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Abstract

This paper studies representation learning for
multi-task linear bandits and multi-task episodic
RL with linear value function approximation. We
first consider the setting where we play M lin-
ear bandits with dimension d concurrently, and
these bandits share a common k-dimensional lin-
ear representation so that k � d and k � M .
We propose a sample-efficient algorithm, MTLR-
OFUL, which leverages the shared representation
to achieve Õ(M

√
dkT + d

√
kMT ) regret, with

T being the number of total steps. Our regret sig-
nificantly improves upon the baseline Õ(Md

√
T )

achieved by solving each task independently. We
further develop a lower bound that shows our re-
gret is near-optimal when d > M . Furthermore,
we extend the algorithm and analysis to multi-task
episodic RL with linear value function approxi-
mation under low inherent Bellman error (Zanette
et al., 2020a). To the best of our knowledge, this
is the first theoretical result that characterize the
benefits of multi-task representation learning for
exploration in RL with function approximation.

1. Introduction
Multi-task representation learning is the problem of learning
a common low-dimensional representation among multiple
related tasks (Caruana, 1997). This problem has become
increasingly important in many applications such as natural
language processing (Ando & Zhang, 2005; Liu et al., 2019),
computer vision (Li et al., 2014), drug discovery (Ramsun-
dar et al., 2015), and reinforcement learning (Wilson et al.,
2007; Teh et al., 2017; D’Eramo et al., 2019). In these cases,
common information can be extracted from related tasks to
improve data efficiency and accelerate learning.
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While representation learning has achieved tremendous suc-
cess in a variety of applications (Bengio et al., 2013), its
theoretical understanding is still limited. A widely accepted
assumption in the literature is the existence of a common rep-
resentation shared by different tasks. For example, Maurer
et al. (2016) proposed a general method to learn data repre-
sentation in multi-task supervised learning and learning-to-
learn setting. Du et al. (2020) studied few-shot learning via
representation learning with assumptions on a common rep-
resentation among source and target tasks. Tripuraneni et al.
(2020) focused on the problem of multi-task linear regres-
sion with low-rank representation, and proposed algorithms
with sharp statistical rates.

Inspired by the theoretical results in supervised learning, we
take a step further to investigate provable benefits of repre-
sentation learning for sequential decision making problems.
First, we study the multi-task low-rank linear bandits prob-
lem, where M tasks of d-dimensional (infinite-arm) linear
bandits are concurrently learned for T steps. The expected
reward of arm xi ∈ Rd for task i is θ>i xi, as determined by
an unknown linear parameter θi. To take advantage of the
multi-task representation learning framework, we assume
that θi’s lie in an unknown k-dimensional subspace of Rd,
where k is much smaller compared to d and M (Yang et al.,
2020). The dependence among tasks makes it possible to
achieve a regret bound better than solving each task inde-
pendently. Specifically, if the tasks are solved independently
with standard algorithms such as OFUL (Abbasi-Yadkori
et al., 2011), the total regret is Õ(Md

√
T ).1 By leveraging

the common representation among tasks, we can achieve
a better regret Õ(M

√
dkT + d

√
MkT ). Our algorithm is

also robust to the linear representation assumption when the
model is misspecified. If the k-dimensional subspace ap-
proximates the rewards with error at most ζ, our algorithm
can still achieve regret Õ(M

√
dkT+d

√
kMT+MT

√
dζ).

Moreover, we prove a regret lower bound indicating that
the regret of our algorithm is not improvable except for
logarithmic factors in the regime d > M .

Compared with multi-task linear bandits, multi-task rein-
forcement learning is a more popular research topic with
a long line of works in both theoretical side and empiri-
cal side (Taylor & Stone, 2009; Parisotto et al., 2015; Liu

1Õ hides the logarithmic factors.
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et al., 2016; Teh et al., 2017; Hessel et al., 2019; D’Eramo
et al., 2019; Arora et al., 2020). We extend our algo-
rithm for linear bandits to the multi-task episodic reinforce-
ment learning with linear value function approximation
under low inherent Bellman error (Zanette et al., 2020a).
Assuming a low-rank linear representation across all the
tasks, we propose a sample-efficient algorithm with regret
Õ(HM

√
dkT+Hd

√
kMT+HMT

√
dI) , where k is the

dimension of the low-rank representation, d is the ambient
dimension of state-action features,M is the number of tasks,
H is the horizon, T is the number of episodes, and I de-
notes the inherent Bellman error. The regret significantly im-
proves upon the baseline regret Õ(HMd

√
T +HMT

√
dI)

achieved by running ELEANOR algorithm (Zanette et al.,
2020a) for each task independently. We also prove a regret
lower bound Ω(Mk

√
HT +d

√
HkMT +HMT

√
dI). To

the best of our knowledge, this is the first provably sample-
efficient algorithm for exploration in multi-task low-rank
linear RL.

2. Preliminaries
2.1. Multi-Task Linear Bandit

We study the problem of representation learning for linear
bandits in which there are multiple tasks sharing common
low-dimensional features. Let d be the ambient dimension
and k be the representation dimension. We play M tasks
concurrently for T steps each. Each task i ∈ [M ] is as-
sociated with an unknown vector θi ∈ Rd. In each step
t ∈ [T ], the player chooses one action xt,i ∈ At,i for each
task i ∈ [M ], and receives a batch of rewards {yt,i}Mi=1

afterwards, where At,i is the feasible action set (can even
be chosen adversarially) for task i at step t. The rewards
received are determined by yt,i = θ>i xt,i + ηt,i, where the
ηt,i is the random noise.

