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Abstract
The minimum sum-of-squares clustering (MSSC)
task, which can be treated as a Mixed Integer Sec-
ond Order Cone Programming (MISOCP) prob-
lem, is rarely investigated in the literature through
deterministic optimization to find its global opti-
mal value. In this paper, we modelled the MSSC
task as a two-stage optimization problem and pro-
posed a tailed reduced-space branch and bound
(BB) algorithm. We designed several approaches
to construct lower and upper bounds at each node
in the BB scheme, including a scenario grouping
based Lagrangian decomposition approach. One
key advantage of this reduced-space algorithm is
that it only needs to perform branching on the
centers of clusters to guarantee convergence, and
the size of centers is independent of the number
of data samples. Moreover, the lower bounds
can be computed by solving small-scale sample
subproblems, and upper bounds can be obtained
trivially. These two properties enable our algo-
rithm easy to be paralleled and can be scalable to
the dataset with up to 200,000 samples for finding
a global ε-optimal solution of the MSSC task. We
performed numerical experiments on both syn-
thetic and real-world datasets and compared our
proposed algorithms with the off-the-shelf global
optimal solvers and classical local optimal algo-
rithms. The results reveal a strong performance
and scalability of our algorithm.

1. Introduction
Clustering is the prototypical unsupervised learning activity
that identifies cohesive and well-differentiated groups of
records in data (Jain, 2010). The target to get a clustering
result can always be treated as an optimization problem.
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The different definitions of cost function induce different
types of clustering algorithms. In this paper, we focus on
a fundamental target of the clustering problems that min-
imize the within-cluster sum-of-squared-error or in short
the minimum sum-of-squares criteria. It tends to minimize
the distance between points to their corresponding cluster
centers to achieve the best cohesion and separation of the
resulted clusters (Späth, 1980). There are many heuristic
methods proposed for solving the minimum sum-of-squares
clustering (MSSC) task. For instance, the k-means cluster-
ing algorithm (Lloyd, 1982) provides a coordinate descent
based method to produce a result for the MSSC task. How-
ever, due to the non-convexity of the MSSC objectives, the
classic k-means algorithm is sensitive to the initialization
and easy to fall under the local minimum (Xu & Lange,
2019). To overcome this limitation, several modifications
to the classical k-means clustering algorithm have been pro-
posed in order to obtain the global optimal solutions for
the MSSC task (Likas et al., 2003; Tzortzis & Likas, 2014;
Xu & Lange, 2019; Agarap & Azcarraga, 2020). However,
none of these works provide the deterministic guarantee of
locating the global minimum. Investigating directly on the
global solution of the MSSC problem is still in deficiency.

One direction to solve the MSSC problem to global optimal-
ity deterministically starts from the work of (Peng & Wei,
2007) who modeled the MSSC problem as a 0-1 semidefi-
nite programming (SDP) problem. (Aloise & Hansen, 2009)
applied this discovery and proposed a branch-and-cut SDP
algorithm for MSSC problem. Their algorithm can solve
problems with dataset up to 200 samples.

Another direction applies the column generation to MSSC
problem. Indeed, a column generation based clustering
algorithm proposed by (Du Merle et al., 1999) is, for the
first time, capable to solve the MSSC problem with median
size of sample (100-200 samples). This method was further
improved by (Aloise et al., 2012) which used a geometric-
based approach to solve the auxiliary problem. Their work
improved the solvable problem size to 2300, which is cur-
rently the state of the art. However, column generation
method could face the exponential growth of the size of
master problem with the growth of the number of iterations.
Therefore, the method cannot scale further to problems with
even larger datasets. Moreover, Aloise’s method is more
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suitable for the problems when the ratio between sample
size and number of clusters is particularly small (e.g. ≤ 10).
Therefore, this approach is also less efficient for problems
of small number of clusters but large size of dataset.

