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Appendices
A. Omitted Proof in Section 4

A.1. PROOF OF LEMMA 1

Proof. By the optimality of B̂t and Ŵt = [ŵt,1, · · · , ŵt,M ], we know that
∑M
i=1

∥∥∥yt−1,i −X>t−1,iB̂tŵt,i

∥∥∥2

2
≤∑M

i=1

∥∥yt−1,i −X>t−1,iBwi
∥∥2

2
. Since yt−1,i = X>t−1,iBwi + ηt−1,i, we have

M∑
i=1

∥∥∥X>t−1,i

(
B̂tŵt,i −Bwi

)∥∥∥2

2
≤ 2

M∑
i=1

η>t−1,iX
>
t−1,i

(
B̂tŵt,i −Bwi

)
. (28)

We firstly analyse the non-trivial setting where d ≥ 2k. Note that both Θ = BW and Θ̂t = B̂tŴt are low-rank matrix
with rank upper bounded by k, which indicates that rank

(
Θ̂t −Θ

)
≤ 2k. In that case, we can write Θ̂t −Θ = UtRt =

[Utrt,1,Utrt,2, · · · ,Utrt,M ], where Ut ∈ Rd×2k is an orthonormal matrix with ‖Ut‖F =
√

2k, and Rt ∈ R2k×M

satisfies ‖rt,i‖2 ≤
√
k. In other words, we can write B̂tŵt,i −Bwi = Utrt,i for certain Ut and rt,i.

Define Vt−1,i(λ)
def
=
(
U>t Xt−1,i

) (
U>t Xt−1,i

)>
+ λI . We have:

M∑
i=1

∥∥∥B̂tŵt,i −Bwi
∥∥∥2

Ṽt−1,i(λ)
(29)

=

M∑
i=1

∥∥∥X>t−1,i

(
B̂tŵt,i −Bwi

)∥∥∥2

2
+

M∑
i=1

λ
∥∥∥B̂tŵt,i −Bwi

∥∥∥2

2
(30)

≤2

M∑
i=1

η>t−1,iX
>
t−1,i

(
B̂tŵt,i −Bwi

)
+ 4Mλ (31)

=2

M∑
i=1

η>t−1,iX
>
t−1,iUtrt,i + 4Mλ (32)

≤2

M∑
i=1

∥∥η>t−1,iX
>
t−1,iUt

∥∥
V −1
t−1,i(λ)

‖rt,i‖Vt−1,i(λ) + 4Mλ (33)

≤2

√√√√ M∑
i=1

∥∥η>t−1,iX
>
t−1,iUt

∥∥2

V −1
t−1,i(λ)

√√√√ M∑
i=1

‖rt,i‖2Vt−1,i(λ) + 4Mλ (34)

=2

√√√√ M∑
i=1

∥∥η>t−1,iX
>
t−1,iUt

∥∥2

V −1
t−1,i(λ)

√√√√ M∑
i=1

∥∥∥B̂tŵt,i −Bwi
∥∥∥2

Ṽt−1,i(λ)
+ 4Mλ (35)

Eqn 31 is due to Eqn 28,
∥∥∥B̂tŵt,i

∥∥∥ ≤ 1 and ‖Bwi‖ ≤ 1. Eqn 34 is due to Cauchy-Schwarz inequality. Eqn 35 is from

M∑
i=1

∥∥∥B̂tŵt,i −Bwi
∥∥∥2

Ṽt−1,i(λ)
=

M∑
i=1

‖Utrt,i‖2Ṽt−1,i(λ) =

M∑
i=1

‖rt,i‖2U>t Ṽt−1,i(λ)Ut
=

M∑
i=1

‖rt,i‖2Vt−1,i(λ) .

The main problem is how to bound
∥∥η>t−1,iX

>
t−1,iUt

∥∥
V −1
t−1,i(λ)

=
∥∥∥∑t−1

n=1 ηn,iU
>
t xn,i

∥∥∥
V −1
t−1,i(λ)

. Note that for a fixed

Ut = Ū , we can regard Ū>xn,i ∈ Rk as the corresponding “action” chosen in step t. With this observation, if Ut is fixed,
we can bound this term following the arguments of the self-normalized bound for vector-valued martingales (Abbasi-Yadkori
et al., 2011).
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Lemma 2. For a fixed Ū , define V̄t,i(λ)
def
=
(
Ū>Xt,i

) (
Ū>Xt,i

)>
+ λI , then any δ > 0, with probability at least 1− δ,

for all t ≥ 0,

M∑
i=1

∥∥Ū>Xt,iηt,i
∥∥2

V̄ −1
t,i

(36)

≤2 log

(∏M
i=1

(
det(V̄t,i)

1/2 det(λI)−1/2
)

δ

)
. (37)

We defer the proof of Lemma 2 to Appendix A.3. We set λ = 1. By Lemma 2, we know that for a fixed Ū , with probability
at least 1− δ1,

M∑
i=1

∥∥∥∥∥
t−1∑
n=1

ηn,iŪ
>xn,i

∥∥∥∥∥
2

V̄ −1
t,i (λ)

≤ 2 log

(∏M
i=1 det(V̄t,i(λ))1/2 det(λI)−1/2

δ1

)
≤ 2Mk + 2 log(1/δ1). (38)

The above analysis shows that we can bound
∥∥η>t−1,iX

>
t−1,iUt

∥∥
V −1
t−1,i(λ)

if Ut is fixed as Ū . Following this idea, we prove

the lemma by the construction of ε-net over all possible Ut. To apply the trick of ε-net, we need to slightly modify the
derivation of Eqn 29. For a fixed matrix Ū ∈ Rd×2k, we have

M∑
i=1

∥∥∥B̂tŵt,i −Bwi
∥∥∥2

Ṽt−1,i(λ)
(39)

≤2

M∑
i=1

η>t−1,iX
>
t−1,iUtrt,i + 4Mλ (40)

=2

M∑
i=1

η>t−1,iX
>
t−1,iŪrt,i + 2

M∑
i=1

η>t−1,iX
>
t−1,i

(
Ut − Ū

)
rt,i + 4Mλ (41)

≤2

M∑
i=1

∥∥η>t−1,iX
>
t−1,iŪ

∥∥
V̄ −1
t−1,i(λ)

‖rt,i‖V̄t−1,i(λ) + 2

M∑
i=1

η>t−1,iX
>
t−1,i

(
Ut − Ū

)
rt,i + 4Mλ (42)

=2

M∑
i=1

∥∥η>t−1,iX
>
t−1,iŪ

∥∥
V̄ −1
t−1,i(λ)

‖rt,i‖Vt−1,i(λ) + 2

M∑
i=1

η>t−1,iX
>
t−1,i

(
Ut − Ū

)
rt,i (43)

+ 2

M∑
i=1

∥∥η>t−1,iX
>
t−1,iŪ

∥∥
V̄ −1
t−1,i(λ)

(
‖rt,i‖V̄t−1,i(λ) − ‖rt,i‖Vt−1,i(λ)

)
+ 4Mλ (44)

≤2

√√√√ M∑
i=1

∥∥η>t−1,iX
>
t−1,iŪ

∥∥2

V −1
t−1,i(λ)

√√√√ M∑
i=1

∥∥∥B̂tŵt,i −Bwi
∥∥∥2

Ṽt−1,i(λ)
+ 2

M∑
i=1

η>t−1,iX
>
t−1,i

(
Ut − Ū

)
rt,i (45)

+ 2

M∑
i=1

∥∥η>t−1,iX
>
t−1,iŪ

∥∥
V̄ −1
t−1,i(λ)

(
‖rt,i‖V̄t−1,i(λ) − ‖rt,i‖Vt−1,i(λ)

)
+ 4Mλ (46)

Eqn 40, 42 and 45 follow the same idea of Eqn 32, 33 and 35.