We use total regret forM tasks in T steps to measure the per-
formance of our algorithm, which is defined in the following
way:

Reg(T )
def
=

T∑
t=1

M∑
i=1

(〈
x?t,i,θi

〉
− 〈xt,i,θi〉

)
,

where x?t,i = argmaxx∈At,i 〈x,θi〉.

The main assumption is the existence of a common linear
feature extractor.

Assumption 1. There exists a linear feature extractorB ∈
Rd×k and a set of k-dimensional coefficients {wi}Mi=1 such
that {θi}Mi=1 satisfies θi = Bwi.

Define filtration Ft to be the σ-field of random variables
σ({xτ,i}τ≤t+1,i∈[M ], {ητ,i}τ≤t,i∈[M ]) , then we have the
following assumption.

Assumption 2. Following the standard regularity assump-
tions in linear bandits (Abbasi-Yadkori et al., 2011; Latti-
more & Szepesvári, 2020), we assume

• ‖θi‖2 ≤ 1,∀i ∈ [M ]

• ‖x‖2 ≤ 1,∀x ∈ At,i, t ∈ [T ], i ∈ [M ]

• ηt,i is conditionally zero-mean 1-sub-Gaussian ran-
dom variable with regards to Ft−1.

For notation convenience, we use Xt,i =
[x1,i,x2,i, · · · ,xt,i] and yt,i = [y1,i, · · · , yt,i]> to
denote the arms and the corresponding rewards col-
lected for task i ∈ [M ] in the first t steps, and we also
use ηt,i = [η1,i, η2,i, · · · , ηt,i]> to denote the corre-
sponding noise. We define Θ

def
= [θ1,θ2, · · · ,θM ] and

W
def
= [w1,w2, · · · ,wM ]. For any positive definite matrix

A ∈ Rd×d, the Mahalanobis norm with regards to A is
denoted by ‖x‖A =

√
x>Ax.

2.2. Multi-Task Linear RL

We also study how this low-rank structure benefits the ex-
ploration problem with approximate linear value functions
in multi-task episodic reinforcement learning. For reference
convenience, we abbreviate our setting as multi-task LSVI
setting, which is a natural extension of LSVI condition in
the single-task setting (Zanette et al., 2020a).

Consider an undiscounted episodic MDP M =
(S,A, p, r,H) with state space S, action space A, and
fixed horizon H . At each step h ∈ [H], the agent re-
ceives a random reward Rh(sh, ah) with mean rh(sh, ah)
based on the state sh he is located and action ah he takes.
Then he transits to the next state sh+1 according to the
transition kernel ph (· | sh, ah). The action value func-
tion for each state-action pair at step h for some deter-
ministic policy π is defined as Qπh(sh, ah)

def
= rh(sh, ah) +

E
[∑H

t=h+1Rt(st, πt(st))
]

, and the state value function is
defined as V πh (sh) = Qπh(sh, πh(sh))

Note that there always exists an optimal deterministic policy
(under some regularity conditions) π∗ for which V π

∗

h (s) =
maxπ V

π
h (s) andQπ

∗

h (s, a) = maxπ Q
π
h(s, a) for each h ∈

[H]. We denote V π
∗

h and Qπ
∗

h by V ∗h and Q∗h for short.

It’s also convenient to define the Bellman optimal-
ity operator Th as Th(Qh+1)(s, a)

def
= rh(s, a) +

Es′∼ph(·|s,a) maxa′ Qh+1(s′, a′).

In the framework of single-task approximate linear value
functions (see Section 5 for more discussions), we assume
a feature map φ : S × A → Rd that maps each state-
action pair to a d-dimensional vector. In case that S is
too large or continuous (e.g. in robotics), this feature map
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helps to reduce the problem scale from |S| × |A| to d. The
value functions are the linear combinations of those fea-
ture maps, so we can define the function space at step
h ∈ [H] to be Q′h = {Qh(θh) | θh ∈ Θ′h} and V ′h =

{Vh(θh) | θh ∈ Θ′h}, where Qh(θh)(s, a)
def
= φ(s, a)>θh,

and Vh(θh)(s)
def
= maxa φ(s, a)>θh.

In order to find the optimal value function using value it-
eration with Qh, we require that it is approximately close
under Th, as measured by the inherent Bellman error (or
IBE for short). The IBE (Zanette et al., 2020a) at step h is
defined as

Ih
def
= sup
Qh+1∈Qh+1

inf
Qh∈Qh

sup
s∈S,a∈A

|(Qh − Th(Qh+1)) (s, a)| .

(1)

In multi-task reinforcement learning, we have M MDPs
M1,M2, ...,MM (we use superscript i to denote task i).
Assume they share the same state space and action space,
but have different rewards and transitions.

To take advantage of the multi-task LSVI setting
and low-rank representation learning, we define a
joint function space for all the tasks as Θh

def
=

{
(
Bhw

1
h,Bhw

2
h, · · · ,Bhw

M
h

)
: Bh ∈ Od×k,wi

h ∈
Bk,Bhw

i
h ∈ Θi′

h}, where Od×k is the collection of all
orthonormal matrices in Rd×k, and Bk is the unit ball in
Rk.

