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A. Basics for Group and Representation Theory
This section gives the basic definitions about groups and representations necessary to understand this work. We refer to the
literature for a more detailed introduction (Artin, 2011; Bröcker & Dieck, 2003).

A.1. Groups

A group (G, ·) is a set G together with a function · : G×G→ G, (g, h) 7→ g · h called group operation satisfying

1. (Associativity): g · (h · i) = (g · h) · i for all g, h, i ∈ G

2. (Existence of a neutral element): There is a e ∈ G such that: e · g = g · e = g for all g ∈ G

3. (Existence of an inverse): For all g ∈ G, there is a g−1 such that e = g−1 · g = g · g−1

If in addition, G satisfies

4. (Commutativity): g · h = h · g for all g, h ∈ G

G is called Abelian. We simply write g1g2 for g1 · g2 if it is clear from the context.

If ρ : G→ G′ is a map between two groups, it is called a group homomorphism if ρ(g · g′) = ρ(g) · ρ(g′). That is, the map
preserves the action of the group. A group isomorphism is a homomorphism that is bijective. In the later case, G and G′ are
called isomorphic and we write G ∼= G′.

The Euclidean group

In the context of this work, the most important example of a group is the Euclidean group E(n) consisting of all isometries,
i.e. the set of all functions T : Rn → Rn such that

‖T (x)− T (x′)‖ = ‖x− x′‖, for all x,x′ ∈ Rn

Defining the group operation as the composition of two isometries by T1 · T2 := T1 ◦ T2, we can identify E(n) as a group.

Subgroups

A subgroup H of a group (G, ·) is a subset H ⊂ G which is closed under the action of the original group. I.e. a set H ⊂ G
is a subgroup of (G, ·) if h1 · h2 ∈ H for all h1, h1 ∈ H and h−1 ∈ H for all h ∈ H . A subgroup is typically denoted by
H < G.

We can identify all intuitive geometric transformations on Rn as subgroups of E(n):

1. Translation: For any vector x ∈ Rn, a translation by x is given by the map tx : Rn → Rn,x′ 7→ x + x′. The group
of all translations is denoted by T (n) .

2. Rotoreflection: The orthogonal group O(n) = {Q ∈ Rn×n|QQT = I} describes all reflections and subsequent
rotations.

3. Rotation: The special orthogonal group SO(n) = {R ∈ O(n)|detR = 1} describes all rotations in Rn.

Normal subgroups

A normal subgroup of a group is a subgroup which is closed under conjugation of the group. That is, N is a normal subgroup
of G if it is a subgroup of G and

gng−1 ∈ N for all n ∈ N, g ∈ G

Typically a normal subgroup is denoted N / G. The most important example for this work is T (n) / E(n).



Equivariant Learning of Stochastic Fields: Gaussian Processes and Steerable Conditional Neural Processes

Semidirect product groups

A group G is a semidirect product of a subgroup H < G and a normal subgroup N / G if it holds that for all g ∈ G, there
are unique n ∈ N,h ∈ H such that g = nh. There are a number of equivalent conditions, but not needed for this exposition.
The semidirect product of two groups is denoted by

G = N oH

Most importantly, we can identify E(n) = T (n) oO(n) as the semidirect product of T (n) and O(n).

A.2. Representations of Groups

Group representations are a powerful tool to describe the algebraic properties of geometric transformations: Let V be
a vector space and GL(V ) be the general linear group, i.e. the group of all linear, invertible transformations on V with
the composition f · g = f ◦ g as group operation. Then a representation of a group H is a group homomorphism
ρ : H → GL(V ). For V = Rd, this is the same as saying a group representation is a map ρ : H → Rd×d such that

ρ(h1 · h2) = ρ(h1)ρ(h2)

where the right hand side is typical matrix multiplication.

The simplest group representation is the trivial representation ρtriv which maps all elements of the group to the identity,

ρtriv(h) = 1d for all h ∈ H (19)

Orthogonal and unitary groups

An orthogonal representation is a representation ρ : H → GL(Rd) such that ρ(h) ∈ O(d) for all h ∈ H . For compact
groups H , every representation is equivalent to an orthogonal representation (Bröcker & Dieck, 2003, Theorem II.1.7).
This is useful as the identity ρ(h)T = ρ(h)−1 often makes calculations significantly easier. Since in this work we focus on
subgroups H ⊂ O(d) which are all compact, it is not a restriction to assume that.