We construct an ε-net E in Frobenius norm over the matrix set
{
U ∈ Rd×2k : ‖U‖F ≤ k

}
. It is not hard to see that

|E| ≤
(

6
√

2k
ε

)2kd

. By the union bound over all possible Ū ∈ E , we know that with probability 1− |E|δ1, Eqn 38 holds for

any Ū ∈ E . For each Ut, we choose an Ū ∈ E with
∥∥Ut − Ū∥∥F ≤ ε, and we have

2

√√√√ M∑
i=1

∥∥η>t−1,iX
>
t−1,iŪ

∥∥2

V −1
t−1,i(λ)

≤ 2
√

2Mk + 2 log(1/δ1) (47)
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Since
∥∥Ut − Ū∥∥F ≤ ε, we have

2

M∑
i=1

∥∥η>t−1,iX
>
t−1,iŪ

∥∥
V̄ −1
t−1,i(λ)

(
‖rt,i‖V̄t−1,i(λ) − ‖rt,i‖Vt−1,i(λ)

)
≤ 2
√
Mkε(2Mk + 2 log(1/δ1)). (48)

For the term 2
∑M
i=1 η

>
t−1,iX

>
t−1,i

(
Ut − Ū

)
rt,i, the following inequality holds for any step t ∈ [T ] with probability

1−MTδ2,

2

M∑
i=1

η>t−1,iX
>
t−1,i

(
Ut − Ū

)
rt,i ≤2

M∑
i=1

‖ηt−1,i‖2
∥∥X>t−1,i

(
Ut − Ū

)
rt,i
∥∥

2
(49)

≤2

M∑
i=1

‖ηt−1,i‖2
√
kTε (50)

≤2M
√

2 log(2/δ2)kT 2ε (51)

The last inequality follows from the fact that |ηn,i| ≤
√

2 log(2/δ2) with probability 1− δ2 for fixed n, i, and apply a union
bound over n ∈ [t − 1], i ∈ [M ]. Plugging Eqn. 47, 48 and 49 back to Eqn. 45, the following inequality holds for any
t ∈ [T ] with probability at least 1− |E|δ1 −MTδ2:

M∑
i=1

∥∥∥B̂tŵt,i −Bwi
∥∥∥2

Ṽt−1,i(λ)
(52)

≤2
√
Mk + 2 log(1/δ1)

√√√√ M∑
i=1

∥∥∥B̂tŵt,i −Bwi
∥∥∥2

Ṽt−1,i(λ)
(53)

+ 2M
√

2 log(2/δ2)kT 2ε+ 2
√
Mkε(2Mk + 2 log(1/δ1)) + 4Mλ (54)

By solving the above inequality, we know that

M∑
i=1

∥∥∥B̂tŵt,i −Bwi
∥∥∥2

Ṽt−1,i(λ)
≤32 (Mk + log(1/δ1)) + 4M

√
2 log(2/δ2)kT 2ε (55)

+ 4
√
Mkε(2Mk + 2 log(1/δ1)) + 8Mλ (56)

Setting λ = 1, ε = 1
kM2T 2 , δ1 = δ

2
(

6
√

2k
ε

)2kd ≤ δ
2|E| , and δ2 = δ

2MT , the following inequality holds with probability 1− δ:

M∑
i=1

∥∥∥B̂tŵt,i −Bwi
∥∥∥2

Ṽt−1,i(λ)
≤ L def

= 48 (Mk + 5kd log(kMT )) + 32 log(4MT ) + 76 log(1/δ) (57)

At last we talk about the trivial setting where k < d < 2k. In this case, we can write Θ̂t −Θ = Rt where Rt ∈ Rd×M .
The proof then follows the same framework as the case when d ≥ 2k, except that we don’t need to considerUt and construct

ε-net over all possible Ut. It is not hard to show that
∑M
i=1

∥∥∥B̂tŵt,i −Bwi
∥∥∥2

Ṽt−1,i(λ)
≤ 24 (Md+ 2 log(Tk/δ)) in this

case, which is also less than L since d < 2k.
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A.2. PROOF OF THEOREM 1

With Lemma 1, we are ready to prove Theorem 1.

Proof. Let Ṽt,i(λ) = Xt,iX
>
t,i + λId for some λ > 0.

Reg(T ) =

T∑
t=1

M∑
i=1

〈
θi,x

∗
t,i − xt,i

〉
(58)

≤
T∑
t=1

M∑
i=1

〈
θ̃t,i − θi,xt,i

〉
(59)

=

T∑
t=1

M∑
i=1

〈
θ̃t,i − θ̂t,i + θ̂t,i − θi,xt,i

〉
(60)

≤
T∑
t=1

M∑
i=1

(∥∥∥θ̃t,i − θ̂t,i∥∥∥
Ṽt−1,i(λ)

+
∥∥∥θ̂t,i − θi∥∥∥

Ṽt−1,i(λ)

)
‖xt,i‖Ṽt−1,i(λ)−1 (61)

≤


√√√√ T∑

t=1

M∑
i=1

∥∥∥θ̃t,i − θ̂t,i∥∥∥2

Ṽt−1,i(λ)
+

√√√√ M∑
i=1

∥∥∥θ̂t,i − θi∥∥∥2

Ṽt−1,i(λ)

 ·
√√√√ T∑

t=1

M∑
i=1

‖xt,i‖2Ṽt−1,i(λ)−1 (62)

≤ 2
√
T (L+ 4λM) ·

√√√√ M∑
i=1

T∑
t=1

‖xt,i‖2Ṽt−1,i(λ)−1 (63)

where the first inequality is due to
∑M
i=1

〈
θi,x

∗
t,i

〉
≤
〈
θ̃t,i,xt,i

〉
from the optimistic choice of θ̃t,i and xt,i. By Lemma 11

of Abbasi-Yadkori et al. (2011), as long as λ ≥ 1 we have

T∑
t=1

‖xt,i‖2Ṽt−1,i(λ′)−1 ≤ 2 log
det(ṼT,i(λ

′))

det(λ′Id)
≤ 2d log

(
1 +

T

λd

)
(64)

Therefore, we can finally bound the regret by choosing λ = 1

Reg(T ) ≤ 2
√
T (L+ 4M) ·

√√√√ M∑
i=1

T∑
t=1

‖xt,i‖2Ṽt−1,i(λ′)−1 (65)

≤ 2
√
T (L+ 4M) ·

√
Md log

(
1 +

T

d

)
(66)

= Õ
(
M
√
dkT + d

√
kMT

)
. (67)
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A.3. PROOF OF LEMMA 2

The proof of Lemma 2 follows the similar idea of Theorem 1 in Abbasi-Yadkori et al. (2011). We consider the σ-algebra
Ft = σ

(
{x1,i}Mi=1, {x2,i}Mi=1, · · · , {xt+1,i}Mi=1, {η1,i}Mi=1, {η2,i}Mi=1, · · · , {ηt,i}Mi=1

)
, then {xt,i}Mi=1 is Ft−1-measurable,

and {ηt,i}Mi=1 is Ft-measurable.

Define x̄t,i = U>xt,i and St,i =
∑t
n=1 Ū

>xt,iηt,i. Let

Mt(Q) = exp

(
t∑

n=1

M∑
i=1

[
ηt,i 〈qi, x̄t,i〉 −

1

2
〈qi, x̄t,i〉2

])
, Q = [q1, · · · , qM ] ∈ R2k×M (68)

Lemma 3. Let τ be a stopping time w.r.t the filtration {Ft}∞t=0. Then Mt(Q) is almost surely well-defined and E[Mt(Q)] ≤
1.

Proof. Let Dt(Q) = exp
(∑M

i=1

[
ηt,i 〈qi, x̄t,i〉 − 1

2 〈qi, x̄t,i〉
2
])

. By the sub-Gaussianity of ηt,i, we have

E
[
exp

([
ηt,i 〈qi, x̄t,i〉 −

1

2
〈qi, x̄t,i〉2

])
] | Ft−1

]
≤ 1. (69)

Then we have E [Dt(Q) | Ft−1] ≤ 1. Further,

E [Mt(Q) | Ft−1] = E [M1(Q) · · ·Dt−1(Q)Dt(Q) | Ft−1] (70)
= D1(Q) · · ·Dt−1(Q)E [Dt(Q) | Ft−1] ≤Mt−1(Q) (71)

This shows that {Mt(Q)}∞t=0 is a supermartingale and E [Mt(Q)] ≤ 1.

Following the same argument of Lemma 8 in Abbasi-Yadkori et al. (2011), we show thatMτ (Q) is almost surely well-defined.
By the convergence theorem for nonnegative supermartingales, M∞(Q) = limt→∞Mt(Q) is almost surely well-defined.
Therefore, Mτ (Q) is indeed well-defined independently of whether τ < ∞ or not. Let Wt(Q) = Mmin{τ,t}(Q) be a
stopped version of (Mt((Q)))t. By Fatou’s Lemma, E[Mτ (Q)] = E [lim inft→∞Wt(Q)] ≤ lim inft→∞E [Wt(Q)] ≤ 1.
This shows that E[Mτ (Q)] ≤ 1.

The next lemma uses the “method of mixtures” technique to bound
∑M
i=1 ‖St,i‖2V̄ −1

t,i (λ)
.

