p(ct+1) = p(ct)|detRt|−1 in this
case. The gate providing the redistribution matrix (see Eq. 8)
is the conditioner in a normalizing flow model. From the
perspective of normalizing flows, MC-LSTM can be con-
sidered as a flow trained in a supervised fashion. Deco
& Brauer (1995) proposed volume-conserving neural net-
works, which conserve the volume spanned by input vectors
and thus the information of the starting point of an input
is kept. In other words, they are constructed so that the
Jacobians of the mapping from one layer to the next have a
determinant of 1. In contrast, the determinant of the Jaco-
bians in MC-LSTMs is generally smaller than 1 (except for
degenerate cases), which means that volume of the inputs is
not conserved.

Relation to Layer-wise Relevance Propagation. Layer-
wise Relevance Propagation (LRP) (Bach et al., 2015) is
similar to our approach with respect to the idea that the
sum of a quantity, the relevance Ql is conserved over layers
l. LRP aims to maintain the sum of the relevance values∑K
k=1Q

l−1
k =

∑K
k=1Q

l
k backward through a classifier in

order to a obtain relevance values for each input feature.

Relation to other networks that conserve particular
properties. While a standard feed-forward neural network
does not give guarantees aside from the conservation of the
proximity of datapoints through the continuity property. The
conservation of the first moments of the data distribution
in the form of normalization techniques (Ioffe & Szegedy,
2015; Ba et al., 2016) has had tremendous success. Here,
batch normalization (Ioffe & Szegedy, 2015) could exactly
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Table 1. Performance of different models on the LSTM addition task in terms of the MSE. MC-LSTM significantly (all p-values below
.05) outperforms its competitors, LSTM (with high initial forget gate bias), NALU and NAU. Error bars represent 95%-confidence
intervals across 100 runs.

referencea seq lengthb input rangec countd comboe NaNf

MC-LSTM 0.004 ± 0.003 0.009 ± 0.004 0.8 ± 0.5 0.6 ± 0.4 4.0 ± 2.5 0
LSTM 0.008 ± 0.003 0.727 ± 0.169 21.4 ± 0.6 9.5 ± 0.6 54.6 ± 1.0 0
NALU 0.060 ± 0.008 0.059 ± 0.009 25.3 ± 0.2 7.4 ± 0.1 63.7 ± 0.6 93
NAU 0.248 ± 0.019 0.252 ± 0.020 28.3 ± 0.5 9.1 ± 0.2 68.5 ± 0.8 24
a training regime: summing 2 out of 100 numbers between 0 and 0.5.
b longer sequence lengths: summing 2 out of 1 000 numbers between 0 and 0.5.
c more mass in the input: summing 2 out of 100 numbers between 0 and 5.0.
d higher number of summands: summing 20 out of 100 numbers between 0 and 0.5.
e combination of previous scenarios: summing 10 out of 500 numbers between 0 and 2.5.
f Number of runs that did not converge.

conserve mean and variance across layers, whereas self-
normalization (Klambauer et al., 2017) conserves those ap-
proximately. The conservation of the spectral norm of each
layer in the forward pass has enabled the stable training of
generative adversarial networks (Miyato et al., 2018). The
conservation of the spectral norm of the errors through the
backward pass of RNNs has enabled the avoidance of the
vanishing gradient problem (Hochreiter, 1991; Hochreiter &
Schmidhuber, 1997). In this work, we explore an architec-
ture that exactly conserves the mass of a subset of the input,
where mass is defined as a physical quantity such as mass
or energy.

Similarly, unitary RNNs (Arjovsky et al., 2016; Wisdom
et al., 2016; Jing et al., 2017; Helfrich et al., 2018) have
been used to resolve the vanishing gradient problem. By
using unitary weight matrices, the L2 norm is preserved in
both the forward and backward pass. On the other hand,
the redistribution matrix in MC-LSTMs assures that the L1

norm is preserved in the forward pass.

Relation to geometric deep learning. The field of
Geometric Deep Learning (GDL) aims to provide a unifica-
tion of inductive biases in representation learning (Bronstein
et al., 2021). The main tool for this unification is symmetry,
which can be expressed in terms of invarant and equivariant
functions. From the perspective of GDL, MC-LSTM imple-
ments an equivariant mapping on the mass inputs w.r.t shift
and scale.