It is well-known that clustering problems can be reformu-
lated as mixed integer programming problems (Freed &
Glover, 1983; Sağlam et al., 2006; Komodakis et al., 2008).
Specifically, the MSSC task can be treated as a Mixed In-
teger Second Order Cone Programmin (MISOCP) prob-
lem. Branch and bound (BB) scheme is the most widely
used algorithm for solving these optimization problems to
global optimality and is well implemented in several popu-
lar solving packages, like BARON (Tawarmalani & Sahini-
dis, 2005), ANTIGONE (Misener & Floudas, 2014), and
SCIP (Gamrath et al., 2020). The BB paradigm depends on
the efficient evaluation of lower and upper bounds of the
optimal solution. It is able to reduce the gap between lower
and upper bounds based on two key principles, that is to
partition the search spaces into smaller regions that can be
solved recursively (e.g. branching), and to prune the search
regions that it can prove will not contain an optimal solution
(e.g. bounding) (Morrison et al., 2016). Nevertheless, the
direct application of the BB scheme does not scale well with
the data size because branching may need to be performed
on all variables to guarantee convergence and the number
of variables increases linearly as the number of samples.
Thus, it is almost infeasible to find the global optimum of
the MSSC tasks using the classical BB scheme that imple-
mented in those off-the-shelf solvers, even if the data size is
moderate (e.g. 100 samples).

The first branch and bound clustering algorithm for MSSC
problem was proposed by (Koontz et al., 1975) and fur-
ther developed by (Diehr, 1985). They use the solution of
the MSSC problem from a subset of the main dataset to
generate a tighter lower bound. They discover that if the
dataset is separated into two subsets, then the sum of the
optimal values of the two MSSC subproblem forms a lower
bound of the original problem. (Brusco, 2006) proposed
the repetitive branch and bound algorithm (RBBA) which
effectively reorder the samples and solving a sequence of
subproblems with increasing size. RBBA can solve problem
with datasets up to 240 samples. (Sherali & Desai, 2005)
proposed a BB scheme for MSSC problem which applied
the reformulation-linearization-technique (RLT) to form a
tighter lower bound. Their algorithm is claimed to able to
solve datasets up to 1000 samples. However, their work was
questioned that can only solve problem with size lower than
20 samples (Aloise & Hansen, 2011).

To handle issues from the basic BB procedure, in the pa-
per, we start from a new direction that reformulates the
MSSC task as a two-stage optimization problem. This is be-
cause several approaches have been proposed in the stochas-

tic programming community focusing on improving the
scalability of global search by exploiting the structure of
two-stage problems. These methods include generalized
Benders decomposition (Geoffrion, 1972), nonconvex Ben-
ders decomposition (Li et al., 2011; Li & Grossmann, 2019),
and Lagrangian relaxation (Khajavirad & Michalek, 2009;
CarøE & Schultz, 1999; Karuppiah & Grossmann, 2008).
In this paper, we adopted the fundamental work of (Cao
& Zavala, 2019) on the reduced-space BB scheme for two-
stage optimization problems and tailed it for the MSSC task.
The novelty of the approach proposed in (Cao & Zavala,
2019) is that it guarantees the convergence to the global op-
timum by only branching on first-stage variables (branching
on second-stage variables is performed implicitly during the
computation of bounds). In the context of the clustering
task, the centers of clusters are regarded as the first-stage
variables, while the binary variables indicating the class of
each data sample are treated as the second-stage variables.
It implies that the number of variables need to be partitioned
on is independent of the dataset’s cardinality.

Our Contributions. In this paper, we proposed a scal-
able deterministic global optimization algorithm for the
minimum sum-of-squared clustering task. Specifically, we
contribute the following benefits:

• We propose a tailed reduced space branch-and-bound
clustering algorithm for the MSSC task, which only needs
to branch on the centers of clusters. We also present
a convergence proof of reaching the global ε-optimal
solution using the proposed algorithm.

• We design several approaches to construct lower and
upper bounds at each node in the BB scheme. The closed-
form solutions to both basic lower bounding problems
and basic upper bound problems are derived. Therefore,
basic lower and upper bounds can be computed without
solving any optimization problem. In contrast, the lower
and upper bounding problems proposed in (Cao & Zavala,
2019) are computationally much more expensive to solve
because each individual sup-problem is a mixed-integer
nonlinear programming (MINLP) problem that needs
to be solved to global optimality. Moreover, we also
proposed approaches to construct tighter lower bounds
than that obtained using basic lower bounding problems,
such as scenario based sample grouping and Lagrangian
decomposition.