Direct sums

Given two representations, ρ1 : H → GL(Rn) and ρ2 : H → GL(Rm) , we can combine them together to give their direct
sum, ρ1 ⊕ ρ2 : H → GL(Rn+m), defined by

(ρ1 ⊕ ρ2)(h) =

[
ρ1(h) 0

0 ρ2(h)

]
(20)

i.e the block diagonal matrix comprised of the two representations. This sum generalises to an arbitrary number of
representations.

Tensor products

Let V1, V2 be two vector spaces and V1 ⊗ V2 their tensor product. Given two representations, ρ1 : H → GL(V1) and
ρ2 : H → GL(V2), we can take the tensor product representation ρ1⊗ ρ2 : H → GL(V1⊗V2) defined by the condition that

[ρ1 ⊗ ρ2](h)(v1 ⊗ v2) = (ρ1(h)v1)⊗ (ρ2(h)v2) (21)

for all v1 ∈ V1, v2 ∈ V2, h ∈ H .

To make this concrete for proposition 2, we have V1, V2 = Rd and the tensor product becomes V1 ⊗ V2 = Rd×d with
v1⊗ v2 = v1v

T
2 the outer product for all v1, v2 ∈ Rd. Setting ρ = ρ1 = ρ2, the tensor product representation ρ⊗ρ becomes

[ρ⊗ ρ](h)(v1 ⊗ v2) = (ρ(h)v1)(ρ(h)v2)T = ρ(h)v1v
T
2 ρ(h)T (22)

Therefore, ρΣ as defined in eq. (15) is the tensor product ρ ⊗ ρ. We can return such representations to the more usual
matrix-acting-on-vector format by vectorising these expressions. Using the identity vec(ABC) = [CT ⊗kron A] vec(B),
with ⊗kron being the usual Kronecker product and vec(A) being the column-wise vectorisation of A we get

vec(ρ(h)Aρ(h)T ) = [ρ(h)⊗kron ρ(h)] vec(A) (23)
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B. Proofs
B.1. Proof of proposition 1

Proposition 1. Let P be a stochastic process over Fρ. Then P is G-invariant if and only if the posterior map Z 7→ PZ is
G-equivariant, i.e.

Pg.Z = g.PZ for all g ∈ G (7)

Proof. Let us be given a distribution P over functions Fρ and F ∼ P . Define g.P to be the distribution of g.F . For any
x1, . . . ,xk ∈ Rn let x1:k denote the concatenation (x1, . . . ,xk) of these vectors and let gx1:k be (gx1, . . . , gxk). For any
such x1:k, let ψPx1:k

be the finite-dimensional marginal of P , i.e. the distribution such that

[F (x1), . . . , F (xk)]T ∼ ψPx1:k

For simplicity, we assume here that ψPx1:k
is absolutely continuous with respect to the Lebesgue measure, i.e. has a density

λPx1:k
. Our proof uses Kolmogorov’s theorem (Øksendal, 2000), which says that two stochastic processes coincide if and

only if their finite-dimensional marginals agree. Before the actual proof, we need the following four auxiliary statements.

1. Marginals of posterior. Let F ∼ P and let us given a context set Z = {(x′i,y′i)}li=1 where y′i = F (x′i) for all
i = 1, . . . , l. The posterior PZ is again a stochastic process with marginals ψPZ

x1:k
and conditional density given by

λPZ
x1:k

(y1:k) = λPx1:k|x′1:l
(y1:k|y′1:l) =

λPx1:k,x′1:l
(y1:k,y

′
1:l)

λPx′1:l
(y′1:l)

(24)

2. Marginals of transformed process. If F ∼ P , it holds that g.P has marginals ψg.Px1:k
with density given by

λg.Px1:k
(y1:k) = λPg−1x1:k

(ρ(h)−1y1:k) (25)

after using a change of variables.
3. Express invariance in terms of marginals. By definition, P is G-invariant if g.P = P for all g ∈ G. By Kolmogorov’s
theorem, this is equivalent to the fact the finite-dimensional marginals of P and g.P agree for all g ∈ G, i.e.