Relation to neural networks for physical systems. Neu-
ral networks have been shown to discover physical concepts
such as the conservation of energies (Iten et al., 2020), and
neural networks could allow to learn natural laws from ob-
servations (Schmidt & Lipson, 2009; Cranmer et al., 2020b).
MC-LSTM can be seen as a neural network architecture
with physical constraints (Karpatne et al., 2017; Beucler

et al., 2019c). It is however also possible to impose conser-
vation laws by using other means, e.g. initialization, con-
strained optimization or soft constraints (as, for example,
proposed by Karpatne et al., 2017; Beucler et al., 2019c;a;
Jia et al., 2019). Hamiltonian Neural Networks (HNNs)
(Greydanus et al., 2019) and Symplectic Recurrent Neural
Networks (Chen et al., 2019) make energy conserving pre-
dictions by using the Hamiltonian, a function that maps the
inputs to the quantity that needs to be conserved. By using
the symplectic gradients, it is possible to move around in
the input space, without changing the output of the Hamilto-
nian. Lagrangian Neural Networks (Cranmer et al., 2020a),
extend the Hamiltonian concept by making it possible to
use arbitrary coordinates as inputs.

All of these approaches, while very promising, assume
closed physical systems and are thus too restrictive for the
application we have in mind. Raissi et al. (2019) propose
to enforce physical constraints on simple feed-forward net-
works by computing the partial derivatives with respect to
the inputs and computing the partial differential equations
explicitly with the resulting terms. This approach, while
promising, does require an exact knowledge of the govern-
ing equations. By contrast, our approach is able to learn its
own representation of the underlying process, while obeying
the pre-specified conservation properties.

5. Experiments
In the following, we demonstrate the broad applicability
and high predictive performance of MC-LSTM in settings
where mass conservation is required1. Since there is no
quantity to conserve in standard benchmarks for language
models, we use benchmarks from areas in which a quantity

1Code for the experiments can be found at https://
github.com/ml-jku/mc-lstm

https://github.com/ml-jku/mc-lstm
https://github.com/ml-jku/mc-lstm
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has to be conserved. We assess MC-LSTM on the bench-
marking setting in the area of neural arithmetics (Trask et al.,
2018; Madsen & Johansen, 2020; Heim et al., 2020; Faber
& Wattenhofer, 2021), in physical modeling on the damped
pendulum modeling task by (Iten et al., 2020), and in en-
vironmental modeling on flood forecasting (Kratzert et al.,
2019b). Additionally, we demonstrate the applicability of
MC-LSTM to a traffic forecasting setting. For more de-
tails on the datasets and hyperparameter selection for each
experiment, we refer to Appendix B.

5.1. Arithmetic Tasks

Addition problem. We first considered a problem for
which exact mass conservation is required. One example for
such a problem has been described in the original LSTM
paper (Hochreiter & Schmidhuber, 1997), showing that
LSTM is capable of summing two arbitrarily marked ele-
ments in a sequence of random numbers. We show that
MC-LSTM is able to solve this task, but also generalizes
better to longer sequences, input values in a different range
and more summands. Table 1 summarizes the results of this
method comparison and shows that MC-LSTM significantly
outperformed the other models on all tests (p-value ≤ 0.03,
Wilcoxon test). In Appendix B.1.6, we provide a qualitative
analysis of the learned model behavior for this task.

Recurrent arithmetic. Following Madsen & Johansen
(2020), the inputs for this task are sequences of vectors, uni-
formly drawn from [1, 2]10. For each vector in the sequence,
the sum over two random subsets is calculated. Those val-
ues are then summed over time, leading to two values. The
target output is obtained by applying the arithmetic opera-
tion to these two values. The auxiliary input for MC-LSTM
is a sequence of ones, where the last element is −1 to signal
the end of the sequence.

