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Abstract a given task much slower than other workers, deteriorate 

Distributed computing has been a prominent solu­
tion to efficiently process massive datasets in par­
allel. However, the existence of stragglers is one 
of the major concerns that slows down the overall 
speed of distributed computing. To deal with this 
problem, we consider a distributed matrix multi­
plication scenario where a master assigns multiple 
tasks to each worker to exploit stragglers’ comput­
ing ability (which is typically wasted in conven­
tional distributed computing). We propose Cheby­
shev polynomial codes, which can achieve order-
wise improvement in encoding complexity at the 
master and communication load in distributed ma­
trix multiplication using task entanglement. The 
key idea of task entanglement is to reduce the 
number of encoded matrices for multiple tasks 
assigned to each worker by intertwining encoded 
matrices. We experimentally demonstrate that, 
in cloud environments, Chebyshev polynomial 
codes can provide significant reduction in overall 
processing time in distributed computing for ma­
trix multiplication, which is a key computational 
component in modern deep learning. 

1. Introduction 

Matrix multiplication is one of the most basic building 
blocks in machine learning and deep learning. As the size of 
data required for deep learning grows, distributed computing 
is receiving significant attention due to its ability to handle 
the large dataset in a parallel manner. However, many stud­
ies (Dean & Barroso, 2013), (Huang et al., 2017), (Tandon 
et al., 2017) have reported that stragglers, which compute 
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the computation capability of the system. Accordingly, the 
existence of stragglers has arose as an important issue in dis­
tributed computing since it is a major bottleneck in overall 
processing time. 

To handle straggler issue in distributed computing, several 
methods have been proposed, which are depicted in Fig. 
1. One of the conventional methods (Wang et al., 2014) 
is to replicate the computational tasks and allocate them 
to several workers. On the other hand, (Lee et al., 2018) 
were the first to suggest coded distributed computing, which 
can effectively utilize redundancy in task allocation by a 
coding theoretic approach, in order to alleviate the strag­
gler problem. Fig. 1(a) and Fig. 1(b) show examples of 
distributed matrix multiplication on C = A × B, where a 
master uses replication-based task allocation and coded task 
allocation schemes with four workers. In Fig. 1(a), two 
tasks are replicated and allocated to two workers under the 
assumption that A is divided into two matrices A1 and A2 

of the same size, i.e., A = [A1; A2]. In this scheme, the 
master can tolerate one straggler per task to get the compu­
tation result C. However, if both workers responsible for 
the same task compute and return their results slowly as in 
Fig. 1(a), the master cannot decode the final computation 
result. On the other hand, in Fig. 1(b), the master utilizes a 
coded computation scheme which uses maximum distance 
separable (MDS) codes for task allocation. In this case, the 
master can decode the final computation result C from two 
of the fastest computation returns, thus it can tolerate any 
two stragglers among four workers. 

For matrix multiplication, a coded computation scheme is 
expanded into various ways with different matrix partition­
ing parameters. Polynomial codes have been suggested in 
(Yu et al., 2017), which are designed to encode both input 
matrices by polynomial functions. In (Dutta et al., 2019), the 
authors have proposed a different matrix partitioning scheme 
for distributed matrix multiplication, achieving significant 
reduction in memory overhead at workers. Furthermore, 
in (Dutta et al., 2019), polydot codes that generalize the 
previously proposed schemes was introduced, which show 
trade-offs between recovery threshold, communication load, 
and computational load at workers. Finally, the authors 

mailto:junglee@snu.ac.kr


Chebyshev Polynomial Codes: Task Entanglement-based Coding for Distributed Matrix Multiplication 

100% done 60% done 80% done100% done 100% done 60% done 80% done100% done

(

(a) replication based allocation (b) coded task allocation 

100% done 50% done 70% done90% done 100% done 50% done 70% done90% done

(c) single task allocation (d) multiple task allocation 

Figure 1. Comparison between task allocation schemes 

in (Yu et al., 2020) have suggested entangled polynomial 
codes, which achieve better trade-off curve than polydot. 