The induced function space is defined as

Qh
def
= {
(
Q1
h

(
θ1
h

)
, Q2

h

(
θ2
h

)
, · · · , QMh

(
θMh
))

(2)

|
(
θ1
h,θ

2
h, · · · ,θMh

)
∈ Θh} (3)

Vh
def
= {
(
V 1
h

(
θ1
h

)
, V 2
h

(
θ2
h

)
, · · · , VMh

(
θMh
))

(4)

|
(
θ1
h,θ

2
h, · · · ,θMh

)
∈ Θh} (5)

The low-rank IBE at step h for multi-task LSVI setting is
a generalization of IBE (Eqn 1) for the single-task setting,
which is defined accordingly as

Imul
h

def
= sup
{Qih+1}Mi=1

∈Qh+1

inf
{Qih}Mi=1

∈Qh
(6)

sup
s∈S,a∈A,i∈[M ]

∣∣(Qih − T ih (Qih+1)
)

(s, a)
∣∣ (7)

Let I def
= suph Imul

h be the maximum inherent Bellman error
with regards to the joint function space Qh over h ∈ [H].
When I = 0, this multi-task RL problem can be regarded
as a natural extension of Assumption 1 in linear bandits
to episodic RL. This is because there exists {θ̄i∗h }Mi=1 ∈
Θh such that Qi∗h = Qih(θ̄i∗h ) for all i ∈ [M ] and h ∈
[H] in the case I = 0. According to the definition of Θh

we know that {θ̄i∗h }Mi=1 also admit a low-rank property as
Assumption 1 indicates. When I > 0, it is an extension of
misspecified multi-task linear bandits (discussed in Section
4.3) to episodic RL.

Define the filtration Fh,t to be the σ-field induced by all the
random variables up to step h in episode t (not include the
rewards at step h in episode t), then we have the following
assumptions.

Assumption 3. Following the parameter scale in (Zanette
et al., 2020a), we assume

• ‖φ(s, a)‖2 ≤ 1,∀(s, a) ∈ S ×A, h ∈ [H]

• 0 ≤ Qπh(s, a) ≤ 1,∀(s, a) ∈ S ×A, h ∈ [H],∀π.

• There exists constant D that for any h ∈ [H] and any{
θih
}M
i=1
∈ Θh, it holds that ‖θih‖2 ≤ D,∀i ∈ [M ].

• For any fixed
{
Qih+1

}M
i=1

∈ Qh+1, the random

noise zih(s, a)
def
= Rih(s, a) + maxaQ

i
h+1 (s′, a) −

T ih
(
Qih+1

)
(s, a) is bounded in [−1, 1] a.s., and is in-

dependent conditioned on Fh,t for any s ∈ S, a ∈
A, h ∈ [H], i ∈ [M ], where the randomness is from
reward R and s′ ∼ ph (· | s, a).

The first condition is a standard regularization condition
for linear features. The second condition is on the scale of
the problem. This scale of the exploration problem that the
value function is bounded in [0, 1] has also been studied in
both tabular and linear setting (Zhang et al., 2020; Wang
et al., 2020; Zanette et al., 2020a). The last two conditions
are compatible with the scale of the problem. It’s sufficient
to assume the constant norm of θih since the optimal value
function is of the same scale. The last condition is standard
in linear bandits (Abbasi-Yadkori et al., 2011; Lattimore
& Szepesvári, 2020) and RL (Zanette et al., 2020a), and is
automatically satisfied if D = 1.

The total regret of M tasks in T episodes is defined as

Reg(T )
def
=

T∑
t=1

M∑
i=1

(
V i∗1 − V

πit
1

) (
si1t
)

(8)

where πit is the policy used for task i in episode t, and siht
denotes the state encountered at step h in episode t for task
i. We assume M ≥ 5, T ≥ 5 throughout this paper.

3. Related Work
Multi-task Supervised Learning The idea of multi-task
representation learning at least dates back to Caruana (1997);
Thrun & Pratt (1998); Baxter (2000). Empirically, repre-
sentation learning has shown its great power in various
domains. We refer readers to Bengio et al. (2013) for a



Multi-Task Representation Learning

detailed review about empirical results. From the theoretical
perspective, Baxter (2000) performed the first theoretical
analysis and gave sample complexity bounds using covering
number. Maurer et al. (2016) considered the setting where
all tasks are sampled from a certain distribution, and ana-
lyzed the benefits of representation learning for reducing
the sample complexity of the target task. Following their
results, Du et al. (2020) and Tripuraneni et al. (2020) re-
placed the i.i.d assumption with a deterministic assumption
on the data distribution and task diversity, and proposed
efficient algorithms that can fully utilize all source data with
better sample complexity. These results mainly focus on
the statistical rate for multi-task supervised learning, and
cannot tackle the exploration problem in bandits and RL.

Multi-task Bandit Learning For multi-task linear ban-
dits, the most related work is a recent paper by Yang et al.
(2020). For linear bandits with infinite-action set, they firstly
proposed an explore-then-exploit algorithm with regret
Õ(Mk

√
T +d1.5k

√
MT ), which outperforms the naive ap-

proach with Õ(Md
√
T ) regret in the regime M = Ω(dk2).

Though their results are insightful, they required the action
set for all tasks and all steps to be the same well-conditioned
d-dimensional ellipsoids which cover all directions with
constant radius. Besides, they assumed that the task pa-
rameters are diverse enough withWW> well-conditioned,
and the norm of wi is lower bounded by a constant. These
assumptions make the application of the theory rather re-
strictive to only a subset of linear bandit instances with
benign structures. In contrast, our theory is more general
since we do not assume the same and well-conditioned ac-
tion set for different tasks and time steps, nor assume the
benign properties of wi’s.

Multi-task RL For multi-task reinforcement learning,
there is a long line of works from the empirical perspec-
tive (Taylor & Stone, 2009; Parisotto et al., 2015; Liu et al.,
2016; Teh et al., 2017; Hessel et al., 2019). From the the-
oretical perspective, Brunskill & Li (2013) analyzed the
sample complexity of multi-task RL in the tabular setting.
D’Eramo et al. (2019) showed that representation learning
can improve the rate of approximate value iteration algo-
rithm. Arora et al. (2020) proved that representation learning
can reduce the sample complexity of imitation learning.