Lemma 4. Let τ be a stopping time w.r.t the filtration {Ft}∞t=0. Then, for δ > 0, with probability 1− δ,

M∑
i=1

‖Sτ,i‖2V̄ −1
τ,i (λ)

≤ 2 log

(∏M
i=1

(
det(V̄τ,i)

1/2 det(λI)−1/2
)

δ

)
. (72)

Proof. For each i ∈ [M ], let Λi be a R2k Gaussian random variable which is independent of all the other ran-
dom variables and whose covariance is λ−1I . Define Mt = E [Mt([Λ1, · · · ,ΛM ]) | F∞]. We still have E[Mτ ] =
E[E[Mt([Λ1, · · · ,ΛM ]) | {Λi}Mi=1]] ≤ 1.

Now we calculate Mt. Define Mt,i(qi)
def
= exp

(∑t
n=1

[
ηt,i 〈qi, x̄t,i〉 − 1

2 〈qi, x̄t,i〉
2
])

, then we have Mt =

E
[∏M

i=1Mt,i(Λi) | F∞
]

=
∏M
i=1 E [Mt,i(Λi) | F∞], where the second equality is due to the fact that {Mt,i(Λi)}Mi=1 are

relatively independent given F∞. We only need to calculate E [Mt,i(Λi) | F∞] for each i ∈ [M ].

Following the proof of Lemma 9 in Abbasi-Yadkori et al. (2011), we know that

E [Mt,i(Λi) | F∞] =

(
det(λI)

det(V̄t,i)

)1/2

exp

(
1

2
‖St,i‖2V̄ −1

t,i (λ)

)
. (73)

Then we have

Mt =

M∏
i=1

((
det(λI)

det(V̄t,i)

)1/2
)

exp

(
1

2

M∑
i=1

‖St,i‖2V̄ −1
t,i (λ)

)
. (74)
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Since E[Mτ ] ≤ 1, we have

Pr

[
M∑
i=1

‖Sτ,i‖2V̄ −1
τ,i (λ)

> 2 log

(∏M
i=1

(
det(V̄τ,i)

1/2 det(λI)−1/2
)

δ

)]

= Pr

 exp

(
1
2

∑M
i=1 ‖Sτ,i‖2V̄ −1

τ,i (λ)

)
δ−1

(∏M
i=1

(
det(V̄t,i)1/2 det(λI)−1/2

)) > 1



≤E

 exp

(∑M
i=1 ‖Sτ,i‖2V̄ −1

τ,i (λ)

)
δ−1

(∏M
i=1

(
det(V̄τ,i)1/2 det(λI)−1/2

))


=E[Mτ ]δ ≤ δ.

Proof. (Proof of Lemma 2) The only remaining issue is the stopping time construction. Define the bad event

Bt(δ)
def
=

{
ω ∈ Ω :

M∑
i=1

‖St,i‖2V̄ −1
t,i (λ)

> 2 log

(∏M
i=1

(
det(V̄t,i)

1/2 det(λI)−1/2
)

δ

)}
(75)

Consider the stopping time τ(ω) = min{t ≥ 0 : ω ∈ Bt(δ)}, we have
⋃
t≥0Bt(δ) = {ω : τ(ω) <∞}.

By lemma 4, we have

Pr

⋃
t≥0

Bt(δ)

 = Pr[τ <∞] (76)

= Pr

[
M∑
i=1

‖Sτ,i‖2V̄ −1
τ,i (λ)

> 2 log

(∏M
i=1

(
det(V̄τ,i)

1/2 det(λI)−1/2
)

δ

)
, τ ≤ ∞

]
(77)

≤Pr

[
M∑
i=1

‖Sτ,i‖2V̄ −1
τ,i (λ)

> 2 log

(∏M
i=1

(
det(V̄τ,i)

1/2 det(λI)−1/2
)

δ

)]
(78)

≤δ. (79)
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A.4. PROOF OF THEOREM 2

Proof. The proof follows the same idea of that for Theorem 1. The only difference is that, in our setting, we have yt,i =

x>t,iBwi+ηt,i+∆t,i, where θi = Bwi is the best approximator for task i ∈ [M ] such that
∣∣∣E [yi | xi]−

〈
xi, Ḃẇi

〉∣∣∣ ≤ ζ ,

and ‖∆t,i‖ ≤ ζ . Define ∆t,i = [∆1,i,∆2,i, · · · ,∆t,i]. Similarly, by the optimality of B̂t and Ŵt = [ŵt,1, · · · , ŵt,M ], we

know that
∑M
i=1

∥∥∥yt−1,i −X>t−1,iB̂tŵt,i

∥∥∥2

2
≤
∑M
i=1

∥∥yt−1,i −X>t−1,iBwi
∥∥2

. Since yt−1,i = X>t−1,iBwi + ηt−1,i +

∆t,i, thus we have

M∑
i=1

∥∥∥X>t−1,i

(
B̂tŵt,i −Bwi

)∥∥∥2

(80)

≤2

M∑
i=1

η>t−1,iX
>
t−1,i

(
B̂tŵt,i −Bwi

)
+ 2

M∑
i=1

∆>t−1,iX
>
t−1,i

(
B̂tŵt,i −Bwi

)
(81)

≤2

M∑
i=1

η>t−1,iX
>
t−1,i

(
B̂tŵt,i −Bwi

)
+ 2

M∑
i=1

‖Xt−1,i∆t−1,i‖Ṽ −1
t−1,i(λ)

∥∥∥B̂tŵt,i −Bwi
∥∥∥
Ṽt−1,i(λ)

(82)

≤2

M∑
i=1

η>t−1,iX
>
t−1,i

(
B̂tŵt,i −Bwi

)
+ 2

M∑
i=1

√
Tζ
∥∥∥B̂tŵt,i −Bwi

∥∥∥
Ṽt−1,i(λ)

(83)

≤2

M∑
i=1

η>t−1,iX
>
t−1,i

(
B̂tŵt,i −Bwi

)
+ 2
√
MTζ

√√√√ M∑
i=1

∥∥∥B̂tŵt,i −Bwi
∥∥∥2

Ṽt−1,i(λ)
(84)

The third inequality follows from Projection Bound (Lemma 8) in Zanette et al. (2020a). The first term of Eqn 84 shares the
same form of Eqn 28. Following the same proof idea of Lemma 1, we know that with probability 1− δ,

M∑
i=1

∥∥∥B̂tŵt,i −Bwi
∥∥∥2

Ṽt−1,i(λ)
(85)

≤
(

2
√
Mk + 8kd log(kMT/δ) + 2

√
MTζ

)√√√√ M∑
i=1

∥∥∥B̂tŵt,i −Bwi
∥∥∥2

Ṽt−1,i(λ)
+ 4M + 4

√
log(4MT/δ) (86)

Solving for
∑M
i=1

∥∥∥B̂tŵt,i −Bwi
∥∥∥2

Ṽt−1,i(λ)
, we know that the true parameterBW is always contained in the confidence

set, i.e.

M∑
i=1

∥∥∥B̂tŵt,i −Bwi
∥∥∥2

Ṽt−1,i(λ)
≤ L′, (87)

where L′ = 2L+ 32MTζ2.
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Thus we have

Reg(T ) =

T∑
t=1

M∑
i=1

(
y∗t,i − yt,i

)
(88)

≤ 2MTζ +

T∑
t=1

M∑
i=1

〈
θi,x

∗
t,i − xt,i

〉
(89)

≤ 2MTζ +

T∑
t=1

M∑
i=1

〈
θ̃t,i − θi,xt,i

〉
(90)

= 2MTζ +

T∑
t=1

M∑
i=1

〈
θ̃t,i − θ̂t,i + θ̂t,i − θi,xt,i

〉
(91)

≤ 2MTζ +

T∑
t=1

M∑
i=1

(∥∥∥θ̃t,i − θ̂t,i∥∥∥
Ṽt−1,i(λ)

+
∥∥∥θ̂t,i − θi∥∥∥

Ṽt−1,i(λ)

)
‖xt,i‖Ṽt−1,i(λ)−1 (92)

≤ 2MTζ +


√√√√ T∑

t=1

M∑
i=1

∥∥∥θ̃t,i − θ̂t,i∥∥∥2

Ṽt−1,i(λ)
+

√√√√ M∑
i=1

∥∥∥θ̂t,i − θi∥∥∥2

Ṽt−1,i(λ)

 ·
√√√√ T∑

t=1

M∑
i=1

‖xt,i‖2Ṽt−1,i(λ)−1

(93)

≤ 2MTζ + 2
√
T (L′ + 4λM) ·

√√√√ M∑
i=1

T∑
t=1

‖xt,i‖2Ṽt−1,i(λ)−1 (94)

≤ 2MTζ + 2
√
T (L′ + 4λM)

√
Md log(1 +

T

d
) (95)

= Õ(M
√
dkT + d

√
kMT +MT

√
dζ), (96)

where the second inequality is due to
∑M
i=1

〈
θi,x

∗
t,i

〉
≤
〈
θ̃t,i,xt,i

〉
from the optimistic choice of θ̃t,i and xt,i. The third

inequality is due to Eqn 87. The last inequality is from Eqn 64.
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A.5. PROOF OF THEOREM 3

Since our setting is strictly harder than the setting of multi-task linear bandit with infinite arms in Yang et al. (2020), we can
prove the following lemma directly from their Theorem 4 by reduction.