• We present an open-source implementation of the pro-
posed algorithm in Julia. Our algorithm and imple-
mentation enlarge the application of finding the global
optimum of MSSC tasks to the scale of datasets with up
to 210,000 samples (200 cores, under 3% optimality gap
within the runtime of 4 hours), which is 100 times larger
than current state-of-the-art work (Aloise et al., 2012).
Notably, numerical experiments on the several real-world
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datasets show that our implementation can converge to a
small gap (< 0.1%) under 12 hours in serial or 1 hour in
parallel with small number of clusters, while current state
of the art need a long time (≥ 50 hours) or cannot solve.
By obtaining the global clustering solution, we are also
able to provide an explainable benchmark on how well
the traditional k-means clustering algorithm performs.

2. Reduced-space Branch and Bound Scheme
Given a datasetX = {x1, . . . , xS} ∈ Rd×S with S samples
and d attributes, a MSSC task aims to find a set ofK clusters,
that can minimize the Sum of Squared Errors (SSE), which
is defined as: ∑

s∈S

∑
k∈K

bs,k||xs − µk||2 (1)

where s ∈ S := {1, · · · , S} is the data sample set, k ∈ K =
{1, · · · ,K} is the cluster set, µ := [µ1, · · · , µK ] represents
the center of each cluster, bs,k ∈ {0, 1} is equal to 1 if xs
belongs to the kth clusters, and 0, otherwise.

The k-means clustering problem can be treated as an opti-
mization problem of the following form:

min
µ,d,b

∑
s∈S

ds,∗ (2a)

s.t. −N(1− bs,k) ≤ ds,∗ − ds,k ≤ N(1− bs,k) (2b)

ds,k ≥ ||xs − µk||2 (2c)∑
k∈K

bs,k = 1 (2d)

bs,k ∈ {0, 1} (2e)
s ∈ S, k ∈ K (2f)

where ds,k denotes the distance between xs and µk, ds,∗
represents the distance between xs and the center of its
cluster, and N is an arbitrary large value. We also de-
fine ds := [ds,1, · · · , ds,K , ds,∗], d := [d1, · · · , dS ], bs :=
[bs,1, · · · , bs,K ], and b := [b1, · · · , bS ]. Constraint 2d en-
sures that sample xs is assigned to only one cluster, and
Constraint 2b use a big-M formulation to guarantee that
ds,∗ = ds,k if bs,k = 1. Problem 21 is a mixed-integer
second order cone programming (MISOCP) problem and
can be solved by off-the-shelf solvers such as Gurobi (Opti-
mization, 2014) and CPLEX (Cplex, 2020). However, when
the number of samples increases to a moderate value (e.g.
S = 100), the problem quickly becomes intractable using
these off-the-shelf solvers.

1In implementation, we also add the symmetric breaking con-
straint µ1,1 ≤ µ2,1 ≤ · · · ≤ µk,1 to accelerate the solving process.
However, to simplify the notation, we will not mention this con-
straint in the rest of the paper.

2.1. Two-stage Optimization Formulation

Problem 2 can be reformulated as a two-stage optimization
problem of the form:

z = min
µ∈M0

∑
s∈S

Qs(µ). (3)

Here, µ are the so-called first-stage variables, and Qs(µ) is
the optimal value of the second-stage problem:

Qs(µ) = min
ds,bs

ds,∗

s.t. −N(1− bs,k) ≤ ds,∗ − ds,k ≤ N(1− bs,k)

ds,k ≥ ||xs − µk||2∑
k∈K

bs,k = 1

bs,k ∈ {0, 1}
k ∈ K

(4)
Where ds and bs are the so-called second-stage variables.
The closed set M0 := {µ | µl ≤ µ ≤ µu} in Equa-
tion 3 represents the bounds of centers inferred from data,
that is, µlk,i = min

s
Xs,i, µuk,i = max

s
Xs,i, ∀k ∈ K,

i ∈ {1, · · · , d}. Note that the introduction of µ ∈ M0

does not affect the optimal solution and is used to facilitate
the discussion of BB algorithm. We denote relint(C) and
δ(C) as the relative interior and the diameter of set C, re-
spectively. Throughout this paper, the diameter of the box
set M0 is δ(M0) = ||µu − µl||∞.

