Latent Programmer: Discrete Latent Codes for Program Synthesis

A. Extended Description of DSL and RobustFill Model

ProgramY := Concat(es,es,...)
fln]ni(n2) | n(f) | Conststr(c)
SubStr(ki, k2) | GetSpan(ri, i1, b1, r2,i2,b2)

Expression e
Substring f

Nestingm := GetToken(t,i) | ToCase(s) | Replace(d1,d2) | Trim() | GetUpto(r) | GetFrom(r)
| GetFirst(t,i) | GetAll(t)
Regexr = t1| ... |tu|01] ... |m
Typet := NUMBER | WORD | ALPHANUM | ALL_CAPS | PROP_CASE | LOWER | DIGIT | CHAR
Case s := PROPER |ALL_CAPS | LOWER
Position k= —100] —99| ... [1]2]...]100
Indexi = —5|—4|...| —=1|1|2]...]5
Boundary b := START | END
Delimiter § := & ,.7Q@()[|%{}/ :;$#"’
Characterc = A—Z|a—2]|0-9]&,.7Q...

Figure 9. The DSL for string transformation tasks (Devlin et al., 2017)

The DSL for string transformations we use is the same as used in RobustFill (Devlin et al., 2017), and is shown in Figure 9.
The top-level operator for programs in the DSL is a Concat operator that concatenates a random number (up to 10) of
expressions e;. Each expression e can either be a substring expression f, a nesting expression n, or a constant string c¢. A
substring expression can either return the substring between left k; and right ko indices, or between the i;-th occurence of
regex 71 and io-th occurence of regex r2. The nesting expressions also return substrings of the input, such as extracting the
i-th occurrence of a regex, but can also be composed with existing substring or nesting expressions for more complex string
transformations.

RobustFill Model RobustFill (Devlin et al., 2017) is a seq-to-seq neural network that uses a encoder-decoder architecture
where the encoder computes a representation of the input e(X), and the decoder autoregressively generates the output given

the source representation, i.e. conditional likelihood of Y = [y1, ..., yr] decomposes as p(Y|X) = Hthl P(Yt|y<t, X).
In RobustFill, the probability of decoding each token y; is given by p(y:|y<:, X) = Softmax (W (h;)) with W being the
projection onto logits, or unnormalized log probabilities. The hidden representation h; is an LSTM hidden unit given by,
E; = Attention (hi—1,e(X)),
ht = LSTM (htfl, Et) .
Here e(X) is the sequence of hidden states after processing the specifications with an LSTM encoder, and Attention (Q, V)
denotes the scaled dot-product attention with query @) and key-value sequence V' (Bahdanau et al., 2016). In the case of X
being multiple I/O examples, the RobustFill model of Devlin et al. (2017) uses double attention
s{ﬂ- = Attention (hi—1,e(I;))
sgi = Attention (Concat (h¢_1, stIz) ,e(0;))
ht i = LSTM (ht,l, Concat (Sg,m stol)) V1<i<N,

and hidden states are pooled across examples before being fed into the final softmax layer, or h; =
maxpool; ., tanh(V(hy,;)) , where V' is another projection.

Latent Programmer: Discrete Latent Codes for Program Synthesis

B. Latent Programmer Architecture

Recall that the LP architecture consists of three modules: a program encoder, latent predictor, and latent program decoder.

Program Encoder The program encoder ec(Y") is a Transformer encoder, followed by a stack of convolutions of stride
2, each halving the size of the sequence. We apply the convolution ¢ times, which reduces a T-length program to a latent
sequence of length [T'/2%]. This provides temporal abstraction, since the high-level planning actions are made only every
2¢ steps. In summary, the program encoder is given by ec(Y') < hy, where

ho + TransformerEncoder(Y) @
B < Conv(hy,—1)forme 1...¢

Here TransformerEncoder(-) applies a stack of self-attention and feed-forward units on input embeddings via a residual
path, described in detail by Vaswani et al. (2017). This will be used, along with the latent program decoder, as an autoencoder
during training (see Section 3.3).

Latent Predictor The latent predictor Ip(X) is a Transformer that autoregressively outputs probabilities over latent tokens,
which can be decoded using search algorithms such as beam search to generate a predicted latent code Z’. This is different
than the program encoder, which outputs a single sequence Z, because we use the latent predictor to organize search over
latent codes; at test time, we will obtain a L-best list of latent token sequences from Ip(X).