Lemma 5. Under the setting of Theorem 3, the regret of any Algorithm A is lower bounded by Ω
(
Mk
√
T + d

√
kMT

)
.

In order to prove Theorem 3, we only need to show that the following lemma is true.

Lemma 6. Under the setting of Theorem 3, the regret of any Algorithm A is lower bounded by Ω
(
MT
√
dζ
)
.

Proof. (Proof of Lemma 6)

To prove Lemma 6, we leverage the lower bound for misspecified linear bandits in the single-task setting. We restate the
following lemma from the previous literature with a slight modification of notations.

Lemma 7. (Proposition 6 in Zanette et al. (2020a)). There exists a feature map φ : A → Rd that defines a misspecified
linear bandits classM such that every bandit instance in that class has reward response:

µa = φ>a θ + za

for any action a (Here za ∈ [0, ζ] is the deviation from linearity and µa ∈ [0, 1]) and such that the expected regret of any
algorithm on at least a member of the class up to round T is Ω(

√
dζT ).

Suppose M can be exactly divided by k, we construct the following instances to prove lemma 6. We divide M tasks
into k groups. Each group shares the same parameter θi. To be more specific, we let w1 = w2 = · · · = wM/k = e1,
wM/k+1 = wM/k+2 = · · · = w2M/k = e2, · · · , w(k−1)M/k+1 = w(k−1)M/k+2 = · · · = wM = ek. Under this
construction, the parameters θi for these tasks are exactly the same in each group, but relatively independent among different
groups. That is to say, the expected regret lower bound is at least the summation of the regret lower bounds in all k groups.

Now we consider the regret lower bound for group j ∈ [k]. Since the parameters are shared in the same group, the regret of
running an algorithm for M/k tasks with T steps each is at least the regret of running an algorithm for single-task linear
bandit with M/k · T steps. By Lemma 7, the regret for single-task linear bandit with MT/k steps is at least Ω(

√
dζMT/k).

Summing over all k groups, we can prove that the regret lower bound is Ω(
√
dζMT ).

Combining Lemma 5 and Lemma 6, we complete the proof of Theorem 3.
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B. Proof of Theorem 4

B.1. DEFINITIONS AND FIRST STEP ANALYSIS

Before presenting the proof of theorem 4, we will make a first step analysis on the low-rank least-square estimator in
equation 15.

For any
{
Qih+1

}M
i=1
∈ Qh+1, there exists

{
θ̇ih
(
Qih+1

)}M
i=1
∈ Θh that

∆i
h

(
Qih+1

)
(s, a) = T ih

(
Qih+1

)
(s, a)− φ(s, a)>θ̇ih

(
Qih+1

)
(97)

where the approximation error
∥∥∆i

h

(
Qih+1

)∥∥
∞ ≤ I is small for each i ∈ [M ]. We also use Ḃhẇ

i
h

(
Qih+1

)
in place of

θ̇ih
(
Qih+1

)
in the following sections since we can write θ̇ih as Ḃhẇ

i
h.

In the multi-task low-rank least-square regression (equation 15), we are actually trying to recover θ̇ih. However, due to the
noise and representation error (i.e. the inherent Bellman error), we can only obtain an approximate solution θ̂ih = B̂hŵ

i
h

(see the global optimization problem in Definition 1).

(
θ̂1
h, ..., θ̂

M
h

)
= B̂h

[
ŵ1
h ŵ2

h · · · ŵM
h

]
(98)

= argmin
‖Bhwih‖2≤D

M∑
i=1

t−1∑
j=1

(
φ
(
sihj , a

i
hj

)>
Bhw

i
h −R

(
sihj , a

i
hj

)
−max

a
Qih+1

(
sih+1,j

))2

(99)

= argmin
‖Bhwih‖2≤D

M∑
i=1

t−1∑
j=1

(
φ
(
sihj , a

i
hj

)>
Bhw

i
h − T ih

(
Qih+1

) (
sihj , a

i
hj

)
− zihj

(
Qih+1

) (
sihj , a

i
hj

))2

(100)

where zihj
(
Qih+1

) (
sihj , a

i
hj

)
def
= R

(
sihj , a

i
hj

)
+ maxaQ

i
h+1

(
sih+1,j , a

)
− T ih

(
Qih+1

) (
sihj , a

i
hj

)
.

Define Φi
ht ∈ R(t−1)×d to be the collection of linear features up to episode t − 1 in task i, i.e. the j-th row of Φi

ht is

φ
(
sihj , a

i
hj

)>
. Let Y i

ht ∈ Rt−1 be a vector whose j-th dimension is T ih
(
Qih+1

) (
sihj , a

i
hj

)
+ zihj

(
Qih+1

) (
sihj , a

i
hj

)
.

Then the objective in (100) can be written as

argmin
‖Bhwih‖2≤D

M∑
i=1

∥∥Φi
htBhw

i
h − Y i

ht

∥∥2

2
(101)

Therefore, we have

M∑
i=1

∥∥∥Φi
htB̂hŵ

i
h

(
Qih+1

)
− Y iht

∥∥∥2

2
≤

M∑
i=1

∥∥∥Φi
htḂhẇ

i
h

(
Qih+1

)
− Y i

ht

∥∥∥2

2
(102)

which implies
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M∑
i=1

∥∥∥Φi
htB̂hŵ

i
h

(
Qih+1

)
−Φi

htḂhẇ
i
h

(
Qih+1

)∥∥∥2

2
(103)

≤ 2

M∑
i=1

(
∆i
ht

)>
Φi
ht

(
B̂hŵ

i
h

(
Qih+1

)
− Ḃhẇ

i
h

(
Qih+1

))
(104)

+ 2

M∑
i=1

(
ziht
)>

Φi
ht

(
B̂hŵ

i
h

(
Qih+1

)
− Ḃhẇ

i
h

(
Qih+1

))
(105)

where ∆i
ht

def
=
[
∆i
h1

(
Qih+1

) (
sih1, a

i
h1

)
∆i
h2

(
Qih+1

) (
sih2, a

i
h2

)
· · · ∆i

h,t−1

(
Qih+1

) (
sih,t−1, a

i
h,t−1

)]
∈ Rt−1, and

ziht
def
=
[
zih1

(
Qih+1

) (
sih1, a

i
h1

)
· · · zih,t−1

(
Qih+1

) (
sih,t−1, a

i
h,t−1

)]
∈ Rt−1.

In the next sections we will show how to bound 104 and 105.
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B.2. FAILURE EVENT

Define the failure event at step h in episode t as

Definition 2 (Failure Event).

Eht
def
= I
[
∃
{
Qih+1

}M
i=1
∈ Qh+1

M∑
i=1

(
ziht
)>

Φi
ht

(
B̂hŵ

i
h

(
Qih+1

)
− Ḃhẇ

i
h

(
Qih+1

))
> (106)

F 1
h

√√√√ M∑
i=1

∥∥∥B̂hŵi
h

(
Qih+1

)
− Ḃhẇi

h

(
Qih+1

)∥∥∥2

Ṽ iht(λ)
+ F 2

h

]
(107)

where F 1
h and F 2

h will be specified later.

We have the following lemma to bound the probability of Eht.

Lemma 8. For the input parameter δ > 0, there exists F 1
h and F 2

h such that

P

(
T⋃
t=1

H⋃
h=1

Eht

)
≤ δ

2
(108)

Proof. According to Lemma A.5 of Du et al. (2020), there exists an ε-net Eoh+1 over Od×k (with regards to the Frobenius
norm) such that

∣∣Eoh+1

∣∣ ≤ (6
√
k/ε′)kd. Moreover, there exists an ε-net Ebh+1 over Bk that

∣∣Ebh+1

∣∣ ≤ (1 + 2/ε′)k. We can

show a corresponding ε-net Emul
h+1

def
= Eoh+1 ×

(
Ebh+1

)M
over Θh+1.