It can be shown that the closed-form solution to the second-
stage problem is Qs(µ) = min

k
||xs − µk||2. Since Qs(µ)

is the minimum of a finite number of continuous functions,
we have:
Lemma 1. Qs(µ) is continuous on µ for all s ∈ S.

Because of the compactness of M0 and Lemma 1, the clus-
tering Problem 3 can attain its minimum according to the
generalized Weierstrass theorem.

When solving the Problem 3 with BB algorithm, we solve
the following problem at each node with respect to the
partition set M ⊆M0:

z(M) = min
µ∈M

∑
s∈S

Qs(µ) (5)

The Problem 5 is referred as the primal node problem. By
replicating the center µ for each sample, and enforcing the
non-anticipativity constraints 6b, we give the lifted Problem
5 as follow:

min
µs∈M

∑
s∈S

Qs(µs) (6a)

s.t. µs = µs+1, s ∈ {1, · · · , S − 1} (6b)
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Formulations 5, 6 are equivalent.

2.2. Lower Bounds

In this section, we describe methods to generate lower
bounds for the primal node Problem 5 and improvements to
generate tighter bounds.

2.2.1. BASIC LOWER BOUNDING PROBLEM

By relaxing the non-anticipativity constraints 6b, we can
obtain the following lower bounding problem:

β(M) := min
µs∈M

∑
s∈S

Qs(µs) (7)

This problem can be easily decomposed into S sub-
problems:

βs(M) = min
µ∈M

Qs(µ). (8)

Here, β(M) =
∑
s∈S

βs(M). Since the non-anticipativity

constraints are relaxed, the feasible region of 7 is a superset
of the feasible region of Problem 5. Thus β(M) ≤ z(M) is
always satisfied.

Because the closed-form solution to the second-stage prob-
lem is Qs(µ) = min

k
||xs − µk||2, we have:

βs(M) = min
k

min
µk∈Mk

||xs − µk||2, (9)

where Mk := {µk | µlk ≤ µk ≤ µuk}. Therefore, subprob-
lem βs(M) can be further decomposed into K subsubprob-
lems:

βs,k(Mk) = min
µk∈Mk

||xs − µk||2. (10)

Here βs(M) = min
k
βs,k(Mk). Problem 10 is a Quadratic

Programming (QP) problem and the closed-form solution to
this problem can be derived: µk,i = mid{µlk,i, xs,i, µuk,i},
∀i ∈ {1, · · · , d}.

2.2.2. SCENARIO-BASED SAMPLE GROUPING

Although the lower bound generated using the basic lower
bound problems is enough to guarantee convergence as
shown in Section 3, it might not be very tight because de-
composition is performed on each individual sample. Specif-
ically, for the root node with M = M0, since each subprob-
lem only contains one data sample xs, it is easy to verify that
µk = xs is the global optimal solution to Problem 10 and
the corresponding β(M0) equal to 0. Although this lower
bound can be improved as M is partitioned into smaller sets
during the BB scheme, we seek to generate tighter bounds
for each node.

One approach to achieve this goal is scenario-based sample
grouping, that is to assign more than one sample (i.e. a group

of samples) into each subproblem. Specifically, we divide
the set of samples S into G groups {S1,S2, · · · ,SG} and
define the group set G = {1, · · · , G}, where Sg represents
the subset of S containing samples belonging to group g,

such that
G⋃
g=1
Sg = S and Si ∩ Sg = ∅,∀i, g ∈ G, i 6= g.