Although coded distributed computing do handle the strag­
gler issue effectively, one of the major drawbacks is that the 
unfinished tasks at stragglers are completely ignored at the 
master. This results in inefficient utilization of computing 
resources in distributed computing system. In (Kiani et al., 
2018), the authors have introduced a new coded computation 
scheme, in which the master assigns multiple small tasks 
to each worker, instead of a single large task. By assigning 
multiple small tasks to each worker and allowing them to 
return their computation results separately, the master can 
exploit the partial computation results from slow workers. 
We call this approach a ”straggler-exploiting coded com­
putation” in this paper. As shown in Fig. 1(c), when a 
single task is assigned to each worker, the master can only 
utilize computation results of worker W1, while being un­
able to utilize unfinished computations of workers W2, W3 

and W4. On the other hand, in Fig. 1(d), the master allo­
cates two small tasks with half of the size to each worker. 
In this case, the master can utilize two computation results 
of worker W1 and one of the two computation results of 
workers W2, W3, and W4 once they finish either of the two 
assigned tasks. Consequently, this approach can speed up 
overall processing time in distributed computing by fully 
leveraging computing resources. In addition, this approach 
has been extended into various distributed computing scenar­
ios such as preserving data privacy and considering sparse 
matrix inputs (Kim et al., 2019), (Das & Ramamoorthy, 
2020). 

In this paper, we consider coded distributed computing in 
a straggler-exploiting scenario for matrix multiplication. 
Particularly, we propose a novel task encoding scheme to 

speed up overall processing time, referred to as Chebyshev 
polynomial codes. With Chebyshev polynomial codes, we 
perform task entanglement for matrix multiplication. By 
task entanglement, the results of L tasks allocated to each 
worker can be produced by multiplication between L1 and 
L2 encoded matrices, where L1L2 = L. In a conventional 
straggler-exploiting distributed matrix multiplication, the 
master sends 2L encoded matrices to each worker to as­
sign L tasks. In contrast, in Chebyshev polynomial codes, 
the master sends L1 + L2 encoded matrices to each worker. 
This results in i) reducing encoding complexity at the mas­
ter, ii) decreasing communication load from the master to 
workers, and iii) lowering memory usage at workers to 
store encoded matrices, and iv) having resiliency to strag­
gler as well. In the following, we will introduce how to 
perform task entanglement using Chebyshev polynomial 
codes, and how the master decodes the final product from 
the results returned from workers. We will also provide 
the performance of Chebyshev polynomial codes on the 
important metrics of distributed computing systems such as 
recovery threshold at the master, memory usage at workers, 
and overall process time. Finally, we will demonstrate the 
performance of Chebyshev polynomial codes by making 
comparison with existing schemes. 

2. System Model 
We consider a straggler-exploiting distributed computing 
scenario for matrix multiplication. In our setup, the master 
performs a matrix multiplication C = AB with input ma­
trices A ∈ Fa×b and B ∈ Fb×c in parallel, allocating WL 
tasks to W workers. 

To be specific, the master generates encoded matrices Ãi,j 
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and B̃i,j for i ∈ [1 : W ], j ∈ [1 : L] using encoding 
functions pA, pB on input matrices A and B. After gen­
erating encoded matrices, the master assigns L tasks by 
sending Ãi,j and B̃i,j for j ∈ [1 : L] to ith worker Wi 

for i ∈ [1 : W ]. Based on the received encoded matrices 
for L tasks, each worker Wi computes the assigned tasks 
C̃i,j = Ãi,j B̃i,j , and sends the completed computation re­
sults to the master asynchronously. This implies that each 
worker sends completed results whenever each task is fin­
ished.1 

After sending the encoded matrices, the master waits for the 
results of the tasks from workers, until being able to decode 
C from the results by using decoding functions. Once the 
master can decode C from the computation results, it stops 
receiving them and starts decoding the final product. 

The main issue is how to design encoding functions and 
determine evaluation points, which are used for the genera­
tion of encoded matrices for matrix multiplication C = AB. 
Let us define important factors that mainly affect the perfor­
mance in distributed computing as follows. 

Encoding & Decoding Cost: Computational complexities 
to generate encoded matrices, and to decode the final prod­
uct at the master. 

Communication Load: Size of the transmitted data be­
tween the master and workers. It includes encoded matrices 
from the master to workers (task-allocation communication 
load)2 and computation results returned from workers to the 
master (computation-return communication load). 

Computation Load: Computational complexity to calcu­
late assigned tasks at each worker. 

Recovery Threshold: Minimum number of computation 
results C̃i,j that the master requires to obtain the final result 
C in the worst-case scenario. 

3. Task Entanglement 
In this section, we provide task entanglement in a straggler-
exploiting distributed matrix multiplication and suggest the 
required conditions. Mentioned earlier in Section 1, we 
reduce the number of encoded matrices sent to each worker 
from 2L to L1 + L2 by facilitating L1 and L2 encoded 
matrices to produce L computation results of the tasks when 
L = L1L2. 