For any
(
Q1
h+1

(
Bh+1w

1
h+1

)
, · · · , QMh+1

(
Bh+1w

M
h+1

))
∈ Qh+1, there exists B̄h+1 ∈ Eoh+1 and

(
w̄1
h+1, · · · , w̄M

h+1

)
∈(

Ebh+1

)M
such that

∥∥Bh+1 − B̄h+1

∥∥
F
≤ ε′

∥∥wi
h+1 − w̄i

h+1

∥∥
2
≤ ε′,∀i ∈ [M ]

Therefore,

∥∥Bh+1w
i
h+1 − B̄h+1w̄

i
h+1

∥∥
2
≤ 2ε′,∀i ∈ [M ]

Define Q̄ih+1 to beQih+1

(
B̄h+1w̄

i
h+1

)
, and let z̄iht

def
=
[
zih1

(
Q̄ih+1

) (
sih1, a

i
h1

)
· · · zih,t−1

(
Q̄ih+1

) (
sih,t−1, a

i
h,t−1

)]
∈

Rt−1, then

M∑
i=1

(
ziht
)>

Φi
ht

(
B̂hŵ

i
h

(
Qih+1

)
− Ḃhẇ

i
h

(
Qih+1

))
(109)

=

M∑
i=1

(
z̄iht
)>

Φi
ht

(
B̂hŵ

i
h

(
Qih+1

)
− Ḃhẇ

i
h

(
Qih+1

))
(110)

+

M∑
i=1

(
ziht − z̄iht

)>
Φi
ht

(
B̂hŵ

i
h

(
Qih+1

)
− Ḃhẇ

i
h

(
Qih+1

))
(111)

For fixed
{
B̄h+1w̄

i
h+1

}M
i=1
∈ Emul

h+1, zih,j
(
Q̄ih+1

) (
sih,j , a

i
h,j

)
is zero-mean 1-subgaussian conditioned on Fh,j according

to Assumption 3. Thus, we can use exactly the same argument as in Lemma 1 to show that
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M∑
i=1

(
z̄iht
)>

Φi
ht

(
B̂hŵ

i
h

(
Qih+1

)
− Ḃhẇ

i
h

(
Qih+1

))
(112)

≤
√
Mk + 5kd log(kMT ) + 2 log(1/δ′)

√√√√ M∑
i=1

∥∥∥B̂hŵi
h

(
Qih+1

)
− Ḃhẇi

h

(
Qih+1

)∥∥∥2

Ṽ iht(λ)
(113)

+
√

2 log(2MT/δ′) +
√
k + 3kd log(kMT ) + log(1/δ′) (114)

by setting ε = 1
kM2T 2 , δ1 = δ′

2
(

6
√

2k
ε

)2kd , and δ2 = δ′

2MT in equation 54. Thus, we have that with probability 1 − δ′ the

inequality above holds for any h ∈ [H], t ∈ [T ]. Take δ = δ′

2|Emul
h+1|

, by union bound we know the above ineqaulity holds

with probability 1− δ for any
{
B̄h+1w̄

i
h+1

}M
i=1
∈ Emul

h+1 and any h ∈ [H], t ∈ [T ].

Since it holds that
∣∣Qih+1

(
Bh+1w

i
h+1

)
(s, a)−Qih+1

(
B̄h+1w̄

i
h+1

)
(s, a)

∣∣ ≤ 2ε′ for any (s, a) ∈ S × A, i ∈ [M ], we
have

∣∣zihj (Q̄ih+1

) (
sihj , a

i
hj

)
− zihj

(
Qih+1

) (
sihj , a

i
hj

)∣∣ ≤ 8ε′ (115)

Then we have

M∑
i=1

(
ziht − z̄iht

)>
Φi
ht

(
B̂hŵ

i
h

(
Qih+1

)
− Ḃhẇ

i
h

(
Qih+1

))
(116)

≤
M∑
i=1

∥∥∥(Φi
ht

)> (
ziht − z̄iht

)∥∥∥
Ṽ iht(λ)−1

∥∥∥B̂hŵ
i
h

(
Qih+1

)
− Ḃhẇ

i
h

(
Qih+1

)∥∥∥
Ṽ iht(λ)

(117)

≤ 8ε′
√
T

M∑
i=1

∥∥∥B̂hŵ
i
h

(
Qih+1

)
− Ḃhẇ

i
h

(
Qih+1

)∥∥∥
Ṽ iht(λ)

(118)

≤ 8ε′
√
MT

√√√√ M∑
i=1

∥∥∥B̂hŵi
h

(
Qih+1

)
− Ḃhẇi

h

(
Qih+1

)∥∥∥2

Ṽ iht(λ)
(119)

for arbitrary {Qih+1} and any h ∈ [H], t ∈ [T ]. The second inequality follows from the Projection Bound (Lemma 8) in
Zanette et al. (2020a).

Take ε′ = 1/8
√
MT , we finally finish the proof by setting

F 1
h

def
=
√

9kd log(kMT ) + 5Mk log(MT ) + 2 log(2/δ) (120)

F 2
h

def
=
√

4kd log(kMT ) + 5Mk log(MT ) + 2 log(2/δ) (121)

+
√
k + 5kd log(kMT ) + 2Mk log(MT ) + log(2/δ) (122)

In the next sections we assume the failure event
⋃T
t=1

⋃H
h=1Eht won’t happen.
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B.3. BELLMAN ERROR

Outside the failure event, we can bound the estimation error of the least-square regression 15.

Lemma 9. For any episode t ∈ [T ] and step h ∈ [H], any
{
Qih+1

}M
i=1
∈ Qh+1, we have

M∑
i=1

∥∥∥B̂hŵ
i
h

(
Qih+1

)
− Ḃhẇ

i
h

(
Qih+1

)∥∥∥2

Ṽ iht(λ)
≤ αht

def
=

(
2
√
MTI + 2F 1

h +
√

2F 2
h + 4MD2λ

)2

(123)

Proof. Recall that

M∑
i=1

∥∥∥Φi
htB̂hŵ

i
h

(
Qih+1

)
−Φi

htḂhẇ
i
h

(
Qih+1

)∥∥∥2

2
(124)

≤ 2

M∑
i=1

(
∆i
ht

)>
Φi
ht

(
B̂hŵ

i
h

(
Qih+1

)
− Ḃhẇ

i
h

(
Qih+1

))
(125)

+ 2

M∑
i=1

(
ziht
)>

Φi
ht

(
B̂hŵ

i
h

(
Qih+1

)
− Ḃhẇ

i
h

(
Qih+1

))
(126)

For the first term, we have

M∑
i=1

(
∆i
ht

)>
Φiht

(
B̂hŵ

i
h

(
Qih+1

)
− Ḃhẇ

i
h

(
Qih+1

))
(127)

≤
M∑
i=1

∥∥∥(Φi
ht

)>
∆i
ht

∥∥∥
Ṽ iht(λ)−1

∥∥∥B̂hŵ
i
h

(
Qih+1

)
− Ḃhẇ

i
h

(
Qih+1

)∥∥∥
Ṽ iht(λ)

(128)

≤
√
TI

M∑
i=1

∥∥∥B̂hŵ
i
h

(
Qih+1

)
− Ḃhẇ

i
h

(
Qih+1

)∥∥∥
Ṽ iht(λ)

(129)

≤
√
MTI

√√√√ M∑
i=1

∥∥∥B̂hŵi
h

(
Qih+1

)
− Ḃhẇi

h

(
Qih+1

)∥∥∥2

Ṽ iht(λ)
(130)

The second inequality follows from the Projection Bound (Lemma 8) in Zanette et al. (2020a), and the last inequality is due
to Cauchy-Schwarz.

Outside the failure event, we have

M∑
i=1

∥∥∥B̂hŵ
i
h

(
Qih+1

)
− Ḃhẇ

i
h

(
Qih+1

)∥∥∥2

Ṽ iht(λ)
(131)

≤
M∑
i=1

∥∥∥Φi
htB̂hŵ

i
h

(
Qih+1

)
−Φi

htḂhẇ
i
h

(
Qih+1

)∥∥∥2

2
+ 4MD2λ (132)

≤
(

2
√
MTI + 2F 1

h

)√√√√ M∑
i=1

∥∥∥B̂hŵi
h

(
Qih+1

)
− Ḃhẇi

h

(
Qih+1

)∥∥∥2

Ṽ iht(λ)
+ 2F 2

h + 4MD2λ (133)

which implies
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M∑
i=1

∥∥∥B̂hŵ
i
h

(
Qih+1

)
− Ḃhẇ

i
h

(
Qih+1

)∥∥∥2

Ṽ iht(λ)
(134)

≤
(

2
√
MTI + 2F 1

h

)2

+ 2F 2
h + 4MD2λ+

(
2
√
MTI + 2F 1

h

)√
2F 2

h + 4MD2λ (135)

≤
(

2
√
MTI + 2F 1

h +
√

2F 2
h + 4MD2λ

)2

(136)

Lemma 10 (Bound on Bellman Error). Outside the failure event, for any feasible solution
{
Qih
(
θ̄ih
)}i
h

(Q̄ih for short, with
a little abuse of notations) of the global optimization procedure in definition 1, for any (s, a) ∈ S ×A, any h ∈ [H], t ∈ [T ]

M∑
i=1

∣∣Q̄ih(s, a)− T ih Q̄ih+1(s, a)
∣∣ ≤MI + 2

√√√√αht ·
M∑
i=1

‖φ(s, a)‖2Ṽ iht(λ)−1 (137)

Proof.