Bandits with Low Rank Structure Low-rank represen-
tations have also been explored in single-task settings. Jun
et al. (2019) studied bilinear bandits with low rank repre-
sentation. The mean reward in their setting is defined as
the bilinear multiplication x>Θy, where x and y are two
actions selected at each step, and Θ is an unknown low
rank parameter matrix. Their setting is further generalized
by Lu et al. (2020). Furthermore, sparse linear bandits can
be regarded as a simplified setting, where B is a binary

matrix indicating the subset of relevant features in context
x (Abbasi-Yadkori et al., 2012; Carpentier & Munos, 2012;
Lattimore et al., 2015; Hao et al., 2020).

Exploration in Bandits and RL Our regret analysis is
also related to exploration in single-task linear bandits and
linear RL. Linear bandits have been extensively studied in re-
cent years (Auer, 2002; Dani et al., 2008; Rusmevichientong
& Tsitsiklis, 2010; Abbasi-Yadkori et al., 2011; Chu et al.,
2011; Li et al., 2019a;b). Our algorithm is most relevant
to the seminal work of Abbasi-Yadkori et al. (2011), who
applied self-normalized techniques to obtain near-optimal
regret upper bounds. For single-task linear RL, recent years
have witnessed a tremendous of works under different func-
tion approximation settings, including linear MDPs (Yang &
Wang, 2019; Jin et al., 2020), linear mixture MDPs (Ayoub
et al., 2020; Zhou et al., 2020a), linear RL with low inherent
Bellman error (Zanette et al., 2020a;b), and MDPs with low
Bellman-rank (Jiang et al., 2017). Our multi-task setting is
a natural extension of linear RL with low inherent Bellman
error setting, which covers linear MDP setting as a special
case (Zanette et al., 2020a).

4. Main Results for Linear Bandits
In this section, we present our main results for multi-task
linear bandits.

4.1. Construction of the Confidence Sets

A natural and successful method to design efficient algo-
rithms for sequential decision making problem is the opti-
mism in the face of uncertainty principle. When applied
to single-task linear bandits, the basic idea is to maintain a
confidence set Ct for the parameter θ based on history ob-
servations for each step t ∈ [T ]. The algorithm chooses an
optimistic estimation θ̃t = argmaxθ∈Ct (maxx∈At〈x,θ〉)
and then selects action xt = argmaxxt∈At〈x, θ̃t〉, which
maximizes the reward according to the estimation θ̃t.

For multi-task linear bandits, the main difference is that
we need to tackle M highly correlated tasks concurrently.
To obtain tighter confidence bound, we maintain the con-
fidence set Ct for B and {wi}Mi=1, then choose the op-
timistic estimation Θ̃t for all tasks concurrently. To be
more specific, the algorithm chooses an optimistic estimate
Θ̃t = argmaxΘ∈Ct(max{xi∈At,i}Mi=1

∑M
i=1 〈xi,θi〉), and

then selects action xt,i = argmaxxi∈At,i〈xi, θ̃t,i〉 for each
task i ∈ [M ].

The main technical contribution is the construction of a
tighter confidence set Ct for the estimation of Θ. At each
step t ∈ [T ], we solve the following least-square problem
based on the samples collected so far and obtain the mini-
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mizer B̂t and Ŵt:

arg min
B∈Rd×k,w1..M∈Rk×M

M∑
i=1

∥∥yt−1,i −X>t−1,iBwi
∥∥2

2
(9)

s.t. ‖Bwi‖2 ≤ 1,∀i ∈ [M ]. (10)

The confidence set Ct is constructed as follows:

Ct
def
=

{
Θ = BW :

M∑
i=1

∥∥∥B̂tŵt,i −Bwi
∥∥∥2

Ṽt−1,i(λ)
≤ L,

B ∈ Rd×k,wi ∈ Rk, ‖Bwi‖2 ≤ 1,∀i ∈ [M ]

}
,

(11)

where L = Õ(Mk + kd) (see Appendix A.1 for the exact
value) and Ṽt−1,i(λ) = Xt−1,iX

>
t−1,i + λId. λ is a hyper-

parameter used to ensure that Ṽt−1,i(λ) is always invertable,
which can be set to 1. We can guarantee that Θ ∈ Ct for all
t ∈ [T ] with high probability by the following lemma.
Lemma 1. With probability at least 1 − δ, for any step
t ∈ [T ], suppose Θ̂t = B̂tŴt is the optimal solution
of the least-square regression (Eqn 9), the true parameter
Θ = BW is always contained in the confidence set Ct, i.e.

M∑
i=1

∥∥∥B̂tŵt,i −Bwi
∥∥∥2

Ṽt−1,i(λ)
≤ L, (12)

where Ṽt−1,i(λ) = Xt−1,iX
>
t−1,i + λId.

If we solve each tasks independently with standard single-
task algorithms such as OFUL (Abbasi-Yadkori et al., 2011),
it is not hard to realize that we can only obtain a confidence
set with

∑M
i=1 ‖B̂tŵt,i −Bwi‖2Ṽt−1,i(λ)

≤ L1 = Õ(Md).
Our confidence bound is much sharper compared with this
naive bound, which explains the improvement in our final
regret. Compared with Yang et al. (2020), we are not able
to estimateB andW directly like their methods due to the
more relaxed bandit setting. In our setting, the empirical
design matrix Ṽt−1,i(λ) can be quite ill-conditioned if the
action set at each step is chosen adversarially. Thus, we
have to establish a tighter confidence set to improve the
regret bound.