Fig. 2 shows the relationship between encoded matrices 
and 6 tasks assigned to each worker in conventional coding 

1We do not restrict the computation order of the L tasks at each 
worker. 

2We note that this metric corresponds to the memory usage at 
each worker, since it can also represent the required memory size 
at each worker to store encoded matrices for the assigned tasks. 

(a) conventional coding 
scheme 

,

)

(b) task entanglement-based 
coding scheme 

Figure 2. Example of conventional coding scheme and task 
entanglement-based coding scheme 

schemes and task entanglement-based coding scheme. In 
conventional coding schemes (Fig. 2(a)), 12 encoded ma­
trices are sent to each worker to compute 6 tasks C̃i,j = 
Ãi,j B̃i,j for j ∈ [1 : 6]. Thus, the master needs to generate 
and send 12 encoded matrices to each worker. On the other 
hand, in the entanglement-based coding scheme (Fig. 2(b)), 
a total of 5 encoded matrices are generated and sent to Wi 

for 6 tasks (L1 = 2 and L2 = 3 in this case). This can be 
obtained by designing the matrix multiplications between 

˜ ˜ ˜each of {Ãi,1, Ai,3, Ai,5} and {B̃i,1, Bi,2} to produce re­
quired 6 computation results, C̃i,j for j ∈ [1 : 6] as shown 
in Figure 2(b), which we call task entanglement. 

To accomplish task entanglement, we suggest the condition 
for encoded matrices that will be sent to each worker to 
assign L tasks. 

Lemma 1. In a straggler-exploiting distributed computing 
for matrix multiplication, one can reduce the number of 
encoded matrices sent to each worker by task entanglement, 
from 2L to L1 +L2, if encoded matrices satisfy the following 
conditions, where L = L1L2, for i ∈ [1 : W ], 

Ãi,x = Ãi,x+L2×(y−1), ∀x ∈ [1 : L2], ∀y ∈ [1 : L1], 

B̃i,y = B̃i,x+L2 ×(y−1), ∀x ∈ [1 : L2], ∀y ∈ [1 : L1]. 

To compute the given tasks {C̃i,j }Lj=1, each worker Wi 

requires encoded matrices {Ãi,j }L and {B̃i,j }L . How­j=1 j=1

ever, by the above condition, {Ãi,j }Lj=1 are compressed 
into L2 matrices since each of a set of L1 matrices has 
the same elements, and {B̃i,j }Lj=1 are compressed into L1 

matrices in the same way. Thus, the number of encoded ma­
trices for each worker is equal to L1 + L2 and this implies 
that multiplication of L1 and L2 encoded matrices produce 
required results for L tasks {C̃i,j }Lj=1. Accordingly, the 
master encode and send only L1 + L2 encoded matrices 
to each worker, instead of 2L encoded matrices, and this 
results in reducing encoding complexity at the master and 
communication load for task assignment from the master to 
workers. 
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From now on, we will introduce our coding scheme, and 
show how task entanglement is realized. In our scheme, the 
master divides input matrices A and B into sub-matrices of 
equal size Aw ∈ F 

a ×b for w ∈ [1 : m], and Bz ∈ Fb× c 
m n 

for z ∈ [1 : n], which are given by ⎤⎡ 
A = ⎢⎣ A1 

. . . 
Am 

⎥⎦ , B =
  

B1 · · · Bn . (1) 

Encoding functions pA and pB are constructed by using 
Figure 3. Choosing evaluation points in f(x) and g(x)the divided sub-matrices of A and B as coefficients, which 

are given by 
degrees of f(x) and g(x) need not to be less than L1 and 

m

pA(x) = Aw

 L2, respectively. 
f(x)w−1 , (2) 

w=1 Fig. 3 shows an example of a pair of polynomial 
n

pB(x) = Bzg(x)
z−1 

 
z=1 

bases f(x) and g(x) and a set of six evaluation points 
, {x1,1, x1,2, x1,3, x2,1, x2,2, x2,3}. According to Fig. 3, the 

polynomial function f(x) has three different values, and 
where x represents the variable of polynomials of encoding 
functions pA and pB, and f(x) and g(x) denote the polyno­
mial basis for pA and pB, respectively. Using these encod­

m ning functions, Ãi,j ∈ F 
a ×b and B̃i,j ∈ Fb× c 

are encoded 
from pA(x) and pB(x) at evaluation points x = xi,j , which 
implicates Ãi,j = pA(xi,j ) and B̃i,j = pB(xi,j ). The 
tasks assigned to Wi are represented as C̃i,j = Ãi,j B̃i,j ∈ 
F 

a × c 
m n for j ∈ [1 : L]. These results represent the values of 

objective function pC(x), which is given by 

pC(x) = pA(x) × pB(x), (3) 

at x = xi,j . In this coding scheme, because pC is also 
a polynomial function as pA and pB, the master aims to 
decode the final product C = AB by interpolating objective 
function pC(x) from received results on evaluation points 
at x = xi,j . 