M∑
i=1

∣∣Q̄ih(s, a)− T ih Q̄ih+1(s, a)
∣∣ =

M∑
i=1

∣∣∣φ(s, a)>θ̄ih − φ(s, a)>θ̇ih
(
Q̄ih+1

)
−∆i

h

(
Q̄ih+1

)
(s, a)

∣∣∣ (138)

≤MI +

M∑
i=1

∣∣∣φ(s, a)>θ̄ih − φ(s, a)>θ̇ih
(
Q̄ih+1

)∣∣∣ (139)

≤MI +

M∑
i=1

(∣∣∣φ(s, a)>θ̇ih
(
Q̄ih+1

)
− φ(s, a)>θ̂ih

∣∣∣+
∣∣∣φ(s, a)>θ̂ih − φ(s, a)>θ̄ih

∣∣∣)
(140)

≤MI +

M∑
i=1

‖φ(s, a)‖Ṽ iht(λ)−1

(∥∥∥θ̇ih (Q̄ih+1

)
− θ̂ih

∥∥∥
Ṽ iht(λ)

+
∥∥∥θ̂ih − θ̄ih∥∥∥

Ṽ iht(λ)

)
(141)

≤MI + 2

√√√√αht ·
M∑
i=1

‖φ(s, a)‖2Ṽ iht(λ)−1 (142)

The first equality is due to the definition of ∆i
h

(
Q̄ih+1

)
(s, a). The last inequality is due to lemma 9.



Multi-Task Representation Learning

B.4. OPTIMISM

We can find the ”best” approximator of optimal value functions in our function class recursively defined as

(
θ1∗
h ,θ

2∗
h , · · · ,θM∗h

) def
= argmin

(θ1
h,θ

2
h,··· ,θ

M
h )∈Θh

sup
s,a,i

∣∣(φ(s, a)>θih − T ihQih+1

(
θi∗h+1

))
(s, a)

∣∣ (143)

with θi∗H+1 = 0,∀i ∈ [M ]

For the accuracy of this best approximator, we have

Lemma 11. For any h ∈ [H],

sup
(s,a)∈S×A,i∈[M ]

∣∣Qi∗h (s, a)− φ(s, a)>θ∗h
∣∣ ≤ (H − h+ 1)I

where Qi∗h is the optimal value function for task i. This lemma is derived directly from Lemma 6 in Zanette et al. (2020a).

For our solution of the problem in Definition 1 in episode t, we have the following lemma:

Lemma 12.
{(
θ1∗
h ,θ

2∗
h , · · · ,θM∗h

)}H
h=1

is a feasible solution of the problem in Definition 1. Moreover, denote the solution
of the problem in Definition 1 in episode t by θ̄iht for h ∈ [H], i ∈ [M ], it holds that

M∑
i=1

V i1
(
θ̄i1t
) (
si1t
)
≥

M∑
i=1

V i∗1

(
si1t
)
−MHI (144)

Proof. First we show that
{(
θ1∗
h ,θ

2∗
h , · · · ,θM∗h

)}H
h=1

is a feasible solution. We can construct
{
ξ̄ih
}M
i=1

so that θ̄ih = θi∗h
and no other constraints are violated. We use an inductive construction, and the base case when θ̄iH+1 = θi∗H+1 = 0 is
trivial.

Now suppose we have
{
ξ̄iy
}M
i=1

for y = h+ 1, ...,H such that θ̄iy = θi∗y for y = h+ 1, ...,H and i ∈ [M ], we show we

can find
{
ξ̄ih
}M
i=1

so θ̄ih = θi∗h for i ∈ [M ], and no constraints are violated. From the definition of θi∗h we can set (with a
little abuse of notations)

θ̇ih
(
θi∗h+1

)
= θi∗h (145)

According to lemma 9 we have

M∑
i=1

∥∥∥θ̂ih (θi∗h+1

)
− θ̇ih

(
θi∗h+1

)∥∥∥2

Ṽ iht(λ)
≤ αht (146)

Therefore, set ξ̄ih = θ̇ih
(
θi∗h+1

)
− θ̂ih

(
θi∗h+1

)
, then

θ̄ih = θ̂ih
(
θ̄ih+1

)
+ ξ̄ih (147)

= θ̂ih
(
θi∗h+1

)
+ θ̇ih

(
θi∗h+1

)
− θ̂ih

(
θi∗h+1

)
(148)

= θi∗h (149)

Finally, we can verify
(
θ̄1
h, ..., θ̄

M
h

)
∈ Θh from

(
θ1∗
h , · · · ,θM∗h

)
∈ Θh.
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Since θ̄i1t is the optimal solution, we can finish the proof by showing

M∑
i=1

V i1
(
θ̄i1t
) (
si1t
)

=

M∑
i=1

max
a
φ
(
si1t, a

)>
θ̄i1t (150)

≥
M∑
i=1

max
a
φ
(
si1t, a

)>
θi∗1 (since θi∗1 is the feasible solution) (151)

≥
M∑
i=1

φ
(
si1t, π

i∗
1

(
si1t
))>

θi∗1 (152)

≥
M∑
i=1

Qi∗h
(
si1t, π

i∗
1

(
si1t
))
−MHI (by Lemma 11) (153)

≥
M∑
i=1

V i∗h
(
si1t
)
−MHI (154)
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B.5. REGRET BOUND

We are ready to present the proof of our regret bound.

From Lemma 8 we know that the failure event
⋃T
t=1

⋃H
h=1Eht happens with probability at most δ/2, so we assume it does

not happen. Then we can decompose the regret as

Reg(T ) =

T∑
t=1

M∑
i=1

(
V i∗1 − V

πit
1

) (
si1t
)

(155)

=

T∑
t=1

M∑
i=1

(
V i∗1 − V i1

(
θ̄i1t
)) (

si1t
)

+

T∑
t=1

M∑
i=1

(
V i1
(
θ̄i1t
)
− V π

i
t

1

) (
si1t
)

(156)

≤
T∑
t=1

M∑
i=1

(
V i1
(
θ̄i1t
)
− V π

i
t

1

) (
si1t
)

+MHTI (by Lemma 12) (157)

Let aiht = πit
(
siht
)
, and denote Qih

(
θ̄iht
)
(V ih

(
θ̄iht
)
) by Q̄iht(V̄

i
ht) for short, we have

M∑
i=1

(
V̄ iht − V

πit
h

) (
siht
)

=

M∑
i=1

(
Q̄iht −Q

πit
h

) (
siht, a

i
ht

)
(158)

=

M∑
i=1

(
Q̄iht − T ih Q̄ih+1,t

) (
siht, a

i
ht

)
+

M∑
i=1

(
T ih Q̄ih+1,t −Q

πit
h

) (
siht, a

i
ht

)
(159)

≤MI + 2

√√√√αht ·
M∑
i=1

∥∥φ (siht, aiht)∥∥2

Ṽ iht(λ)−1 +

M∑
i=1

Es′∼pih(siht,aiht)

[(
V̄ ih+1,t − V

πit
h+1

)
(s′)
]

(160)

≤
M∑
i=1

(
V̄ ih+1,t − V

πit
h+1

) (
sih+1,t

)
+MI + 2

√√√√αht ·
M∑
i=1

∥∥φ (siht, aiht)∥∥2

Ṽ iht(λ)−1 +

M∑
i=1

ζiht

(161)

where ζiht is a martingale difference with regards to the filtration Fh,t defined as

ζiht
def
=
(
V̄ ih+1,t − V

πit
h+1

) (
sih+1,t

)
− Es′∼pih(siht,aiht)

[(
V̄ ih+1,t − V

πit
h+1

)
(s′)
]

(162)

According to assumption 3 we know
∣∣ζiht∣∣ ≤ 4, so we can apply Azuma-Hoeffding’s inequality that with probability 1− δ/2

for any t ∈ [T ] and i ∈ [M ]

t∑
j=1

ζiht ≤ 4

√
2t ln

(
2T

δ

)
(163)

By applying inequality 161 recursively, we can bound the regret as
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Reg(T ) ≤
T∑
t=1

M∑
i=1

(
V̄ i1t − V

πit
1

) (
si1t
)

+MHTI (164)

≤ 2MHTI +

T∑
t=1

H∑
h=1

2

√√√√αht ·
M∑
i=1

∥∥φ (siht, aiht)∥∥2

Ṽ iht(λ)−1 +

M∑
i=1

H∑
h=1

T∑
t=1

ζiht (165)

The last inequality is due to V̄ iH+1(s) = maxa φ(s, a)>θ̄iH+1,t = 0, V
πit
H+1(s) = 0.