ψPx1:k
= ψg.Px1:k

for all x1, . . . ,xk ∈ Rn (26)

⇔λPx1:n
(y1:n) = λg.Px1:n

(y1:n) = λg−1x1:n
(ρ(h)−1y1:n) for all y1, . . . ,yk ∈ Rd,x1, . . . ,xk ∈ Rn (27)

where we used eq. (25) in the last equation.
4. Express equivariance in terms of marginals. Next, let us be given a context set Z = {(xi,yi)}ni=1 where yi = F (xi).
We compute:

Pg.Z = g.PZ (28)

⇔ ψ
Pg.Z
x1:k = ψg.PZ

x1:k
for all x1, . . . ,xk ∈ Rn (29)

⇔ λ
Pg.Z
x1:k (y1:k) = λg.PZ

x1:k
(y1:k) for all x1, . . . ,xk ∈ Rn,y1, . . . ,yk ∈ Rd (30)

⇔
λPx1:k,gx′1:l

(y1:k, ρ(h)y′1:l)

λPgx′1:l
(ρ(h)y′1:l)

= λPZ

g−1x1:k
(ρ(h)−1y1:k) for all x1, . . . ,xk ∈ Rn,y1, . . . ,yk ∈ Rd (31)

⇔
λPx1:k,gx′1:l

(y1:k, ρ(h)y′1:l)

λPgx′1:l
(ρ(h)y′1:l)

=
λPg−1x1:k,x′1:l

(ρ(h)−1y1:k,y
′
1:l)

λPx′1:l
(y′1:l)

for all x1, . . . ,xk ∈ Rn,y1, . . . ,yk ∈ Rd (32)

where we used in row order the following facts:

1. Kolmgorov’s theorem.

2. Two distributions coincide if and only if their density coincide (Lebesgue-almost everywhere).
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3. Equation (24) on the left-hand side and eq. (25) on the right-hand side.

4. Equation (24) on the right-hand side.

Invariance implies equivariance. Assuming P is G-invariant, we can use eq. (27) to get

λPx1:k,gx′1:l
(y1:k, ρ(h)y′1:l) = λPg−1x1:k,x′1:l

(ρ(h)−1y1:k,y
′
1:l), λPgx′1:l

(ρ(h)y′1:l) = λPx′1:l
(y′1:l)

Inserting that into the left-hand side of eq. (32), we see that the equality in eq. (32) is true, i.e. Z 7→ PZ is equivariant.

Equivariance implies invariance. By going this computation backward, we can easily show that equivariance implies
invariance as well. However, there is a short-cut. Assuming that Z 7→ PZ is equivariant, we can simply pick an empty
context set Z = {}. In this case, Pg.Z = PZ = P and therefore equivariance implies g.P = P .

B.2. Proof of theorem 1

Theorem 1. A Gaussian process GP(m,K) is G-invariant, equivalently the posterior G-equivariant, if and only if

1. m(x) = m ∈ Rd is constant with m such that

ρ(h)m = m for all h ∈ H (8)

2. K fulfils the following two conditions:

(a) K is stationary, i.e. for all x,x′ ∈ Rn

K(x,x′) = K(x− x′,0) =: K̂(x− x′) (9)

(b) K satisfies the angular constraint, i.e. for all x,x′ ∈ Rn, h ∈ H it holds that

K(hx, hx′) = ρ(h)K(x,x′)ρ(h)T (10)

or equivalently, for all x ∈ Rn, h ∈ H

K̂(hx) = ρ(h)K̂(x)ρ(h)T (11)

If this is the case, we call K ρ-equivariant.

Proof. A Gaussian process GP (m,K) is G-invariant if and only if

F ∼ GP (m,K)⇒ g.F ∼ GP (m,K) for all g ∈ G

By Kolmogorov’s theorem (see Øksendal (2000)), the distribution of F and g.F coincide if and only if their finite-
dimensional marginals coincide. Since the marginals are normal, they are equal if and only mean and covariances are equal,
i.e. if and only if

m(x) =E(F (x)) = E(g.F (x)) = ρ(h)m(g−1x) = g.m(x) for all x ∈ Rn (33)

and for all x,x′ ∈ Rn

K(x,x′) = Cov(F (x), F (x′)) = Cov(g.F (x), g.F (x′)) =Cov(ρ(h)F (g−1x), ρ(h)F (g−1x′)) (34)