Latent Program Decoder The latent program decoder d(Z, X) is a Transformer that jointly attends to the latent sequence
and program specification, to autoregressively generates a distribution over program tokens. This is performed via two
separate attention modules, whose outputs are concatenated into the hidden unit. Formally, given a partially generated
program Y’ = [y}, yb, ..., y;_4], and the encoded specification E = TransformerEncoder(X), the latent program decoder
performs

e; < TransformerDecoder(Y', E);_1
2¢ < TransformerDecoder(Y’, Z);_1 5)
ht < Concat (eq, 2¢) ,

where TransformerDecoder(z, y) denotes a Transformer decoder applied to outputs y while attending to inputs encoding
x, and the subscript indexes an entry in the resulting output sequence. Finally, the distribution over output token k is given
by Softmax (W (h;)), where W is a learned parameter matrix. When X is multiple I/O examples, each example is encoded
as E; = TransformerDecoder(1;, O;). Then, a separate hidden state per I/O is computed following equation 5, followed
by a late max-pool to get the final hidden state.

Latent Programmer: Discrete Latent Codes for Program Synthesis

C. Interpretability Experiments on Toy DSL

ProgramY := Concat(e,es,...)
Expressione := GetSpan(ri,ii,r2,i2)
Regexr = t1| ... |tn|01]| ... |m
Typet := NUMBER | WORD | ALPHANUM
Indexi = —1|1]2
Delimiter 6 := &,.
Characterc = A—-Z|a—2|0-9]&,.

Figure 10. Toy DSL for string transformation tasks

Inputs Outputs
“’C’XOC" “Cll
“G73,NT" “G73"
“.Uvg tTMXTI" “Uvg"
“.tLgFJ .dMKIh" “tLqFJ"
LP GetSpan_ALPHANUM_1_ALPHANUM_1
TOK_6
LP Latent
Inputs Outputs
“,30kMS5,,," “30kMS5 ,30kM530kMS5 ,30kMS"
“, ».08p" “O8p ,.08p08p ,.08p"
“,,,IBpU" “IBpU ,IBpUIBpU ,IBpU"
“ ., mUV" “mUV ,,,mUVmUV ,, mUV"
LP GetSpan_ALPHANUM_1_ALPHANUM 1 | GetSpan_,_-1_ALPHANUM 1 |

GetSpan_ALPHANUM_1_ ALPHANUM_-1 | GetSpan_,_2_ ALPHANUM_1

LP Latent | TOK_6 | TOK_5 | TOK_6 | TOK_5

Inputs Outputs

“ CNBA,uJke.00 Hm 6938" “CNBA,uJke.00OCNBA,6938"

“Xp.sYH ,46,Rj ,330" “Xp.sYH ,46Xp.sYH ,46,Rj ;330"

“,gYR 85296 LRgIX,15,eWEeu" “gYR 85296gYR 85296 LRgJX,15,15"

“BPYVr ALVbf wEvm 86,103" “BPYVr ALVbf wEvm 86BPYVr ALVbf wEvm 86,103"
LP GetSpan_WORD_1_NUMBER_1 | GetSpan_WORD_1_,_-1 |

GetSpan_NUMBER_2_NUMBER_2

LP Latent | TOK_9 | TOK_9 | TOK_4

Figure 11. Latent codes and programs found by Latent Programmer in toy DSL.

Latent Programmer: Discrete Latent Codes for Program Synthesis

Inputs Outputs
“r, 6150,XLQPI" “6150r, 6150r, 6150"
“.ERY1M, 80,Iejg" “80ERYIM, 80ERYIM, 80"
“sqd,.xJx,01928" “01928sqd,.xJx,01928sqd,.xJx,01928"
“.w Nqgk.42," “42w Ngk.42w Ngk.42"
LP GetSpan_NUMBER_-1_NUMBER_-1 | GetSpan_WORD_1_NUMBER_1 |
GetSpan_WORD_1_,_ -1

LP Latent | TOK_4 | TOK_9 | TOK_9

Inputs Outputs
“.VyPL 3785.0933,Xj EFSjp" “VyPL37853785.0933,Xj EFSjp"
“.023 Jz Suz.t 4" “Jz023023 Jz Suz.t"
“TyCBs,803 TjtA,4 .qH" “TyCBs803803 TjtA,4 .qH"
“.cCr,3248 L. ,QPLd.6472" “cCr32483248 L ,QPL4d"
LP GetSpan_WORD_1_WORD_1 | GetSpan_NUMBER_1_NUMBER_1 |