We evaluated MC-LSTM against NAUs and Neural Accu-
mulators (NACs) directly in the framework of Madsen &
Johansen (2020). NACs and NAUs use the architecture as
presented in (Madsen & Johansen, 2020). That is, a single
hidden layer with two neurons, where the first layer is recur-
rent. The MC-LSTM model has two layers, of which the
second one is a fully connected linear layer. For subtraction
an extra cell was necessary to properly discard redundant
input mass.

For testing, the model with the lowest validation error was
used, c.f. early stopping. The performance is measured
by the percentage of runs that successfully generalized to
longer sequences. Generalization is considered success-
ful if the error is lower than the numerical imprecision of
the exact operation (Madsen & Johansen, 2020). The sum-
mary in Tab. 2 shows that MC-LSTM was able to signifi-
cantly outperform the competing models (p-value 0.03 for
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Figure 2. MNIST arithmetic task results for MC-LSTM and NAU.
The task is to correctly predict the sum of a sequence of presented
MNIST digits. The success rates are depicted on the y-axis in
dependency of the length of the sequence (x-axis) of MNIST digits.
Error bars represent 95%-confidence intervals.

addition and 3e−6 for multiplication, proportion test). In
Appendix B.1.6, we provide a qualitative analysis of the
learned model behavior for this task.

Static arithmetic. To enable a direct comparison with the
results reported in Madsen & Johansen (2020), we also
compared a feed-forward variant of MC-LSTM on the static
arithmetic task, see Appendix B.1.3.

MNIST arithmetic. We tested that feature extractors can
be learned from MNIST images (LeCun et al., 1998) to
perform arithmetic on the images (Madsen & Johansen,
2020). This is especially of interest if mass inputs are not
given directly, but can be extracted from the available data.
The input is a sequence of MNIST images and the target
output is the corresponding sum of the labels. Auxiliary
inputs are all 1, except the last entry, which is−1, to indicate
the end of the sequence. The models are the same as in the
recurrent arithmetic task with a CNN to convert the images
to (mass) inputs for these networks. The network is learned
end-to-end. L2-regularization is added to the output of
the CNN to prevent its outputs from growing arbitrarily
large. The results for this experiment are depicted in Fig. 2.
MC-LSTM significantly outperforms the state-of-the-art,
NAU (p-value 0.002, Binomial test).

5.2. Inbound-outbound Traffic Forecasting

We examined the usage of MC-LSTMs for traffic forecast-
ing in situations in which inbound and outbound traffic
counts of a city are available (see Fig. 3). For this type of
data, a conservation-of-vehicles principle (Nam & Drew,
1996) must hold, since vehicles can only leave the city if
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Table 2. Recurrent arithmetic task results. MC-LSTMs for addition and subtraction/multiplication have two and three neurons, respectively.
Error bars represent 95%-confidence intervals.

addition subtraction multiplication

success ratea updatesb success ratea updatesb success ratea updatesb

MC-LSTM 96% +2%
−6% 4.6 · 105 81% +6%

−9% 1.2 · 105 67% +8%
−10% 1.8 · 105

LSTM 0% +4%
−0% – 0% +4%

−0% – 0% +4%
−0% –

NAU / NMU 88% +5%
−8% 8.1 · 104 60% +9%

−10% 6.1 · 104 34% +10%
−9% 8.5 · 104

NAC 56% +9%
−10% 3.2 · 105 86% +5%

−8% 4.5 · 104 0% +4%
−0% –

NALU 10% +7%
−4% 1.0 · 106 0% +4%

−0% – 1% +4%
−1% 4.3 · 105

a Percentage of runs that generalized to longer sequences.
b Median number of updates necessary to solve the task.

  

Figure 3. Schematic depiction of inbound-outbound traffic situa-
tions that require the conservation-of-vehicles principle. All ve-
hicles on outbound roads (yellow arrows) must have entered the
city center before (green arrows) or have been present in the first
timestep.

they have entered it before or had been there in the first place.
Based on data from the traffic4cast 2020 challenge (Kreil
et al., 2020), we constructed a dataset to model inbound
and outbound traffic in three different cities: Berlin, Istan-
bul and Moscow. We compared MC-LSTM against LSTM,
which is the state-of-the-art method for several types of traf-
fic forecasting situations (Zhao et al., 2017; Tedjopurnomo
et al., 2020), and found that MC-LSTM significantly outper-
forms LSTM in this traffic forecasting setting (all p-values
≤ 0.01, Wilcoxon test). For details, see Appendix B.2.