=ρ(h)Cov(F (g−1x), F (g−1x′))ρ(h)T (35)

=ρ(h)K(g−1x, g−1x′)ρ(h)T (36)

Let us assume that this equation holds. Then picking g = tx′ implies that

m(x) = m(x− x′)

K(x,x′) = K(x− x′, 0)

i.e. m is constant and K is stationary. Similiarly, picking g = h implies eq. (8) and eq. (10).
To prove the opposite direction assuming the constraints from the theorem, we can simply go these computations backwards.
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B.3. Proof of proposition 2

Proposition 2. A conditional process model is G-equivariant if and only if the mean and covariance feature maps are
G-equivariant, i.e. it holds for all g ∈ G and context sets Z

mg.Z = g.mZ (13)
Σg.Z = g.ΣZ (14)

with ρm = ρ and ρΣ = ρ⊗ ρ the tensor product with action given by

ρΣ(h)A = ρ(h)Aρ(h)T , A ∈ Rd×d (15)

Proof. Let QZ be the output of the model serving as the approximation of posterior distribution PZ . It holds QZ is
G-equivariant if and only if Qg.Z = g.QZ .
If F ∼ QZ , it holds by standard facts about the normal distribution

g.F (x) =ρ(h)F (g−1x)

∼N (ρ(h)mZ(g−1x), ρ(h)ΣZ(g−1x)ρ(h)T )

=N (g.mZ(x), g.ΣZ(x))

which gives the one-dimensional marginals of g.QZ . By the conditional independence assumption, g.QZ = Qg.Z if and
only if their one-dimensional marginals agree, i.e. if for all x

N (mg.Z(x),Σg.Z(x)) = N (g.mZ(x), g.ΣZ(x))

This is equivalent to mg.Z = g.mZ and Σg.Z = g.ΣZ , which finishes the proof.

B.4. Proof of theorem 2

Theorem 2 (EquivDeepSets). Let ρin, ρout be the two fiber representations. Define the embedding representation as the
direct sum ρE = ρtriv ⊕ ρin.
A function Φ : Zρin → Fρout is G-equivariant and permutation invariant if and only if it can be expressed as

Φ(Z) = Ψ(E(Z)) (16)

for all Z = {(xi,yi)}mi=1 ∈ Zρin with

1. E(Z) =
∑m
i=1K(·,xi)φ(yi)

2. φ(y) = (1,y)T ∈ Rd+1.

3. K : Rn × Rn → R(d+1)×(d+1) is a ρE-equivariant strictly positive definite kernel (see theorem 1).

4. Ψ : FρE → Fρout is a G-equivariant function.

Additionally, by imposing extra constraints (see appendix B.4), we can also ensure that Φ is continuous.

Proof. This proof generalizes the proof of Gordon et al. (2020, Theorem 1).
Step 1: Injectivity of E (up to permutations).
We first want to show that under the given conditions E is injective up to permutations, i.e. Z = {(xi,yi)}mi=1 is a
permutation of the elements of Z ′ = {(x′j ,y′j)}m

′

j=1 if and only if E(Z) = E(Z ′). By definition, E(Z) = E(Z ′) is
equivalent to

m∑
i=1

K(·,xi)
(

1
yi

)
=

m′∑
j=1

K(·,x′j)
(

1
y′j

)
(37)
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Clearly, if Z is a permutation of Z ′, eq. (37) holds since one can simply change order of summands. Conversely, let us
assume that eq. (37) holds. Let f : Rn → Rd be a function in the reproducing kernel Hilbert space (RKHS) of K (Álvarez
et al., 2012). The reproducing property in the case of matrix-valued kernels says that

〈f,K(·,x)c〉H = f(x)T c for all c ∈ Rd,x ∈ Rn (38)

where 〈·, ·〉H is the inner product on the RKHSH. Taking the inner product with f on both sides of eq. (37), we get by the
reproducing property:

m∑
i=1

f(xi)
T

(
1
yi

)
=

m′∑
j=1

f(x′j)
T

(
1
y′j

)
(39)