Considering the lifted problem, instead of replicating the
center for each sample, we can replicate it for each group
and reformulate Problem 6 as follow:

min
µg∈M

∑
g∈G

Qg(µg) (11a)

s.t. µg = µg+1, g ∈ {1, · · · , G− 1}. (11b)

Here, Qg(µg) =
∑
s∈Sg

Qs(µg). By relaxing the constraints

11b, we can obtain the following sample grouped lower
bounding problem:

βSG(M) := min
µg∈M

∑
g∈G

Qg(µg). (12)

This problem can be easily decomposed into G subprob-
lems:

βSGg (M) := min
µg∈M

Qg(µg), (13)

or, equivalently,

βSGg (M):= min
µg,dSg ,bSg

∑
s∈Sg

ds,∗

s.t. −N(1− bs,k) ≤ ds,∗ − ds,k ≤ N(1− bs,k)

ds,k ≥ ||xs − µk||2∑
k∈K

bs,k = 1

bs,k ∈ {0, 1}
s ∈ Sg, k ∈ K

(14)
with βSG(M) =

∑
g∈G

βSGg (M).

Compared with the basic lower bounding problems 7, non-
anticipativity constraints within each group are re-enforced
in Problem 12 (i.e. all samples within the same group share
the same copy of centers), while non-anticipativity con-
straints between groups are still relaxed. Therefore, sample
grouping based decomposition leads to a tighter relaxation
and provides a stronger lower bound than the decomposition
based on each individual sample. Therefore, we have:

Proposition 2. β(M) ≤ βSG(M) ≤ z(M).

Although sample grouping provides a tighter relaxation, the
computational cost also increases dramatically compared
with the basic lower bounding problem. It is because each
subproblem 14 is a MISOCP problem that needs to be solved
to global optimality.



A Scalable Deterministic Global Optimization Algorithm for Clustering Problems

The way of assigning groups strongly influences the qual-
ity of lower bounds. However, finding the optimal groups
is itself an NP-hard problem. Therefore we developed a
heuristic to group samples. We first divide the samples
into KSG clusters (default of K ∗ G) with the constraints
µ ∈ M , which is solved using local optimal solvers as
shown in Section 2.3.2. Then samples within each cluster
is evenly distributed to different groups. In our implemen-
tation, the grouping scheme is fixed and passed through all
nodes during the BB procedure.

2.2.3. LAGRANGIAN DECOMPOSITION

Another approach to compute tighter lower bounds
is through Lagrangian Decomposition, in which non-
anticipativity constraints are not removed but dualized. They
are multiplied by fixed Lagrange multipliers λ and added
to the objective function. Here we discuss the Lagrangian
Decomposition based on each individual sample, while it
can also be combined with sample grouping. The relaxed
problem based on Lagrangian Decomposition can be written
in the following form:

βLD(M,λ) := min
µ∈M
{
∑
s∈S

Qs(µs) +

S−1∑
s=1

λs(µs − µs+1)}

(15)

It is clear that the basic lower bounding problem 7 is a
special case of problem 15 with λ = 0. Problem 15 can be
decomposed into S sub-problems:

βLDs (M,λ) := min
µs∈M

{Qs(µs) + (λs − λs−1)µs} (16)

with λ0 = λS = 0 and βLD(M,λ) =
∑
s∈S

βLDs (M,λ).

It can be shown that the solution to Problem 15 provides
a lower bound to the primal node problem 6 by noticing
that the optimal solution to Problem 6 is also feasible with
respect to Problem 15 with the same objective value. Note
that the value of λ in Problem 15 is fixed and choosing
a proper value of λ may produce a tighter lower bound.
To achieve the tightest lower bound, we need to solve the
Lagrangian dual problem:

βLD(M) = max
λ

βLD(M,λ). (17)

Solving this dual problem is itself very challenging. The
community usually approaches with heuristic methods, in-
cluding the Sub-gradient Method (Fisher, 1981), Volume
Algorithm (Barahona & Anbil, 2000), and Progressive Hedg-
ing Algorithm (Rockafellar & Wets, 1991). In this paper,
we adopt the sub-gradient method for the update of λ.