5.3. Damped Pendulum

In the area of physics, we examined the usability of
MC-LSTM for the problem of modeling a swinging damped
pendulum. Here, the total energy is the conserved property.
During the movement of the pendulum, kinetic energy is
converted into potential energy and vice-versa. This con-
version between both energies has to be learned by the
off-diagonal values of the redistribution matrix. A qualita-

Figure 4. Example for the pendulum-modelling exercise. (a)
LSTM trained for predicting energies of the pendulum with fric-
tion in autoregressive fashion, (b) MC-LSTM trained in the same
setting. Each subplot shows the potential- and kinetic energy and
the respective predictions.

tive analysis of a trained MC-LSTM for this problem can
be found in Appendix B.3.1.

Accounting for friction, energy dissipates and the swinging
slows over time, toward a fixed point. This type of behavior
presents a difficulty for machine learning and is impossi-
ble for methods that assume the pendulum to be a closed
system, such as HNNs (Greydanus et al., 2019) (see Ap-
pendix B.3.2). We generated 120 datasets with timeseries
of a pendulum, where we used multiple different settings
for initial angle, length of the pendulum, and the amount of
friction. We then selected LSTM and MC-LSTM models
and compared them with respect to the analytical solution
in terms of MSE. For an example, see Fig. 4. Overall,
MC-LSTM significantly outperformed LSTM with a mean
MSE of 0.01 (standard deviation 0.02) compared to 0.07
(standard deviation 0.14; with a p-value 4.7e−10, Wilcoxon
test). In the friction-free case, no significant difference to
HNNs was found (see Appendix B.3.2).

5.4. Hydrology: Rainfall Runoff Modeling

We tested MC-LSTM for large-sample hydrological mod-
eling following Kratzert et al. (2019b). An ensemble of
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Table 3. Hydrology benchmark results. All values represent the median (25% and 75% percentile in sub- and superscript, respectively)
over the 447 basins.

MCa NSEb β-NSEc FLVd FHVe

MC-LSTM Ensemble 3 0.744 0.814
0.641 -0.020 0.013

−0.066 -24.7 31.1
−94.4 -14.7−7.0−23.4

LSTM Ensemble 7 0.763 0.835
0.676 -0.034−0.002−0.077 36.3 59.7

−0.4 -15.7 −8.6−23.8
SAC-SMA 3 0.603 0.682

0.512 -0.066−0.026−0.108 37.4 68.1
−31.9 -20.4−12.2−29.9

VIC (basin) 3 0.551 0.641
0.465 -0.018 0.032

−0.071 -74.8 23.1
−271.8 -28.1−17.5−40.1

VIC (regional) 3 0.307 0.402
0.218 -0.074 0.023

−0.166 18.9 69.6
−73.1 -56.5−38.3−64.6

mHM (basin) 3 0.666 0.730
0.588 -0.040 0.003

−0.102 11.4 65.1
−64.0 -18.6−9.5−27.7

mHM (regional) 3 0.527 0.619
0.391 -0.039 0.033

−0.169 36.8 70.9
−32.6 -40.2−23.8−51.0

HBV (lower) 3 0.417 0.550
0.276 -0.023 0.058

−0.114 23.9 61.0
−25.9 -41.9−17.3−55.2

HBV (upper) 3 0.676 0.749
0.578 -0.012 0.034

−0.058 18.3 67.5
−62.9 -18.5−8.5−27.8

FUSE (900) 3 0.639 0.715
0.539 -0.031 0.024

−0.100 -10.5 49.2
−94.8 -18.9−9.9−27.8

FUSE (902) 3 0.650 0.727
0.570 -0.047−0.004−0.098 -68.2 17.1

−239.9 -19.4−8.9−27.9
FUSE (904) 3 0.622 0.705

0.527 -0.067−0.019−0.135 -67.6 35.7
−238.6 -21.4−11.3−33.0

a: Mass conservation (MC).
b: Nash-Sutcliffe efficiency: (−∞, 1], values closer to one are desirable.
c: β-NSE decomposition: (−∞,∞), values closer to zero are desirable.
d: Bottom 30% low flow bias: (−∞,∞), values closer to zero are desirable.
e: Top 2% peak flow bias: (−∞,∞), values closer to zero are desirable.