Let us choose an arbitrary xk where k = 1, . . . ,m and let us pick f ∈ H such that f(xk) = (1, 0, . . . , 0)T , f(xi) = 0 for
all i 6= k and f(x′j) = 0 for all j = 1, . . . ,m′ such that x′j 6= xk. This is possible because K is interpolating since we
assumed that K is strictly positive definite. In eq. (39), we then get

1 =

m′∑
j=1

1x′j=xk
(40)

Therefore, there is exactly one j such that x′j = xk. So every element xk from Z can be found exactly once in Z ′. Turning
the argument around by switching Z and Z ′, we get that also every element x′j in Z ′ can be found exactly once in Z. Hence,
it holds that m = m′ and (x1, . . . ,xm) is a permutation of (x′1, . . . ,x

′
m). Therefore, we can now assume without loss of

generality that xi = x′i for all i = 1, . . . ,m.
In eq. (39), pick now f such that f(xi) = (0,y)T for some y ∈ Rd. Then it follows that

yTyi = yTy′i (41)

Since y was arbitrary, we can conclude that yi = y′i for all i = 1, . . . ,m. In sum, this shows that Z is a permutation of Z ′

and concludes the proof that E is injective up to permutations.

Step 2: Equivariance of E.
Next, we show that Z 7→ E(Z) is G-equivariant where the transformation of E(Z) is defined by ρE as in eq. (2). Let
Z = {(xi,yi)}mi=1 be a context set and g = txh ∈ G. We compute

E(g.Z) =

m∑
i=1

K(·, gxi)
(

1
ρin(h)yi

)
=

m∑
i=1

K(·, gxi)ρE(h)

(
1
yi

)
(42)

=

m∑
i=1

ρE(h)K(g−1·,xi)ρE(h)T ρE(h)

(
1
yi

)
(43)

=ρE(h)E(Z)(g−1·) (44)
=g.E(Z) (45)

where the first equality follows by definition of E, the second by definition of ρE , the third by using ρE-equivariance of K,
the fourth by using the assumed orthogonality of ρE (see section 2) and the fifth by definition.

With step 1 and 2, we can now proof the theorem.

Step 3: Universality and Equivariance of the decomposition Φ = Ψ ◦ E.

If Ψ : FρE → Fρout is some G-equivariant function, it follows that Φ = Ψ ◦ E is G-equivariant as well since it is a
composition of equivariant maps Ψ and E. This shows that the composition is equivariant.

Conversely, if we assume that Φ : Zρin → Fρout is a G-equivariant, permutation-invariant function, we can consider it as a
function defined on the family Z∼ρin

of equivalence classes of sets Z,Z ′ ∈ Zρin which are permutations of each other. On
Z∼ρin

, E is injective and we can define its inverse E−1 on the image of E (and set constant zero outside of the image). Clearly,
it then holds Φ = Ψ ◦ E. Since E is equivariant, also the inverse E−1 is and therefore Ψ is equivariant as a composition of
equivariant maps Φ and E−1. This shows that this composition is universal.
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This finishes the proof of the main statement of the theorem.

Additional step: Continuity of Φ. We can enforce continuity of Φ by:

1. We restrict Φ on a subset Z ′ ⊂ Zρin which is topologically closed, closed under permutations and closed under actions
of G.

2. K is continuous and K(x,x′)→ 0 for ‖x− x′‖ → ∞.

3. Ψ : H → Cb(Rn,Rd) is continuous, where we denote with Cb(Rn,Rd) the space of continuous, bounded functions
f : Rn → Rd.

The proof of this follows directly from the proof of the ConvDeepSets theorem from Gordon et al. (2020), along with the
additional conditions proved above.

C. Divergence-free and Curl-free kernels
A divergence-free kernel is a matrix-valued kernel Φ : Rn × Rn → Rn×n such that its columns are divergence-free. That is
∇T (Φ(x,x′)c) = 0 ∀ c,x,x′ ∈ Rn where the derivatives are taken as a function of x. This ensures that fields constructed
by f(x) =

∑N
i=1 Φ(x,xi)ci for some ci,xi ∈ Rn are divergence-free. A similar definition holds for curl-free kernels.