To achieve task entanglement, we need to carefully choose 
a pair of polynomial bases f(x) and g(x), that makes en­
coded matrices satisfying Lemma 1. We now provide the 
conditions on f(x) and g(x) for task entanglement in our 
scheme. 

Lemma 2. For encoding functions pA(x) and pB(x) in 
(2), to realize task entanglement, the polynomial bases f(x) 
and g(x) need to satisfy the following conditions. 

Condition I: There exist W sets of L points 
x1,1, x1,2, ..., xW,L that satisfy f(xi,j+L2(k−1)) = αi,j 

and g(xi,j+L2(k−1)) = βi,k for all i ∈ [1 : W ], j ∈ [1 : 
L2], k ∈ [1 : L1], where L = L1L2. 

Condition II: Each of f(x) and g(x) has at least L1 − 1 
and L2 − 1 distinct local extremum points, respectively. 

To satisfy Condition I in Lemma 2, f(x) and g(x) need to 
satisfy Condition II. In addition, to satisfy Condition II, the 

g(x) has two different values at six evaluation points, satisfy­
ing Condition I in Lemma 2. Therefore, encoding functions 
pA(x) and pB(x) can generate encoded matrices required 
for task entanglement using f(x), g(x), and six evaluation 
points in the example. 

Remark 1. By task entanglement, the number of encoded 
matrices sent to each worker is reduced asymptotically from √ 
O(2L) to O(L1 + L2) : O(2 L) when the values of L1√ 
and L2 are close to L, while satisfying L = L1L2. This √ 
results in order-wise improvements, from O(L) to O( L), 
on encoding complexity at the master, task-allocation com­
munication load, and memory usage at each worker. 

In the following, we show that one can always find the 
adequate pair of polynomial bases f(x) and g(x) satisfying 
the conditions in Lemma 2 for arbitrary matrix partitioning 
parameter m, n, and order of basis L1, L2. This can be 
done by utilizing the property of Chebyshev polynomials. 

4. Chebyshev Polynomial Codes 

We dedicate this section to propose Chebyshev polyno­
mial codes, which enable task entanglement in a straggler-
exploiting distributed matrix multiplication. To apply task 
entanglement in various distributed matrix multiplication 
scenarios, it should be applicable for different number of 
workers (W ) and number of tasks assigned to each workers 
(L). Thus we need to find adequate polynomial bases and 
their evaluation points satisfying Lemma 2 for various W 
and L. Moreover, there should exist enough sets of evalua­
tion points and polynomial bases for arbitrary combinations 
of L1 and L2 satisfying L = L1L2.3 

3The number of the sets of evaluation points should be more 
than the number of workers. 
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4.1. The selection of evaluation points 

We show that Chebyshev polynomials are well-suited for 
task entanglement by suggesting an algorithm to find enough 
sets of evaluation points for arbitrary system parameters W 
and L.4 To begin with, we need to re-index the notations 
for evaluation points and encoded matrices to avoid ambi­
guity. Using task entanglement, the master assigns L1 + L2 

encoded matrices (not 2L) to each worker. Therefore we 
change the notation for evaluation points as 

xi,j,k = xi,j+L2(k−1), ∀j ∈ [1 : L2], ∀k ∈ [1 : L1], 

for i ∈ [1 : W ]. Following this re-indexed notations, we 
also denote L tasks assigned to each worker and their en­
coded matrices as 

¯ ¯ ¯Ci,j,k = Ai,j × Bi,k, ∀j ∈ [1 : L2], ∀k ∈ [1 : L1], 

for i ∈ [1 : W ]. 

We now demonstrate that required evaluation points xi,j,k 

can be found by using commutative polynomial as polyno­
mial basis. 

Lemma 3. We can always find xi,j,k for i ∈ [1 : W ], j ∈ 
[1 : L2], k ∈ [1 : L1] satisfying Lemma 2 by using commu­
tative polynomial for f(x) and g(x), each of which has L1 

and L2 local extremum points, respectively. 