10 MC-LSTMs was trained on 10 years of data from 447
basins using the publicly-available CAMELS dataset (New-
man et al., 2015; Addor et al., 2017). The mass input is
precipitation and auxiliary inputs are: daily min. and max.
temperature, solar radiation, and vapor pressure, plus 27
basin characteristics related to geology, vegetation, and cli-
mate (described by Kratzert et al., 2019b). All models, apart
from MC-LSTM and LSTM, were trained by different re-
search groups with experience using each model. More
details are given in Appendix B.4.2.

As shown in Tab. 3, MC-LSTM performed better with re-
spect to the Nash–Sutcliffe Efficiency (NSE; the R2 be-
tween simulated and observed runoff) than any other mass-
conserving hydrology model, although slightly worse than
LSTM.

NSE is often not the most important metric in hydrology,
since water managers are typically concerned primarily with
extremes (e.g. floods). MC-LSTM performed significantly
better (p = 0.025, Wilcoxon test) than all models, includ-
ing LSTM, with respect to high volume flows (FHV), at or
above the 98th percentile flow in each basin. This makes
MC-LSTM the current state-of-the-art model for flood pre-
diction. MC-LSTM also performed significantly better than
LSTM on low volume flows (FLV) and overall bias, how-
ever there are other hydrology models that are better for
predicting low flows (which is important, e.g. for managing
droughts).

Model states and environmental processes. It is an
open challenge to bridge the gap between the fact that
LSTM approaches give generally better predictions than
other models (especially for flood prediction) and the fact
that water managers need predictions that help them under-
stand not only how much water will be in a river at a given
time, but also how water moves through a basin.

Figure 5. Snow-water-equivalent (SWE) from a single basin. The
blue line is SWE modeled by Newman et al. (2015). The orange
line is the sum over 4 MC-LSTM memory cells (Pearson correla-
tion coefficient r ≥ 0.8).

Snow processes are difficult to observe and model. Kratzert
et al. (2019a) showed that LSTM learns to track snow in
memory cells without requiring snow data for training. We
found similar behavior in MC-LSTMs, which has the ad-
vantage of doing this with memory cells that are true mass
storages. Figure 5 shows the snow as the sum over a sub-
set of MC-LSTM memory states and snow water equiva-
lent (SWE) modeled by the well-established Snow-17 snow
model (Anderson, 1973) (Pearson correlation coefficient
r ≥ 0.91). It is important to note that MC-LSTMs did not
have access to any snow data during training. In the best
case, it is possible to take advantage of the inductive bias to
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predict how much water will be stored as snow under differ-
ent conditions by using simple combinations or mixtures of
the internal states. Future work will determine whether this
is possible with other difficult-to-observe states and fluxes.

5.5. Ablation Study

In order to demonstrate that the design choices of
MC-LSTM are necessary together to enable accurate pre-
dictive models, we performed an ablation study. In this
study, we made changes that disrupt the mass conservation
property a) of the input gate, b) the redistribution operation,
and c) the output gate. We tested these three variants on data
from the hydrology experiments. We chose 5 random basins
to limit computational expenses and trained nine repetitions
for each configuration and basin. The strongest decrease in
performance is observed if the redistribution matrix does not
conserve mass, and smaller decreases if input or output gate
do not conserve mass. The results of the ablation study indi-
cate that the design of the input gate, redistribution matrix,
and output gate, are necessary together to obtain accurate
and mass-conserving models (see Appendix Tab. B.8).

6. Conclusion
We have demonstrated how to design an RNN that has the
property to conserve mass of particular inputs. This architec-
ture is proficient as neural arithmetic unit and is well-suited
for predicting physical systems like hydrological processes,
in which water mass has to be conserved. We envision
that MC-LSTM can become a powerful tool in modeling
environmental, sustainability, and biogeochemical cycles.
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