The kernels used in this work were introduced by Macêdo & Castro (2010). In particular we use the curl- and divergence-free
kernels with length scale l > 0 as defined for all x1,x2 ∈ Rn by

Kcurl = k0(x1,x2)A(x1,x2), Kdiv(x1,x2) = k0(x1,x2)B(x1,x2) (46)

where

k0(x1,x2) =
1

l2
exp

(
−‖x1 − x2‖2

2l2

)
(47)

A(x1,x2) = I− (x1 − x2)(x1 − x2)T

l2
(48)

B(x1,x2) =
(x1 − x2)(x1 − x2)T

l2
+

(
n− 1− ‖x1 − x2‖2

l2

)
I (49)

To see that Kcurl is E(n)-equivariant, we compute for g = tx′h ∈ G

A(gx1, gx2) =I− (hx1 + x′ − hx2 − x′)(hx1 + x′ − hx2 − x′)T

l2
(50)

=hhT − h(x1 − x2)(x1 − x2)ThT

l2
(51)

=hA(x1,x2)hT (52)

This shows that Kcurl is E(n)-equivariant since k0 is a E(n)-invariant scalar kernel. With a similar computation, one can
see that Kdiv is E(n)-equivariant.

D. Experimental details
For the implementation, we used PyTorch (Paszke et al., 2017a). The github repository for the GP and ERA5 experiments
can be found at this link and for the MNIST experiments here. The models are trained on a mix of GTX 1080, 1080Ti and
2080Ti GPUs.

To set up the SteerCNP model, we stacked equivariant convolutional layers with NormReLU activation functions in between
as a decoder. The smoothing step was performed with a scalar RBF-kernel where the length scale is optimised during
training. All hidden layers of the decoder use the regular representation ρreg as a fiber representation ρ of the hidden layers
of the decoder if the fiber group H is CN or DN and the identity representation ρId for infinite fiber groups. This choice

https://github.com/PeterHolderrieth/Steerable_CNPs
https://github.com/MJHutchinson/SteerableCNP
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gave the best results and is also consistent with observations in supervised learning problems (Weiler & Cesa, 2019). For
every model, we optimised the model architecture independently starting with a number of layers ranging from 3 to 9 and
with a number of parameters from 20000 to 2 million. All hyperparameters were optimized by grid search for every model
individually and can be found in the afore-mentioned repositories.

For the encoder E, we found that the choice of kernels K does not lead to significant differences in performance. Therefore,
the results stated here used a diagonal RBF-kernel where we let the length-scale variable as a differentiable parameter.
Similar to Gordon et al. (2020), we found that normalising the last d-channels with the first channel improves performance.
This operation is clearly invertible and preserves equivariance.

D.1. GP experiments

For every sample we have chosen a randomly orientated grid G ⊂ [−10, 10]2 spread in a circle around the origin and
sampled a Gaussian process on it with kernel K with l = 5. To a set of pairs {(x, F (x))}x∈G , we add random noise
ε ∼ N (0, σ2) with σ = 0.05 on F (x). During training, we randomly split a data set in a context set and in target set. The
maximum size of a context set is set to 50. As usually done for CNPs (Garnelo et al., 2018a), the target set includes the
context set during training.

D.2. ERA5 data

The ERA5 data set consists of weather parameters on a longtitude-latitude grid around the globe. We extracted the data for
all points surrounding Memphis, Tennessee, with a distance of less than 520km giving us approximately 1200 grid points
per weather map.

The weather variables we use are temperature, pressure and wind and we picked hourly data from the winter months
December, January and February from years 1980 to 2018. Every sample corresponds to one weather map of temperature,
pressure and wind in the region at one single point in time. Finally, we split the data set in a training set of 35000, a
validation set of 17500 and test set of 17500 weather maps. Similarly, we proceeded for the data set from Southern China.
We share the exact pre-processing scripts of the ERA5 data also in our code.

D.3. Image inpainting details

MNIST experiments

In all the experiments the context sets are drawn from U(
npixels

100 ,
npixels

2 ). We train with a batchsize of 28. The context
points are drawn randomly from each batch and the rest of the pixels used as the target set. We train for 10 epochs using
Adam (Kingma & Ba, 2015) with a learning rate of 3× 10−4 for all the ConvCNP and SteerCNP models. For the CNP
models we train for 30 epochs and use a learning rate of 1× 10−3. These values were found using early stopping and grid
search respectively. Pixel intensities are normalised to lie in the range [0, 1].