Since the lower bound computed from basic lower bounding
problem satisfying β(M) = βLD(M, 0). Thus, we have
the following proposition:

Proposition 3. β(M) ≤ βLD(M) ≤ z(M)

Compared with the basic lower bound problem, although
Lagrangian Decomposition has the potential to find a tighter
bound if a close-to-optimal λ is computed from the La-
grangian dual problem, the computational cost of solving a
MISOCP subproblem 16 is much higher than solving a QP
subproblem 10, which has a closed-form solution.

2.3. Upper Bounds

This section describes two approaches to generate upper
bounds for the primal node Problem 5. Both methods are
included in our implementation.

2.3.1. BASIC UPPER BOUNDING PROBLEM

An upper bound of the primal node Problem 5 can be ob-
tained by fixing the first stage variable µ at a candidate
solution µ̂ ∈M . We denote the solution of the upper bound-
ing problem as follow:

α(M) =
∑
s∈S

Qs(µ̂). (18)

Because the closed-form solution to Qs(µ̂) is known, the
computation of α(M) is trivial without the need to solve
any optimization problem. Since µ̂ is an arbitrary feasible
solution to the primal node Problem 5, it is obviously that
z(M) ≤ α(M),∀µ̂ ∈M . The choice of candidate solution
is a critical decision. In our implementation, the algorithm
will test µ̂ obtained from both lower bounding problems as
discussed in Section 2.2 and local optimization as discussed
in Section 2.3.2.

2.3.2. LOCAL OPTIMAL SOLUTION

Another way of computing the upper bound is to solve the
primal node Problem 5 to local optimality. One alterna-
tive formulation of the Problem 5, which is equivalent to
Problem 2 with the addition of µ ∈M , is of the following
form:

min
µ∈M,b

∑
s∈S

∑
k∈K

bs,k||xs − µk||2∑
k∈K

bs,k = 1

0 ≤ bs,k ≤ 1

s ∈ S, k ∈ K

(19)

The reason why bs,k ∈ {0, 1} can be replaced by 0 ≤
bs,k ≤ 1 is because, if µk is fixed, a sample xs will always
be assigned to the cluster with the nearest center. This Non-
linear Programming Problem (NLP) can be easily solved
using off-the-shelf solvers like Ipopt (Wächter & Biegler,
2006) to local optimality. In our implementation, we run the
local solver several trails using different initial values to get
the best local optimal value as the node’s upper bound.
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2.4. Branch-and-Bound Clustering Scheme

We adopt the framework of the reduced-space branch-and-
bound scheme from (Cao & Zavala, 2019) and tail the algo-
rithm specifically for the MSSC task. Algorithm 1 depicts
the details of such scheme.

Algorithm 1 Branch-and-Bound Clustering Scheme
Initialization
Initialize the iteration index i = 0;
Set M← {M0}, and tolerance ε > 0;
Compute initial upper and lower bounds αi = α(M0),
βi = β(M0);
repeat

Node Selection
Select a set M ∈M satisfying β(M) = βi;
M←M \ {M};
i← i+ 1;
Branching
Partition M into subsets M1 and M2 with
relint(M1) ∩ relint(M2) = ∅;
Add each subset to M to create separated child nodes;
Bounding
compute α(M1), β(M1), α(M2), β(M2);
βi ← min{β(M ′) | M ′ ∈M};
αi ← min{αi−1, α(M1), α(M2)};
Remove all M ′ from M if β(M ′) ≥ αi;
If |βi − αi| ≤ ε, STOP;

until M = ∅

3. Convergence Analysis
In this section, we establish the convergence for the BB
scheme constructed using only the basic lower and upper
bounding problems. Since sample grouping and Lagrangian
Decomposition will only provide tighter bounds, they will
not break the convergence. A key feature of our BB scheme
is that it only needs to branch on the space of first stage
variables µ to guarantee convergence.