We only sketch the main idea of the proof for Lemma 1
and defer the detailed explanation to Appendix A.1. Con-
sidering the non-trivial case where d > 2k, our main ob-
servation is that both BW and B̂tŴt are low-rank ma-
trix with rank upper bounded by k, which indicates that
rank

(
B̂tŴt −BW

)
≤ 2k. Therefore, we can write

B̂tŴt −BW = UtRt = [Utrt,1,Utrt,2, · · · ,Utrt,M ],
where Ut ∈ Rd×2k is an orthonormal matrix and Rt ∈
R2k×M . Thus we have

X>t−1,i

(
B̂tŵt,i −Bwi

)
=
(
U>t Xt−1,i

)>
Rt.

This observation indicates that we can project the history
actionsXt−1,i to a 2k-dimensional space withUt, and take
U>t Xt−1,i as the 2k-dimensional actions we have selected
in the first t − 1 steps. Following this idea, we connect

the approximation error
∑M
i=1

∥∥∥B̂tŵt,i −Bwi
∥∥∥2

Ṽt−1,i(λ)

to the term
∑M
i=1

∥∥∥η>t−1,i

(
U>t Xt−1,i

)>∥∥∥2

V −1
t−1,i(λ)

, where

Vt−1,i(λ)
def
=

(
U>t Xt−1,i

) (
U>t Xt−1,i

)>
+ λI . We

bound this term for the fixed Ut with the technique of self-
normalized bound for vector-valued martingales (Abbasi-
Yadkori et al., 2011), and then apply the ε-net trick to
cover all possible Ut. This leads to an upper bound for∑M
i=1

∥∥η>t−1,iX
>
t−1,iUt

∥∥2

V −1
t−1,i(λ)

, and consequently helps

to obtain the upper bound in Lemma 1.

4.2. Algorithm and Regret

Algorithm 1 Multi-Task Low-Rank OFUL
1: for step t = 1, 2, · · · , T do
2: Calculate the confidence interval Ct by Eqn 11
3: Θ̃t,xt,i = argmaxΘ∈Ct,xi∈At,i

∑M
i=1 〈xi,θi〉

4: for task i = 1, 2, · · · ,M do
5: Play xt,i for task i, and obtain the reward yt,i

We describe our Multi-Task Low-Rank OFUL algorithm in
Algorithm 1. The following theorem states a bound on the
regret of the algorithm.

Theorem 1. Under Assumption 1 and Assumption 2, with
probability at least 1 − δ, the regret of Algorithm 1 is
bounded by

Reg(T ) = Õ
(
M
√
dkT + d

√
kMT

)
(13)

We defer the proof of Theorem 1 to Appendix A.2. The first
term in the regret has linear dependence on M . This term
characterizes the regret caused by learning the parameters
wi for each task. The second term has square root depen-
dence on the number of total samples MT , which indicates
the cost to learn the common representation with samples
from M tasks. By dividing the total regret by the number of
tasks M , we know that the average regret for each task is
Õ(
√
dkT +d

√
kT/M). Note that if we solveM tasks with

algorithms such as OFUL (Abbasi-Yadkori et al., 2011) in-
dependently, the regret per task can be Õ(d

√
T ). Our bound

saves a factor of
√
d/k compared with the naive method

by leveraging the common representation features. We also
show that when d > M our regret bound is near optimal
(see Theorem 3).
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4.3. Misspecified Multi-Task Linear Bandits

For multi-task linear bandits problem, it is relatively unre-
alistic to assume a common feature extractor that can fit
the reward functions of M tasks exactly. A more natural
situation is that the underlying reward functions are not ex-
actly linear, but have some misspecifications. There are also
relevant discussions on single-task linear bandits in recent
works (Lattimore et al., 2020; Zanette et al., 2020a). We
first present a definition for the approximately linear bandits
learning in multi-task setting.

Assumption 4. There exists a linear feature extractorB ∈
Rd×k and a set of linear coefficients {wi}Mi=1 such that the
expectated reward E[yi|xi] for any action xi ∈ Rd satisfies
|E[yi|xi]− 〈xi,Bwi〉| ≤ ζ.

In general, an algorithm designed for a linear model could
break down entirely if the underlying model is not linear.
However, we find that our algorithm is in fact robust to small
model misspecification if we set L = Õ(Mk+kd+MTζ2)
(see Appendix A.4 for the exact value). The following regret
bound holds under Assumption 4 if we slightly modify the
hyperparameter L in the definition of confidence region Ct.
Theorem 2. Under Assumption 1, 2 and 4, with probability
at least 1− δ, the regret of Algorithm 1 is bounded by

Reg(T ) = Õ
(
M
√
dkT + d

√
kMT +MT

√
dζ
)

(14)

Theorem 2 is proved in Appendix A.4. Compared with
Theorem 1, there is an additional term Õ(MT

√
dζ) in the

regret of Theorem 2. This additional term is inevitably linear
inMT due to the intrinsic bias introduced by linear function
approximation. Note that our algorithm can still enjoy good
theoretical guarantees when ζ is sufficiently small.

4.4. Lower Bound

In this subsection, we propose the regret lower bound for
multi-task linear bandit problem under Assumption 4.

Theorem 3. For any k,M, d, T ∈ Z+ with k ≤ d ≤ T
and k ≤ M , and any learning algorithm A, there exist a
multi-task linear bandit instance that satisfies Assumption 4,
such that the regret of Algorithm A is lower bounded by

Reg(T ) ≥ Ω
(
Mk
√
T + d

√
kMT +MT

√
dζ
)
.