The Lemma 11 of Abbasi-Yadkori et al. (2011) gives that for any i ∈ [M ] and h ∈ [H]

T∑
t=1

∥∥φ (siht, aiht)∥∥2

Ṽ iht(λ)−1 = Õ (d) (166)

Moreover, by the definition of αht (see Lemma 9) we know that for any h ∈ [H] and t ∈ [T ]

αht = Õ
(
Mk + kd+MTI2

)
(167)

Take all of above we can show the final regret bound.

Reg(T ) ≤ 2MHTI +

T∑
t=1

H∑
h=1

2

√√√√αht ·
M∑
i=1

∥∥φ (siht, aiht)∥∥2

Ṽ iht(λ)−1 +

M∑
i=1

H∑
h=1

T∑
t=1

ζiht (168)

= Õ

MHTI + Õ
(√

Mk + kd+MTI2
) H∑
h=1

T∑
t=1

√√√√ M∑
i=1

∥∥φ (siht, aiht)∥∥2

Ṽ iht(λ)−1 +MH
√
T

 (169)

= Õ

MHTI + Õ
(√

Mk + kd+MTI2
) H∑
h=1

√
T ·

√√√√ T∑
t=1

M∑
i=1

∥∥φ (siht, aiht)∥∥2

Ṽ iht(λ)−1 +MH
√
T

 (170)

= Õ
(
MHTI + Õ

(
Õ
(√

Mk + kd+MTI2
)
·H
√
MTd

)
+MH

√
T
)

(171)

= Õ
(
HM
√
dkT +Hd

√
MkT +HMT

√
dI
)

(172)
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C. Proof of Theorem 5

To prove the lower bound for multi-task RL, our idea is to connect the lower bound for the multi-task learning problem to
the lower bound in the single-task LSVI setting (Zanette et al., 2020a). in the paper of Zanette et al. (2020a), they assumed
the feature dimension d can be varied among different steps, which is denoted as dh for step h. They proved the lower
bound for linear RL in this setting is Ω

(∑H
h=1 dh

√
T +

∑H
h=1

√
dhIT

)
. However, this lower bound is derived by the hard

instance with d1 =
∑H
h=2 dh. If we set d1 = d2 = · · · = dH = d like our setting, we can only obtain the lower bound of

Ω
(
d
√
T +
√
dIT

)
following their proof idea. In fact, the dependence on H in this lower bound can be further improved.

In order to obtain a tighter lower bound, we consider the lower bound for single-task misspecified linear MDP. This setting
can be proved to be strictly simpler than the LSVI setting following the idea of Proposition 3 in Zanette et al. (2020a). The
lower bound for misspecified linear MDP can thus be applied to LSVI setting.
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C.1. LOWER BOUNDS FOR SINGLE-TASK RL

This subsection focus on the lower bound for misspecifed linear MDP setting, in which the transition kernel and the reward
function are assume to be approximately linear.

Assumption 5. (Assumption B in Jin et al. (2020)) For any ζ ≤ 1, we say that MDP(S,A, p, r,H) is a ζ-approximate
linear MDP with a feature map φ : S ×A → Rd, if for any h ∈ [H], there exist d unknown measures θh = (θ

(1)
h , · · · , θ(d)

h )
over S and an unknown vector νh ∈ Rd such that for any (s, a) ∈ S ×A, we have

‖ph(·|s, a)− 〈φ(s, a),θh(·)〉 ‖TV ≤ ζ (173)
|rh(s, a)− 〈φ(s, a),νh〉 | ≤ ζ (174)

For regularity, we assume that Assumption 3 still holds, and we also assume that there exists a constant D such that
‖θh(s)‖ ≤ D for all s ∈ S, h ∈ [H], ‖νh‖ ≤ D for all h ∈ [H]. D ≥ 4 suffices in our hard instance construction.

For misspecifed linear MDP, we can prove the following lower bound.

Proposition 1. Suppose T ≥ d2H
4 , d ≥ 10, H ≥ 10 and ζ ≤ 1

4H , there exist a ζ-approximate linear MDP class such that

the expected regret of any algorithm on at least a member of the MDP class is at least Ω
(
d
√
HT +HTI

√
d
)

.

To prove the lower bound, our basic idea is to connect the problem to H
2 linear bandit problems. Similar hard instance

construction has been used in Zhou et al. (2020a;b). In our construction, the state space S consists of H + 2 states,
which is denoted as x1, x2, · · · , xH+2. The agent starts the episode in state x1. In xh, it can either transits to xh+1

or xH+2 with certain transition probability. If the agent enters xH+2, it will stay in this state in the remaining steps,
i.e. xH+2 is an absorbing state. For each state, there are 2d−4 actions and A = {−1, 1}d−4. Suppose the agent takes
action a ∈ {−1, 1}d−4 in state sh, the transition probability to state sh+1 and sH+2 is 1 − ζh(a) − δ − µ>h a and
δ + ζh(a) + µ>h a respectively. Here |ζh(a)| ≤ ζ denotes the approximation error of linear representation, δ = 1/H and
µh ∈ {−∆,∆}d−4 with ∆ =

√
δ/T/(4

√
2) so that the probability is well-defined. The reward can only be obtained in

xH+2, with rh(xH+2,a) = 1/H for any h, a. We assume the reward to be deterministic.

We can check that this construction satisfies Assumption 5 with φ and θ defined in the following way:

φ(s,a) =


(
0, α, αδ, 0, βa>

)>
s = x1, x2, · · · , xH(

0, 0, 0, α,0>
)>

s = xH+1(
α, 0, 0, α,0>

)>
s = xH+2

θh(s′) =



(
0,

1

α
,− 1

α
, 0,−µ

>
h

β

)>
s′ = xh+1(

0, 0,
1

α
,

1

α
,
µ>h
β

)>
s = xH+2

0 otherwise

νh is defined to be ( 1
Hα ,0

>)>, and α =
√

1/(2 + ∆(d− 4)), β =
√

∆/(2 + ∆(d− 4)). Note that ‖φ(s, a)‖ ≤ 1,
‖θh(s′)‖ ≤ D and ‖νh‖ ≤ D hold for any s, a, s′, h when T ≥ d2H/4.

Since the rewarding state is only xH+2, the optimal strategy in state xh (h ≤ H) is to take an action that maximizes the
probability of entering xH+2, i.e., to maximize µ>h a+ ζ(a). That is to say, we can regard the problem of finding the optimal
action in state sh and step h as finding the optimal arm for a d− 4-dimensional approximately (misspecified) linear bandits
problem. Thanks to the choice of δ such that (1 − δ)H/2 is a constant, there is sufficiently high probability of entering
state xh for any h ≤ H/2. Therefore, we can show that this problem is harder than solving H/2 misspecified linear bandit
problems. This following lemma characterizes this intuition. The lemma follows the same idea of Lemma C.7 in Zhou et al.
(2020a), though our setting is more difficult since we consider misspecified case.
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Lemma 13. Suppose H ≥ 10, d ≥ 10 and (d− 4)∆ ≤ 1
2H . We define rbh(a) = µ>a+ ζh(a), which can be regarded as

the corresponding reward for the equivalent linear bandit problem in step h. Fix µ ∈ ({−∆,∆}d−4)H . Fix a possibly
history dependent policy π. Letting V ? and V π be the optimal value function and the value function of policy π respectively,
we have

V ?1 (s1)− V π1 (s1) ≥ 0.02

H/2∑
h=1

(
max
a∈A

rbh(a)−
∑
a∈A

πh(a|sh)rbh(a)

)
(175)

Proof. Note that the only rewarding state is xH+2 with rh(xH+2,a) = 1
H . Therefore, the value function of a certain policy

π can be calculated as:

V π1 (x1) =

H−1∑
h=1

H − h
H

P(Nh|π) (176)

where Nh denotes the event of visiting state xh in step h and then transits to xH+2, i.e. Nh = {sh = xh, sh+1 = xH+2}.
Suppose ωπh =

∑
a∈A πh(a|sh)rbh(a) and ω?h = maxa∈A r

b
h(a). By the law of total probability and the Markov property,

we have

P(Nh|π) = (δ + ωπh)

h−1∏
j=1

(1− δ − ωπh) (177)

Thus we have

V π1 (x1) =

H−1∑
h=1

H − h
H

(δ + ωπh)

h−1∏
j=1

(1− δ − ωπh) (178)

Similarly, for the value function of the optimal policy, we have

V ?1 (x1) =

H−1∑
h=1

H − h
H

(δ + ω?h)

h−1∏
j=1

(1− δ − ω?h) (179)