Our proposed BB clustering algorithm can be regarded as
a rooted tree. The root node is the original variable space
M0. This node is indexed at level 0. We denote Miq as
the node at level q which is explored at iteration iq. A
node Miq+1

is a child node that connected to its parent
node Miq , with Miq+1 ⊂ Miq . The child node is at level
q + 1 and is explored at iteration iq+1. We denote {Miq}
as the sequence of the partition element that represents a
path of the tree from the root node to the node Miq at the
level q. Since the search space is narrowing along the path,
the sequence {βi} is monotonically increasing, while {αi}
is monotonically decreasing. A BB scheme is said to be
convergent if lim

i→∞
αi = lim

i→∞
βi = z. If the scheme is

convergent, then it produces a global ε-optimal solution in a

finite number of steps.

In the proof analysis, we adopt the basic results from the
work in (Cao & Zavala, 2019) and the seminal work in the
Chapter IV of (Horst & Tuy, 2013). Unlike these works in
which the general constraints might implicitly reduce the
feasible regions, any point µ ∈M in the clustering problem
is a feasible solution. Therefore, we modified definitions
and theories accordingly in this paper.

Lemma 4 (Corollary IV.1 (Horst & Tuy, 2013)). If a BB
procedure is infinite, then it generates at least one infinitely
decreasing sequence {Miq} of successively refined partition
elements, Miq+1 ⊂Miq .

Definition 5 (Definition IV.10 (Horst & Tuy, 2013)). A sub-
division is called exhaustive if lim

q→∞
δ(Miq ) = 0, for all

decreasing sub-sequences {Miq} generated by the subdivi-
sion.

It is easy to see that if the element of µ that corresponds to
δ(M) is selected for partitioning, the created subdivision is
guaranteed to be exhaustive.

The next several conclusions help to prove the convergence
of lower bounds.

Definition 6 (Definition IV.7 (Horst & Tuy, 2013)). A
lower bounding operation is called strongly consistent,
if, at every iteration, any undeleted partition set can be
further refined and if any infinite decreasing sequence
{Miq} of successively refined partition elements, contains
a sub-sequence {Miq′}, satisfying, lim

q′→∞
β(Miq′ ) = z(M),

where M =
⋂
qMiq .

Lemma 7. Given an exhaustive subdivision on µ, The lower
bounding operation in Algorithm 1 is strongly consistent.

Proof. With an exhaustive subdivision, Miq shrinks to a
single point µ̄ and we thus have that M̄ = {µ̄}. We then
prove the lemma by showing that lim

q→∞
β(Miq ) = z(M̄) =∑

s∈S
Qs(µ̄). Let µ̃iq,s ∈ argmin{Qs(µs) : µs ∈ Miq},

since Miq shrinks to µ̄, we have lim
q→∞

µ̃iq,s = µ̄. Based

on the continuity of Qs(.) (Lemma 1), we have Qs(µ) =
lim
q→∞

Qs(µ̃iq,s) = lim
q→∞

βs(Miq ). Take the sum over s, we

obtain lim
q→∞

β(Miq ) =
∑
s∈S

Qs(M).

Definition 8 (Definition IV.6 (Horst & Tuy, 2013)). A se-
lection operation is said to be bound improving, if, after a
finite number of steps, at least one partition element where
the actual lower bounding is attained is selected for further
partition.

The selection operation in Algorithm 1 is bound improv-
ing, because at each iteration, Algorithm 1 selects the node
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where the actual lower bounding is attained for further parti-
tion.

Lemma 9 (Theorem IV.3 (Horst & Tuy, 2013)). For a BB
scheme using a lower bounding operation that is strongly
consistent and using a selection operation that is bound
improving, we have that lim

i→∞
βi = z.

Lemma 10. Given an exhaustive subdivision on µ, Algo-
rithm 1 satisfies lim

i→∞
βi = z.

Proof. This result can be obtained from Lemma 7 and 9.

Finally, the convergence of the upper bounds is established
through the following lemma.

Lemma 11. Given an exhaustive subdivision on µ, Algo-
rithm 1 generates a sequence {αi} such that lim

i→∞
αi = z.