We defer the proof of Theorem 3 to Appendix A.5. By set-
ting ζ = 0, Theorem 3 can be converted to the lower bound
for multi-task linear bandit problem under Assumption 1,
which is Ω(Mk

√
T+d

√
kMT ). These lower bounds match

the upper bounds in Theorem 1 and Theorem 2 in the regime
where d > M respectively. There is still a gap of

√
d/k

in the first part of the regret. For the upper bounds, the

main difficulty to obtain Õ(Mk
√
T ) regret in the first part

comes from the estimation of B. Since the action sets are
not fixed and can be ill-conditioned, we cannot follow the
explore-then-exploit framework and estimate B at the be-
ginning. Besides, explore-then-exploit algorithms always
suffer Õ(T 2/3) regret in the general linear bandits setting
without further assumptions. Without estimatingB before-
hand with enough accuracy, the exploration in original d-
dimensional space can be difficult since we cannot identify
actions that have the similar k-dimensional representations
before pulling them. We conjecture that our upper bound is
tight and leave the gap as future work.

5. Main Results for Linear RL
We now show the main results for the multi-task episodic
reinforcement learning under the assumption of low inherent
Bellman error (i.e. the multi-task LSVI setting).

5.1. Multi-task LSVI Framework

In the exploration problems in RL where linear value func-
tion approximation is employed (Yang & Wang, 2019; Jin
et al., 2020; Yang & Wang, 2020), LSVI-based algorithms
are usually very effective when the linear value function
space are close under Bellman operator. For example, it is
shown that a LSVI-based algorithm with additional bonus
can solve the exploration challenge effectively in low-rank
MDP (Jin et al., 2020), where the function space Qh,Qh+1

are exactly close under Bellman operator (i.e. any function
Qh+1 in Qh+1 composed with Bellman operator ThQh+1

belongs to Qh). For the release of such strong assumptions,
the inherent Bellman error for a MDP (Definition 1) was
proposed to measure how close is the function space under
Bellman operator (Zanette et al., 2020a). We extend the def-
inition of IBE to the multi-task LSVI setting (Definition 6),
and show that our refined confidence set for the least square
estimator can be applied to the low-rank multi-task LSVI
setting, and gives an optimism-based algorithm with sharper
regret bound compared to naively do exploration in each
task independently.

5.2. Algorithm

The MTLR-LSVI (Algorithm 2) follows the LSVI-based
(Jin et al., 2020; Zanette et al., 2020a) algorithms to build
our (optimistic) estimator for the optimal value functions.
To understand how this works for multi-task LSVI setting,
we first take a glance at how LSVI-based algorithms work
in single-task LSVI setting.

In traditional value iteration algorithms, we perform an
approximate Bellman backup in episode t for each step
h ∈ [H] on the estimator Qh+1,t−1 constructed at the
end of episode t − 1, and find the best approximator for
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Th (Qh+1,t−1) in function space Qh. An effective and
widely-used approximator is the least-square solution of
the empirical Bellman backup on Qh+1,t−1.

In the multi-task framework, suppose we have obtained the
estimator Qh+1

(
θih+1

)
for each i ∈ [M ]. To apply such

least-square value iteration to our low-rank multi-task LSVI
setting, we use the solution to the following constrained
optimization problem

M∑
i=1

t−1∑
j=1

((
φihj

)>
θih −Rihj − V ih+1

(
θih+1

) (
sih+1,j

))2

(15)

s.t. θ1
h,θ

2
h, ...,θ

M
h lies in a k-dimensional subspace

(16)

to approximate the Bellman update in the t-th episode,
where φihj = φh(sihj , a

i
hj) is the feature observed at step h

in episode j for task i, and similarly Rihj = Rh(sihj , a
i
hj).

To guarantee the optimistic property of our estimator, we
follow the global optimization procedure of Zanette et al.
(2020a) which solves the following optimization problem
in the t-th episode:

Definition 1 (Global Optimization Procedure).

max
ξ̄ih,θ̂

i
h,θ̄

i
h

M∑
i=1

max
ai

(
φ(si1, a

i)
)>
θ̄i1 (17)

s.t.
(
θ̂1
h, ..., θ̂

M
h

)
= B̂h

[
ŵ1
h ŵ2

h · · · ŵM
h

]
= argmin
‖Bhwih‖2≤D

M∑
i=1

t−1∑
j=1

Lj(Bh,w
i
h)

(18)

θ̄ih = θ̂ih + ξ̄ih;

M∑
i=1

∥∥ξ̄ih∥∥2

Ṽ iht(λ)
≤ αht (19)(

θ̄1
h, θ̄

2
h, · · · , θ̄Mh

)
∈ Θh (20)

where the empirical least-square loss Lj(Bh,w
i
h)

def
=

((φihj)
>Bhw

i
h − Rihj − V ih+1(θ̄ih+1)(sih+1,j))

2 , and

Ṽ i
ht(λ)

def
=
∑t−1
j=1(φihj)(φ

i
hj)
> + λI is the regularized em-

pirical linear design matrix for task i in episode t.

We have three types of variables in this global optimization
problem, ξ̄ih, θ̂

i
h, and θ̄ih. Here θ̄ih denotes the estimator

for Qi∗h . We solve for the low-rank least-square solution of
the approximate value iteration and denote the solution by
θ̂ih. Instead of adding the bonus term directly on Qih(θ̂ih) to
obtain an optimistic estimate of Qi∗h as in the tabular setting
(Azar et al., 2017; Jin et al., 2018) and linear MDP setting
(Jin et al., 2020), we use global variables ξ̄ih to quantify
the confidence bonus. This is because we cannot preserve

Algorithm 2 Multi-Task Low-Rank LSVI
1: Input: low-rank parameter k, failure probability δ, regu-

larization λ = 1, inherent Bellman error I
2: Initialize Ṽh1 = λI for h ∈ [H]
3: for episode t = 1, 2, · · · do
4: Compute αht for h ∈ [H]. (see Lemma 9)
5: Solve the global optimization problem 1
6: Compute πiht(s) = argmaxa φ(s, a)>θ̄iht
7: Execute πiht for task i at step h = 1, 2, ...,H
8: Collect

{
siht, a

i
ht, r

(
siht, a

i
ht

)}
for episode t.

the linear property of our estimator if we add the bonus
directly, resulting in an exponential propagation of error.
However, by using ξ̄ih we can construct a linear estimator
Qih
(
θ̄ih
)

and obtain much smaller regret. A drawback of
this global optimization technique is that we can only obtain
an optimistic estimator at step 1, since values in different
states and steps are possibly negatively correlated.