The dataset is additionally augmented with 10% blank images (equivalent to adding ”no digit” class to the dataset in equal
proportion to other classes). The rational behind this is that in the test dataset there are large regions of blank canvas. Given
the model is trained on small patches, if we only trained on the MNIST digits the model would encounter these large regions
of blank space, which it has never seen before. Including these blank images helped rectify this issue, and empirically led to
better performance across the board. The GP lengthscale was optimised over a gird of [0.01,0.05,0.1,0.3,0.5,1.0,2.0,3.0] and
the variance the same. The optimal parameters were found to be a length scale of 1.0 and a variance of 0.05.

In addition, we apply a sigmoid function to the mean prediction to ensure the predicted mean in the range [0, 1]. The
covariance activation function is replaced with a softplus and a minimum variance of 0.01. This keeps the model equivariant
as the covariance predicted is now an invariant scalar, rather than an equivariant matrix.

https://github.com/PeterHolderrieth/Steerable_CNPs
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Table 4. Full results for the MNIST experiments. Mean log-likelihood ± 1 standard deviation over 3 random model and dataset seeds
reported.

Test dataset MNIST rotMNIST extrapolate MNIST extrapolate rotMNIST
Train dataset MNIST rotMNIST MNIST rotMNIST MNIST rotMNIST MNIST rotMNIST
Model

GP 0.39±0.30 0.39±0.30 0.49±0.51 0.49±0.51 0.65±0.20 0.65±0.20 0.72±0.17 0.72±0.17
CNP 0.76±0.05 0.66±0.06 0.53±0.04 0.69±0.06 -1.20±0.06 -1.04±0.24 -1.11±0.06 -0.96±0.22
ConvCNP 1.01±0.01 0.95±0.01 0.93±0.05 1.00±0.05 1.09±0.03 1.11±0.04 1.08±0.02 1.14±0.03
SteerCNP(C4) 1.05±0.02 1.02±0.03 1.01±0.04 1.06±0.04 1.12±0.02 1.13±0.03 1.14±0.02 1.16±0.04
SteerCNP(C8) 1.07±0.03 1.05±0.04 1.04±0.03 1.09±0.03 1.13±0.01 1.14±0.02 1.16±0.03 1.18±0.02
SteerCNP(C16) 1.08±0.03 1.04±0.03 1.04±0.08 1.09±0.07 1.14±0.04 1.11±0.08 1.17±0.05 1.15±0.06
SteerCNP(D4) 1.08±0.03 1.05±0.03 1.04±0.01 1.09±0.03 1.12±0.05 1.13±0.04 1.14±0.03 1.17±0.06
SteerCNP(D8) 1.08±0.03 1.04±0.04 1.03±0.11 1.10±0.06 1.15±0.02 1.12±0.02 1.17±0.02 1.17±0.02
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Figure 7. Qualitative examples of the behaviour of the predicted mean of different models when the context set is rotated. We observe that
the ConvCNP, even when trained on rotation augmented data, has trouble predicting good shapes when the context set is rotated. By
comparison the equivariant models have very consistent predictions under rotation, with the C4 and D4 models beng exactly equivariant
to 90◦ rotations, and the C16 models being exactly equivariant to 22.5◦ rotations
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Figure 8. Qualitative examples of the behaviour of the predicted mean of different models when the context set size is changed. Digit not
rotated.
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Figure 9. Qualitative examples of the behaviour of the predicted mean of different models when the context set size is changed. Digit
rotated.
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Figure 10. Qualitative examples of the behaviour of models trained on single MNIST digits, tested on multiple digits pasted into a larger
canvas. Size of context set varied. We see that further away from the digits there is some noise predictions. These are likely causes by the
models never having seen data as far from digits as this, leading to somewhat undefined behaviour. We see that the equivariant models
exhibit considerably less of this noisy behaviour.
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Figure 11. Qualitative examples of the behaviour of models trained on single MNIST digits, tested on multiple digits pasted into a larger
canvas. Rotation of the context set is varied. We see that the equivariant models show very little change in behaviour under rotation,
whereas the ConvCNP gives reasonably wild predictions under rotation.
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