GetSpan_NUMBER_1_WORD_-1

LP Latent | TOK_6 | TOK_7 | TOK_9

Inputs Outputs
“.Eu.F IgKFs,XD.011" “O11F"
“.U0Z,aVEzk,KNq 08,UqlhR" “0zZ"
“44 j.0z.peQy,l" “440z"
“,FtAz CIHLB V 851.0R8l1" “851CIHLB"
LP GetSpan_NUMBER_1_NUMBER_1 | GetSpan_WORD_2_WORD_2

LP Latent | TOK_7 | TOK_3

Inputs Outputs
“.9312 ..767" “7679312 ..76793129312"
“.,04194,47460" “4746004194,474600419404194"
“.4940..3646" “36464940..364649404940"
. .180,5275" “5275180,5275180180"
LP GetSpan_NUMBER_2_NUMBER_-1 | GetSpan_NUMBER_1_NUMBER_-1

GetSpan_NUMBER_1_NUMBER_1 | GetSpan_NUMBER_1_NUMBER_1

LP Latent | TOK_4 | TOK_9 | TOK_7 | TOK_7

Figure 12. More latent codes and programs found by Latent Programmer in toy DSL.

Latent Programmer: Discrete Latent Codes for Program Synthesis

D. Examples of Generated Programs and Latent Codes

Inputs Outputs LP Outputs
“Mason Smith" “Smith M" “Smith M"
“Henry Myers" “Myers H" “Myers H"
“Barry Underwood" “Underwood B" “Underwood B"
“Sandy Jones" “Jones S" “Jones S"
LP GetToken_PROP_CASE_2 | ConstStr (™ ") | GetToken_CHAR_1 (GetToken_ PROP_CASE_1)

LP Latent | TOK_30 | TOK_13 | TOK_39 | TOK_30

Inputs Outputs LP Outputs
“January 15" “jan 15" “jan 15"
“febuary 28" “feb 28" “feb 28"
“march 1" “mar 1" “mar 1"
“October 31" “oct 31" “oct 31"
LP ToCase_LOWER (SubStr (1, 3)) | ConstStr(“™ ") | GetToken_ NUMBER_1

LP Latent | TOK_11 | TOK_26 | TOK_17

Inputs Outputs LP Outputs
“(321) 704 3331" ©“321.704.3331" “321.704.3331"
“(499) 123 3574" “499.123.3574" “499.123.3574"
“(555) 580 8390" “555.580.8390" “555.580.8390"
“(288)225 6116" ©“288.225.6116" “288.225.6116"
LP GetToken NUMBER_1 | ConstStr(.) | Replace_“ "_. (SubStr (-8, -1))

LP Latent | TOK_17 | TOK_ 27 | TOK_ 24 | TOK_16

Inputs Outputs LP Outputs
“Milk 4, Yoghurt 12, Juice 2, Egg 5" “ML.E." “ML.E."
“US:38 China:35 Russia:27 India:1" “U.L" “U.L"
“10 Apple 2 Oranges 13 Bananas 40 Pears" “A.P." “A.P."
“parul 7 rico 12 wolfram 15 rick 19" “PR." “L

LpP GetToken_CHAR_1 (GetToken PROP_CASE_1) | Const(.) |

GetToken_CHAR_-1 (GetAll ALIL_CAPS) | Const (.)

LP Latent | TOK_39 | TOK_30 | TOK_6 | TOK_38 | TOK_30

Figure 13. Latent codes and programs found by Latent Programmer in string transformation tasks. Red denotes I/O where the predicted
program mapped input to an incorrect output.

Latent Programmer: Discrete Latent Codes for Program Synthesis

Docstring Program

getanenvhonnwntvmﬁﬂﬂe def set_key(key, val, key_prefix=None):
return environ.get (key, key_prefix)

return a list of the words def split (s, sep=None, maxsplit=-1):
in the string s return s.split (sep, maxsplit)
mean squared error function def mean_squared_error (y_true, y_pred):
return tf.reduce_mean (tf.square((y_true -
y_pred)))
read a python file def read_file (fname) :
f = open (fname)
with open (fname, ‘r’) as f:
f.seek (0)
return f.read()
pickle dump def pickle_save (filename, data):

\

with open (filename, r’) as f:

pickle.dump (data, f)

takes a timedelta and returns the def total_seconds (delta) :

total number of seconds return ((delta.microseconds + ((delta.days
x 24) % 3600) * (10x%6))/(10%%6))

Figure 14. Programs found by Latent Programmer in Python code generation dataset. Red denotes ares where the predicted program
deviates from human code.