Define Si =
∑H−1
h=i

H−h
H (δ + ωπh)

∏h−1
j=i (1− δ − ωπh) and Ti =

∑H−1
h=i

H−h
H (δ + ω?h)

∏h−1
j=i (1− δ − ω?h). Then we have

V ?1 (x1)− V π1 (x1) = T1 − S1. Notice that

Si =
H − i
H

(ωπi + δ) + Si+1(1− ωπi − δ) (180)

Ti =
H − i
H

(ω?i + δ) + Ti+1(1− ω?i − δ) (181)

Thus we have

Ti − Si =

(
H − i
H

− Ti+1

)
(ω?i − ωπi ) + (Ti+1 − Si+1)(1− ωπi − δ) (182)

By induction, we get

T1 − S1 =

H−1∑
h=1

(ω?i − ωπi )(
H − h
H

− Th+1)

h−1∏
j=1

(1− ωπj − δ) (183)

Since the reward is non-negative and only occurs in xH+2, we know that V ?1 (x1) ≥ V ?2 (x2) ≥ · · · ≥ V ?1 (xH). Thus we
have Th ≤ T1 = V ?1 (x1) ≤

∑H
h=1 P(Nh|π?). If Nh doesn’t happen for any h ∈ [H], then the agent must enter xH+1. The
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probability of this event has the following form:

P
(
¬
(
∪h∈[H]Nh|π?

))
=1−

H∏
h=1

P(Nh|π?) (184)

=
∏
h∈[H]

(1− δ − ω?h) (185)

≥
∏
h∈[H]

(1− 1

H
+

1

2H
) (186)

=(1− 1

2H
)H (187)

≥0.6 (188)

The fist inequality is due to δ = 2
H and |ω?h| ≤ 1

H . The above discussion indicates that Th ≤ 0.4, thus H−h
H − Th+1 ≥ 0.1

for h ≤ H/2. Similarly,
∏h−1
j=1 (1− ωπj − δ) ≥ (1− 3

2H )H−1 ≥ 0.2. Combining with Eqn 183, we have

T1 − S1 ≥ 0.02

H
2∑

h=1

(ω?h − ωπh) = 0.02

H/2∑
h=1

(
max
a∈A

rbh(a)−
∑
a∈A

πh(a|sh)rbh(a)

)
(189)

Combining with the definition of T1 and S1, we can prove the lemma.

After proving Lemma 13, we are ready to prove Proposition 1.

Proof. (proof of Proposition 1) By Lemma 13, we know that we can decompose the sub-optimality gap of a policy π in the
following way:

V ?1 (s1)− V π1 (s1) ≥ 0.02

H/2∑
h=1

(
max
a∈A

rbh(a)−
∑
a∈A

πh(a|sh)rbh(a)

)
(190)

where rbh(a) = µ>a + ζh(a), which can be regarded as a reward function for misspecified linear bandit. To prove
Theorem 1, the only remaining problem is to derive the lower bound for misspecified linear bandits. We directly apply the
following two lower bounds for linear bandits.

Lemma 14. (Lemma C.8 in Zhou et al. (2020a)) Fix a positive real 0 < δ ≤ 1/3, and positive integers T, d and assume
that T ≥ d2/(2δ) and consider the linear bandit problem Lµ parametrized with a parameter vector µ ∈ {−∆,∆}d and
action set A = {−1, 1}d so that the reward distribution for taking action a ∈ A is a Bernoulli distribution B(δ+ (µ?)>a).
Then for any bandit algorithm B, there exists a µ∗ ∈ {−∆,∆}d such that the expected pseudo-regret of B over T steps on
bandit Lµ? is lower bounded by d

√
Tδ

8
√

2
.

Lemma 15. (Proposition 6 in Zanette et al. (2020a)) There exists a feature map φ : A → Rd that defines a misspecified
linear bandits classM such that every bandit instance in that class has reward response:

µa = φ>a θ + za

for any action a (Here za ∈ [0, ζ] is the deviation from linearity and µa ∈ [0, 1]) and such that the expected regret of any
algorithm on at least a member of the class up to round T is Ω(

√
dζT ).

Lemma 14 is used to prove the lower bound for linear mixture MDPs in Zhou et al. (2020a), which states that the lower
bound for linear bandits with approximation error ζ = 0, while Lemma 15 mainly consider the influence of ζ to the lower
bound. Combining these two lemmas, the regret lower bound for misspecifid linear bandit is Ω(max(d

√
Tδ,
√
dζT )) =

Ω(d
√
Tδ +

√
dζT ). Since here our problem can reduce from H/2 misspecified linear bandit, we know that the regret lower

bound is Ω(Hd
√
Tδ +H

√
dζT ) = Ω(d

√
HT +H

√
dζT )
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Now we obtain the regret lower bound for misspecified linear MDP. We can prove the corresponding lower bound for the
LSVI setting Zanette et al. (2020a) since LSVI setting is strictly harder than linear MDP setting. The following lemma
states this relation between two settings.

Lemma 16. If an MDP(S,A, p, r,H) is a misspecifed linear MDP with approximation error ζ , then this MDP satisfies the
low inherent Bellman error assumption with I = 2ζ.

Proof. If an MDP is an ζ-approximate linear MDP, then we have

‖ph(·|s, a)− 〈φ(s, a),θh(·)〉 ‖TV ≤ ζ (191)
|rh(s, a)− 〈φ(s, a),νh〉 | ≤ ζ (192)

For any θh+1 ∈ Rd, we have Th (Qh+1(θh+1)) (s, a) = rh(s, a) +Es′∼ph(·|s,a)Vh+1(θh+1) (s′). Since Vh+1(θh+1) (s′) ≤
1, plugging the approximately linear form of rh(s, a) and ph(·|s, a), we have

|Th (Qh+1(θh+1)) (s, a)−

〈
φ(s, a),

∑
s′

θh(s′)Vh+1(θh+1) (s′) + νh

〉
| ≤ 2ζ (193)

By lemma 16, we can directly apply the hard instance construction and the lower bound for misspecified linear MDP to
LSVI setting.

Proposition 2. There exist function feature maps φ1, ...,φH that define an MDP classM such that every MDP in that
class satisfies low inherent Bellman error at most I and such that the expected reward on at least a member of the class (for
|A| ≥ 3, d, k,H ≥ 10, T = Ω(d2H), I ≤ 1

4H ) is Ω(d
√
HT +

√
dHIT ).
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C.2. LOWER BOUND FOR MULTI-TASK RL

In order to prove Theorem 5, we need to prove and then combine the following two lemmas.

Lemma 17. Under the setting of Theorem 5, the expected regret of any algorithm A is lower bounded by Ω(Mk
√
HT ).

Lemma 18. Under the setting of Theorem 5, the expected regret of any algorithm A is lower bounded by
Ω
(
d
√
kMHT +HMT

√
dI
)

.

These two lemmas are proved by reduction from Proposition 2, which is a lower bound we proved for the single-task LSVI
setting.

Proof. (Proof of Lemma 17) The lemma is proved by contradiction. Suppose there is an algorithm A that achieves
supM∈M E[Reg(T )] ≤ CMk

√
HT for a constant C. Then there must exists a task i ∈ [M ], such that the expected regret

for this single task is at most Ck
√
HT . However, by Proposition 2, the expected regret for MDPs with dimension k in

horizon h is at least Ω(k
√
HT +

√
kHIT ). This leads to a contradiction.

Proof. (Proof of Lemma 18) The hard instance construction follows the same idea of the proof for our Lemma 6, as well as
the hard instance to prove Lemma 19 in Yang et al. (2020). Without loss of generality, we assume that M can be exactly
divided by k.

We divide M tasks into k groups. Each group shares the same parameter {θih}Hh=1. To be more specific, we letw1
h = w2

h =

· · · = w
M/k
h = e1

h, wM/k+1
h = w

M/k+2
h = · · · = w

2M/k
h = e2

h, · · · , w(k−1)M/k+1
h = w

(k−1)M/k+2
h = · · · = wM

h = ekh.
Under this construction, the parameters θih for these tasks are exactly the same in each group, but relatively independent
among different groups. That is to say, the expected regret lower bound is at least the summation of the regret lower bounds
in all k groups.

Now we consider the regret lower bound for group j ∈ [k]. Since the parameters are shared in the same group, the regret
of running an algorithm for M/k tasks with T episodes each is at least the regret of running an algorithm for single-task
linear bandit with M/k · T episodes. By Proposition 2, the regret for single-task linear bandit with MT/k episodes
is at least Ω(d

√
MHT/k +

√
dIHMT/k). Summing over all k groups, we can prove that the regret lower bound is

Ω(d
√
kHMT +

√
dIHMT ).