Proof. Let us choose an arbitrary value ti between the great­
est local minimum value and smallest local maximum value 
of f(x) and g(x). From f(x) = ti, we can find the L1 roots 
x̃i,k for k ∈ [1 : L1] as 

f(x̃i,k) = ti. ∀k ∈ [1 : L1]. 

If the values of L1 roots x̃i,k for k ∈ [1 : L1] also fall 
between the greatest local minimum value and smallest 
local maximum value of g(x) as ti, we can find L2 roots 
xi,j,k for j ∈ [1 : L2] from g(x) = x̃i,k as 

g(xi,j,k) = x̃i,k. ∀j ∈ [1 : L2], ∀k ∈ [1 : L1]. (4) 

For f(x) and g(x) are commutative polynomial, the follow­
ing equation holds. 

f(g(xi,j,k)) = g(f(xi,j,k)) (5) 
= ti, ∀j ∈ [1 : L2], ∀k ∈ [1 : L1]. 

Since g(x) has L2 local extremum points and ti are choosen 
between the greatest local minimum value and smallest 
local maximum value, the equation g(x) = ti will have 

4Chebyshev polynomials were first used for coded distributed 
computing in (Fahim & Cadambe, 2021) to guarantee numerical 
stability in decoding. In Chebyshev polynomial codes, Cheby­
shev polynomials are used to provide communication-efficient 
distributed computing. 

L2 different roots. Note that j is not included in the right-
hand-side term in (4), thereby we can rearrange the order of 
xi,j,k on j. Thus, by denoting roots of g(x) = ti as x̄i,j and 
rearranging the order of xi,j,k about k appropriately, we can 
express it as 

f(xi,j,k) = x̄i,j , ∀j ∈ [1 : L2], ∀k ∈ [1 : L1]. 

Therefore, the commutative polynomial f(x) and g(x), and 
a set of evaluation points xi,j,k for j ∈ [1 : L2], k ∈ [1 : L1] 
satisfy Lemma 2. In addition, by choosing arbitrary values 
ti for i ∈ [1 : W ], we can always find sets of evaluation 
points xi,j,k for i ∈ [1 : W ], j ∈ [1 : L2], and k ∈ [1 : L1]. 
This completes the proof. 

Corollary 1. A set of Chebyshev polynomials is an unique 
solution for Lemma 3 among commutative polynomial func­
tions. 

Proof. It is proved in (Block & Thielman, 1951) that the en­
tire sets of commutative polynomial functions are included 
in one of the sets 

(Ax + B)n − B 
(I) Pn(x) = , (6)

A 
(II) Tn(x) = A−1 cos(n × cos −1(Ax + B) − B), (7) 

(A  = 0; n = 1, 2, 3, . . .) 

dPn(x)In set (I), = 0 only if x = − B . Accordingly, the dx A 
commutative polynomial functions in (I) have at most one 
local extremum points and they cannot satisfy Condition 
II in Lemma 2. Thus, we can conclude that the set (II), 
which corresponds to the set of Chebyshev polynomials, is 
an unique solution satisfying Lemma 3. This completes the 
proof. 

Given Lemma 3 and Corollary 1, we now provide an algo­
rithm to find the sets of evaluation points for task entangle­
ment when f(x) and g(x) are Chebyshev polynomials. 

Algorithm 1 Selecting evaluation points 
Input: Chebyshev polynomial f(x) and g(x) (deg f = L1, 

deg g = L2) 
Output: A set of evaluation points xi,j,k for i ∈ [1 : W ], 

j ∈ [1 : L2], and k ∈ [1 : L1] 
ti = 0 for i ∈ [1 : W ], i = 1 // Initialize 
while i ∈ W do 

Pick an arbitrary constant ti between (−1, 1) that satis­
fies ta   = tb if a = b 
Calculate the roots of f(x) = ti and save them as x̃i,k 

for k ∈ [1 : L1] 
Calculate the roots of g(x) = x̃i,k for k ∈ [1 : L1] and 
save them as xi,j,k for j ∈ [1 : L2] and k ∈ [1 : L1] 
Rearrange xi,j,k about j to satisfy f(xi,j,k) = x̄i,j 

i = i + 1 
end 
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In the algorithm 1, we use constant ti in range (−1 : 1) 
because local extremum values of Chebyshev polynomial 
are either −1 or 1. 