5.3. Regret Bound

Theorem 4. Under Assumption 3, with probability 1 − δ
the regret after T episodes is bounded by

Reg(T ) = Õ
(
HM
√
dkT +Hd

√
kMT +HMT

√
dI
)

(21)

Compared to naively executing single-task linear RL algo-
rithms (e.g. the ELEANOR algorithm) on each task without
information-sharing, which incurs regret Õ(HMd

√
T +

HMT
√
dI), our regret bound is smaller by a factor of

approximately
√
d/k where k � d and k �M .

We give a brief explanation on how we improve the regret
bound and defer the full analysis to appendix B. We start
with the decomposition of the regret. Let Q̄iht(V̄

i
ht) be the

solution of the problem in definition 1 in episode t, then

Reg(T ) =

T∑
t=1

M∑
i=1

(
V i∗1 − V̄ i1t + V̄ i1t − V

πit
1

) (
si1t
)

(22)

≤ HMTI (by Lemma 12) (23)

+

T∑
t=1

H∑
h=1

M∑
i=1

(∣∣Q̄iht(s, a)− T ih Q̄ih+1,t(s, a)
∣∣+ ζiht

)
.

(24)

In (23) we use the optimistic property of V̄ i1t. In (24), ζiht is
a martingale difference (defined in section B.5) with regards
toFh,t, and the dominate term (the first term) is the Bellman
error of Q̄iht.

For any {Qih+1}Mi=1 ∈ Qh+1, we can find a group of vectors

{θ̇ih(Qih+1)}Mi=1 ∈ Θh that satisfy ∆i
h

(
Qih+1

)
(s, a)

def
=
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T ih
(
Qih+1

)
(s, a) − φ(s, a)>θ̇ih

(
Qih+1

)
and the approxi-

mation error
∥∥∆i

h

(
Qih+1

)∥∥
∞ ≤ I for each i ∈ [M ]. By

definition, θ̇ih
(
Qih+1

)
is actually the best approximator of

T ih
(
Qih+1

)
in the function class Qh. Since our algorithm is

based on least-square value iteration, a key step is to bound
the error of estimating θ̇ih(Q̄ih+1,t) (θ̇ih for short). In the
global optimization procedure, we use θ̂ih to approximate
the empirical Bellman backup. In Lemma 9 we show

M∑
i=1

∥∥∥θ̂ih − θ̇ih∥∥∥2

Ṽ iht(λ)
= Õ

(
Mk + kd+MTI2

)
(25)

This is the key step leading to improved regret bound. If we
solve each task independently without information sharing,
we can only bound the least square error in (25) as Õ(Md+
MTI2). Our bound is much more sharper since k � d and
k �M .

Using the least square error in (25), we can show that the
dominate term in (24) is bounded by (see Lemma 10 and
section B.5)

M∑
i=1

∣∣Q̄iht(s, a)− T ih Q̄ih+1,t(s, a)
∣∣ ≤MI+ (26)

Õ
(√

Mk + kd+MTI2
)
·

√√√√ M∑
i=1

∥∥φ(siht, a
i
ht)
∥∥2

Ṽ iht(λ)−1

(27)

Abbasi-Yadkori et al. (2011, Lemma 11) states that∑T
t=1

∥∥φ(siht, a
i
ht)
∥∥2

Ṽ iht(λ)−1 = Õ(d) for any h and i, so
we can finally bound the regret as

Reg(T ) = Õ
(
HMTI +H

√
Mk + kd+MTI2 ·

√
MTd

)
= Õ

(
HM
√
dkT +Hd

√
kMT +HMT

√
dI
)

where the first equality is by Cauchy-Schwarz.

5.4. Lower Bound

This subsection presents the lower bound for multi-task
reinforcement learning with low inherent Bellman error.
Our lower bound is derived from the lower bound in the
single-task setting. As a byproduct, we also derive a lower
bound for misspecified linear RL in the single-task setting.
We defer the proof of Theorem 5 to Appendix C.

Theorem 5. For our construction in appendix C, the ex-
pected regret of any algorithm where d, k,H ≥ 10, |A| ≥
3,M ≥ k, T = Ω(d2H), I ≤ 1/4H is

Ω
(
Mk
√
HT + d

√
HkMT +HMT

√
dI
)

Careful readers may find that there is a gap of
√
H in the first

two terms between the upper bound and the lower bound.
This gap is because the confidence set used in the algorithm
is intrinsically “Hoeffding-type”. Using a “Bernstein-type”
confidence set can potentially improve the upper bound by
a factor of

√
H . This “Bernstein” technique has been well

exploited in many previous results for single-task RL (Azar
et al., 2017; Jin et al., 2018; Zhou et al., 2020a). Since our
focus is mainly on the benefits of multi-task representation
learning, we don’t apply this technique for the clarity of the
analysis. If we ignore this gap in the dependence on H , our
upper bound matches this lower bound in the regime where
d ≥M .