4.2. Encoding by Chebyshev polynomial codes 

In Section 3, we proposed the conditions for task entangle­
ment in a distributed matrix multiplication. Furthermore, 
we prove that Chebyshev polynomials can always satisfy 
those conditions in 4.1. In this subsection, we will show 
how to design the encoding functions pA(x) and pB(x) us­
ing Chebyshev polynomials as polynomial bases f(x) and 
g(x). 

Specifically, the encoding procedure by Chebyshev polyno­

1encoded matrices are and 1 of the original input matrices m n 
1A and B, respectively, the size of assigned tasks is a of mn 

the original task C = AB. Thus, we determine the size of 
each task using m and n in this step. 

Step 2. Determine L1 and L2, which are the degrees of 
f(x) and g(x), for given m, n, and L. One important 
consideration is that the degrees of f(x) and g(x) should be 
determined carefully to guarantee decodability at the master 
as 

deg f i(x)gj (x) = deg fk(x)g l(x), if i = k or j = l, (8) 
∀i, k ∈ [1 : m − 1], ∀j, l ∈ [1 : n − 1]. 

The constraint on the degrees of f(x) and g(x) implies that 
the degrees of the multiplications of Awf(x)

w−1, w ∈ [1 : 
m] and Bz g(x)

z−1, z ∈ [1 : n] in (2) should be unique. 
This is because the master needs to achieve the sub-blocks 
AwBz, w ∈ [1 : m], z ∈ [1 : n] separately from the co­
efficients of pC(x) in order to decode the final product C. 
Therefore, we should choose adequate values of L1 and L2 

to satisfy this constraint. For example, if we set m = n, 
this constraint is satisfied by choosing a prime number for 
L2 = m and L1 smaller than L2.5. 

Step 3. Generate encoding functions pA(x), pB(x) as in 
(2), based on the divided sub-matrices of A, B in (1) and 
L1, L2 degree Chebyshev polynomials f(x), g(x). 

Step 4. Find adequate evaluation points for generating en­
coded matrices on L tasks for each worker by Algorithm 1 
in 4.1. 

¯ ¯Step 5. Generate encoded matrices Ai,j and Bi,k for j ∈ [1 : 
L2] and k ∈ [1 : L1] for i ∈ [1 : W ]. They can be generated 
by values of encoding functions pA(x) and pB(x) in Step 

5However, we can always find the adequate orders of f(x) and 
g(x) even if m  n and L2 is not a prime number. Detailed= 
explanation is provided in Appendix A 

3 using evaluation points xi,j,k for i ∈ [1 : W ], j ∈ [1 : L2], 
and k ∈ [1 : L1] in Step 4. 

4.3. Computing at workers 

¯ ¯After receiving Ai,j and Bi,k for j ∈ [1 : L2] and 
k ∈ [1 : L1], each worker Wi starts to compute L tasks 

¯ ¯ ¯by calculating Ci,j,k = Ai,j × Bi,k. Whenever each task is 
finished, individual worker sends the completed computa­
tion results immediately to the master. 

4.4. Decoding of Chebyshev polynomial codes 

According to the divided sub-matrices of A and B in (1), 
the final product C = AB can be represented as 

mial codes is as follows. ⎤⎡ 
A1B1 · · · A1BnStep 1. Determine matrix partitioning parameters m and ⎢⎣ ⎥⎦. .. . (9)C = . . . n for given input matrices A and B. Since the sizes of .. . 
AmB1 · · · AmBn 

Thus, the master can get the final product C by obtaining 
sub-blocks of C, i.e., A1B1 . . . AmBn. Let us denote the 

¯fastest mn computation results as Ct for t ∈ [1 : mn] and 
denote the evaluation points of them as βt for t ∈ [1 : mn]. 
The fastest mn computation results can be represented as 
(10). 

Therefore, decoding at the master can be done by inversion 
of the coefficient matrix in (10). However, the existence 
of the inverse of the coefficient matrix is not guaranteed 
in general. If the coefficient matrix is singular, the master 
can decode by interpolation (Kedlaya & Umans, 2011) of 
pC(x) and extracting AiBj using repeated division of f(x) 
and g(x) instead. 

pC(x) = pA(x) × pB(x) 

= A1B1 + . . . + AmBnf
m−1(x)g n−1(x). (11) 

pC(x) is a (L1(m − 1) + L2(n − 1))-th order polynomial 
function, hence it can be interpolated from the values at the 
L1(m − 1) + L2(n − 1) + 1 evaluation points, which can 
be obtained from the computation results of the tasks from 
workers. Detailed decoding procedure is provided in the 
Appendix B. 

5. Related Work 

In (Yu et al., 2017), the authors have suggested polynomial 
codes, which use polynomial bases f(x) = x and g(x) = 
xm. Polynomial codes achieve optimal recovery threshold 
in aspect of computation load at workers. 

On the other hand, Matdot has been introduced in (Dutta 
et al., 2019) to reduce memory usage at workers and com­
munication load from the master to workers. It can be ac­
complished by column-wise and row-wise division of input 
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¯ 0 )m−1 )n−1Cmn pC(βmn) βmn f(βmn) . . . g(βmn) . . . f(βmn g(βmn AmBn 

⎥⎦ 
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matrices A and B, respectively, which corresponds to the 
opposite division direction of polynomial codes. However, 
it require higher computation load than polynomial codes 
under the same recovery threshold. 

In (Dutta et al., 2019), (Yu et al., 2020), and (Soto et al., 
2019), general coding schemes dividing the input into both 
row-wise and column-wise have been proposed, which are 
termed as Polydot, entangled polynomial codes, and dual 
entangled polynomial codes, respectively. Dual entangled 
polynomial codes reduce the number of required task results 
at the master by executing two matrix multiplications for a 
single task. As a result, computation-return communication 
overhead from workers to the master is mitigated. 

These codes have been originally considered in the scenario 
where only a single task is allocated to each worker. How­
ever, they can be easily extended to straggler-exploiting 
scenario by assigning multiple tasks to a single worker. 

Straggler-exploiting scenario was first suggested in (Kiani 
et al., 2018). In order to allocate multiple tasks to each 
worker, the authors have proposed product codes, which 
apply different MDS codes to each input matrix. However, 
product codes require stricter decoding conditions than other 
codes (which use only one MDS code), since they use two 
MDS codes for encoding, thus their decodability can not 
be guaranteed by the fixed number of results, i.e., recovery 
threshold. To reduce the communication load for task alloca­
tion in straggler-exploiting scenario, (Hong et al., 2020) has 
suggested squeezed polynomial codes. Each worker com­
putes L tasks by multiplying L encoded matrices of A and 1 
encoded matrix of B. This can be regarded as a special case 

2019), and iv) Matdot (MD) (Dutta et al., 2019). 

The distributed matrix multiplication proceeds in a cluster 
of Amazon EC2 cloud, while one t2.Xlarge node is used as 
the master and twelve t2.micro nodes are used as workers. 
Implementation of distributed computing system is done by 
using MPI4py (Dalcı́n et al., 2005). To simulate stragglers in 
the large-scale distributed computing scenario, we randomly 
pick stragglers among workers with straggler-probability 
0.2, and run background thread at the stragglers which slows 
them down than other workers. 

Three metrics are evaluated to estimate the performance of 
coding schemes: overall processing time, recovery threshold 
at the master, and memory usage at each worker. Further­
more, we measure processing times for every stage of the 
distributed computing procedure. To do so, we divide over­
all processing time into i) encoding time, ii) task-allocation 
time from the master to workers, iii) computation and task-
return time from workers to the master, and iv) decoding 
time. Computation and task-return time denotes the elapsed 
time from the moment every worker receive encoded matri­
ces to the moment the master receives required number of 
computation results to obtain the final product. 

We run the experiments to multiply two input matrices A 
and B, each of which has the size of 2100 by 1800 and 1800 
by 2100, respectively. Matrices are randomly generated as 
two Numpy matrices, and each experiment is repeated 20 
times. We indicate the average results on the Figure 4 and 5. 

Table 1. Parameter setting for Case 1, 2, and 3 

(L1 = 1) of Chebyshev polynomial codes. However, be­
cause they perform task entanglement for only one input B, 
they cannot provide comparable gain on encoding complex­
ity, communication load, and memory usage compared to 
Chebyshev polynomial codes. Specifically, their asymptotic 
gains on encoding complexity, communication load, and 
memory usage are O(L + 1), whereas those of Chebyshev √ 
polynomial codes are O(2 L). 