6. Conclusion
In this paper, we study provably sample-efficient represen-
tation learning for multi-task linear bandits and linear RL.
For linear bandits, we propose an algorithm called MTLR-
OFUL, which obtains near-optimal regret in the regime
where d ≥ M . We then extend our algorithms to multi-
task RL setting, and propose a sample-efficient algorithm,
MTLR-LSVI.

There are two directions for future investigation. First, our
algorithms are statistically sample-efficient, but a computa-
tionally efficient implementation is still unknown, although
we conjecture our MTLR-OFUL algorithm is computation-
ally efficient. How to design both computationally and
statistically efficient algorithms in our multi-task setting is
an interesting problem for future research. Second, there
remains a gap of

√
d/k between regret upper and lower

bounds (in the first term). We conjecture that our lower
bound is not minimax optimal and hope to address this
problem in the future work.
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multi-resource allocation with semi-bandit feedback. In
NIPS, pp. 964–972, 2015.

Lattimore, T., Szepesvari, C., and Weisz, G. Learning with
good feature representations in bandits and in rl with a
generative model. In International Conference on Ma-
chine Learning, pp. 5662–5670. PMLR, 2020.

Li, J., Zhang, H., Zhang, L., Huang, X., and Zhang, L. Joint
collaborative representation with multitask learning for
hyperspectral image classification. IEEE Transactions
on Geoscience and Remote Sensing, 52(9):5923–5936,
2014.

Li, Y., Wang, Y., and Zhou, Y. Nearly minimax-optimal
regret for linearly parameterized bandits. arXiv preprint
arXiv:1904.00242, 2019a.

Li, Y., Wang, Y., and Zhou, Y. Tight regret bounds for
infinite-armed linear contextual bandits. arXiv preprint
arXiv:1905.01435, 2019b.

Liu, L. T., Dogan, U., and Hofmann, K. Decoding mul-
titask dqn in the world of minecraft. In The 13th Eu-
ropean Workshop on Reinforcement Learning (EWRL)
2016, 2016.



Multi-Task Representation Learning

Liu, X., He, P., Chen, W., and Gao, J. Multi-task deep neu-
ral networks for natural language understanding. arXiv
preprint arXiv:1901.11504, 2019.

Lu, Y., Meisami, A., and Tewari, A. Low-rank generalized
linear bandit problems. arXiv preprint arXiv:2006.02948,
2020.

Maurer, A., Pontil, M., and Romera-Paredes, B. The ben-
efit of multitask representation learning. The Journal of
Machine Learning Research, 17(1):2853–2884, 2016.

Parisotto, E., Ba, J. L., and Salakhutdinov, R. Actor-mimic:
Deep multitask and transfer reinforcement learning. arXiv
preprint arXiv:1511.06342, 2015.

Ramsundar, B., Kearnes, S., Riley, P., Webster, D., Konerd-
ing, D., and Pande, V. Massively multitask networks for
drug discovery. arXiv preprint arXiv:1502.02072, 2015.

Rusmevichientong, P. and Tsitsiklis, J. N. Linearly parame-
terized bandits. Mathematics of Operations Research, 35
(2):395–411, 2010.

Taylor, M. E. and Stone, P. Transfer learning for reinforce-
ment learning domains: A survey. Journal of Machine
Learning Research, 10(7), 2009.

Teh, Y., Bapst, V., Czarnecki, W. M., Quan, J., Kirkpatrick,
J., Hadsell, R., Heess, N., and Pascanu, R. Distral: Robust
multitask reinforcement learning. In Advances in Neural
Information Processing Systems, pp. 4496–4506, 2017.

Thrun, S. and Pratt, L. Learning to learn: Introduction and
overview. In Learning to learn, pp. 3–17. Springer, 1998.

Tripuraneni, N., Jin, C., and Jordan, M. I. Provable
meta-learning of linear representations. arXiv preprint
arXiv:2002.11684, 2020.

Wang, R., Du, S. S., Yang, L. F., and Kakade, S. M. Is
long horizon reinforcement learning more difficult than
short horizon reinforcement learning? arXiv preprint
arXiv:2005.00527, 2020.

Wilson, A., Fern, A., Ray, S., and Tadepalli, P. Multi-task
reinforcement learning: a hierarchical bayesian approach.
In Proceedings of the 24th international conference on
Machine learning, pp. 1015–1022, 2007.

Yang, J., Hu, W., Lee, J. D., and Du, S. S. Provable benefits
of representation learning in linear bandits, 2020.

Yang, L. and Wang, M. Reinforcement learning in feature
space: Matrix bandit, kernels, and regret bound. In In-
ternational Conference on Machine Learning, pp. 10746–
10756. PMLR, 2020.

Yang, L. F. and Wang, M. Sample-optimal parametric q-
learning using linearly additive features. arXiv preprint
arXiv:1902.04779, 2019.

Zanette, A., Lazaric, A., Kochenderfer, M., and Brunskill, E.
Learning near optimal policies with low inherent bellman
error. arXiv preprint arXiv:2003.00153, 2020a.

Zanette, A., Lazaric, A., Kochenderfer, M. J., and Brunskill,
E. Provably efficient reward-agnostic navigation with
linear value iteration. arXiv preprint arXiv:2008.07737,
2020b.

Zhang, Z., Ji, X., and Du, S. S. Is reinforcement learn-
ing more difficult than bandits? a near-optimal algo-
rithm escaping the curse of horizon. arXiv preprint
arXiv:2009.13503, 2020.

Zhou, D., Gu, Q., and Szepesvari, C. Nearly minimax
optimal reinforcement learning for linear mixture markov
decision processes. arXiv preprint arXiv:2012.08507,
2020a.

Zhou, D., He, J., and Gu, Q. Provably efficient reinforce-
ment learning for discounted mdps with feature mapping.
arXiv preprint arXiv:2006.13165, 2020b.