6. Evaluation 

In this section, we provide the performance of Chebyshev 

CC PC EP DEP MD 
Case 1. L = 2 
L1 = 1 
L2 = 2 

m 
n 
p 

2 
2 
1 

2 
2 
1 

2 
1 
2 

2 
1 
2 

1 
1 
3 

Case 2. L = 6 
L1 = 2 
L1 = 3 

m 
n 
p 

3 
3 
1 

3 
3 
1 

2 
2 
2 

2 
2 
2 

1 
1 
9 

Case 3. L = 12 
L1 = 3 
L2 = 4 

m 
n 
p 

4 
4 
1 

4 
4 
1 

2 
2 
4 

2 
2 
4 

1 
1 
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polynomial codes (denoted as CC in this section), and com-
Experiments are performed for three cases, which have 
different parameter value L (number of the tasks allocated 

pare with following: i) polynomial codes (PC) (Yu et al., 
2017), ii) entangled polynomial codes (EP) (Yu et al., 2020), 
iii) dual entangled polynomial codes (DEP) (Soto et al., 

at each worker). Parameter setting of the coding schemes 
for three cases are is in Table 1. In the setting, p denotes the 
division parameter that decides column-wise division of A 
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(a) overall processing time (b) recovery threshold (c) memory usage at each worker 

Figure 4. Comparison of overall processing time, recovery threshold at the master, and memory usage at each worker 

Figure 5. Processing times for every stage of distributed computing 
procedure in Case 2. 

and row-wise division of B. Since CC and PC do not divide 
the matrix in this way, we use fixed value p = 1 for CC 
and PC. More experimental results including other types of 
matrices are provided in Appendix C. 

In Fig. 4, we compare the performance in terms of (a) over­
all processing time, (b) recovery threshold, and (c) memory 
usage at each worker. We can see that CC achieves the 
smallest overall processing time in all three cases. It is re­
markable that CC requires relatively higher recovery thresh­
old compared to other coding schemes in several cases, but 
it does not lead to an increase in overall processing time. 
This is due to the fact that CC efficiently reduces encoding 
complexity and task-allocation communication load. Ad­
ditionally, although the number of tasks assigned to each 
worker increases in Case 1, 2 and 3, CC achieves similar 
level of memory usage and overall processing time for all 
cases, while others show increasing memory usage and over­
all processing time. It can be achieved by task entanglement 
of CC, reducing the number of encoded matrices for each 
worker. As a result, CC achieves similar level of memory us­
age with MD, i.e., the memory efficient coding scheme, for 
Cases 1 and 2. Furthermore, CC even accomplishes lower 
memory usage for Case 3, while achieving significantly 
smaller overall processing time than MD in all cases. 

We show processing times for every stage of distributed 
computing procedure of Case 2 in Fig. 5. The master gen­
erates L1 + L2 = 5 encoded matrices to assign 6 tasks to 
each worker in CC, while other coding schemes generates 
2L = 12 encoded matrices for 6 tasks. Accordingly, it 
achieves the smallest encoding time, and task-allocation 
time comparable to that of the smallest. In addition, CC 

and PC require the smallest computation and task-return 
time, and decoding time. This is because CC and PC use 
p = 1, while EP, DEP, and MD use p > 1, which increases 
computation load at workers and computation-return com­
munication load from workers to the master under the same 
recovery threshold. Although MD achieves smaller task-
allocation time than CC, CC attains smaller encoding, com­
putation and task-return, and decoding time by the proposed 
task entanglement scheme. Therefore, it requires smaller 
overall processing time in a distributed computing. More­
over, DEP is the only scheme that achieves smaller decoding 
time than CC in this case. Decoding complexity depends 
on the size of computation results from workers to the mas­
ter and recovery threshold. Since DEP achieves small size 
of computation results and requires the smallest recovery 
threshold, it achieves the smallest decoding time. However, 
DEP requires a larger number of encoded matrices for each 
task than CC, which results in larger encoding time and 
task-allocation time. 

7. Conclusion 

The existence of stragglers are considered as a major bot­
tleneck delaying the overall processing time in distributed 
computing. As a solution, coded distributed computing has 
been proposed to handle the straggler issue. However, ex­
isting coding schemes have only considered a single task 
allocation to each worker, or have not efficiently leveraged 
the property of multi-task allocation. In this paper, we pro­
pose Chebyshev polynomial codes, which can achieve dra­√ 
matic order-wise improvement (from L to L) in encoding 
complexity and communication load by task entanglement. 
We propose the concept of task entanglement in a straggler-
exploiting scenario, and show that it can be accomplished 
by using Chebyshev polynomial as a polynomial basis in 
encoding function. Consequently, Chebyshev polynomial 
codes are shown to provide significant reduction in overall 
processing time in a distributed computing for matrix multi­
plication, which is key computational operation in modern 
deep learning. 
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