Proof. Let µ∗ ∈ M0 denote an optimal solution of the
MSSC task. Because of the continuity of Q (implied by the
continuity of Qs), we have Q(µ)−Q(µ∗) ≤ K||µ− µ∗||
for all µ ∈ M . Given ε > 0, r = ε/K, for every point
µ ∈ Br(µ∗), we have Q(µ) − Q(µ∗) ≤ K||µ − µ∗|| ≤ ε
holds.

Since the subdivision is exhaustive, after a finite number of
iterations i, we have, either the partition considered satisfies
Mi ⊆ Br(µ

∗), or the partition Mi which contain the solu-
tion µ∗ is pruned. For the first case, since Mi ⊆ Br(µ

∗),
we have Q(µ) − Q(µ∗) ≤ ε,∀µ ∈ Mi. Then we have
that αi ≤ α(Mi) ≤ Q(µ∗) + ε. In the second one, since
Mi is pruned, then we have αi ≤ α(Mi) ≤ β(Mi) + ε.
Because µ∗ ∈ Mi, we also have β(Mi) ≤ Q(µ∗). Hence,
αi ≤ Q(µ∗) + ε. For both cases, we have z ≤ αi ≤ z + ε.
Since the above conclusion holds for arbitrary ε > 0,
lim
i→∞

αi = z holds.

Combing Lemma 10 and 11, we obtain the following theo-
rem:

Theorem 12. Given an exhaustive subdivision on µ, Algo-
rithm 1 converges in the sense that

lim
i→∞

αi = lim
i→∞

βi = z. (20)

4. Computational Experiments
In this section, we evaluate the performance of our algorithm
on both synthetic and real-world datasets. Our algorithm
is implemented in Julia 1.5.3. We compare the computa-
tional results (in serial and parallel) against those of the
classic BB algorithm implemented in the state-of-the-art
global optimizer CPLEX 20.1.0 (Cplex, 2020), and classic
k-means clustering algorithm implemented in Julia Package

Clustering. The result of k-means clustering algorithm is
generated by repeating with 100 trials using random initial-
ization. The worst, average and best k-means objectives
are recorded. Both our algorithm and CPLEX terminate
with a time limit of 4 hours We also did experiments on
our BB clustering algorithm (BBClst) with different con-
vergence acceleration techniques. Here, closed-form solu-
tion (BBClst+CF), scenario-based sample grouping (BB-
Clst+SG), and grouping based Lagrangian decomposition
(BBClst+LD+SG) are applied for comparison. We also
present a preliminary parallel implementation in which the
subproblems in BBClst+LD+SG are assigned to multiple
CPU cores. For sample grouping, we limited each group’s
size under min(162/d− k, 10× k) when decomposing the
lower bounding problem. All serial experiments are exe-
cuted on a 2.3GHz quad-core 10th-generation Intel Core
i7 processor with 16G RAM. The parallel experiments are
executed on the Niagara Cluster of Compute Canada. The
complete code files can be found in https://github.
com/kingsley1989/global_kmeans.

Algorithms are compared based on three criteria: upper
bound (UB), optimality gap, and number of nodes being
solved. UB represents the best found (feasible) solution
reported at the termination of each algorithm. Optimality
gap is measured by the difference between the best possible
(lower bound or LB) and best known solutions (UB) and
is calculated as Gap ≡ UB−LB

LB . The optimality gap of
ε provides a certificate that the best found solution is not
worse than ε% from the optimal solution. Therefore, it
serves as a benchmark index on whether searching for a
better solution is still necessary (if the optimality gap is
already very low, then the potential improvement is small).
The optimality gap is a unique property of deterministic
global optimization algorithms. Heuristic techniques such
as k-means clustering algorithm do not have the capability
to evaluate the quality of its solutions (in the deterministic
sense). The number of nodes records how many iterations
the BB procedure processed within specific time period.

Synthetic data. We first consider numerical performance
on artificially generated datasets. To illustrate the scalability
of the algorithms, we consider datasets with different num-
bers of samples. All datasets are generated with 3 Gaussian
clusters randomly with seed = 1. Each data sample has
two attributes. For each dataset, we solve two clustering
problems (k = 3 and k = 4). The number of variables
involved in the optimization problem increases linearly with
the number of samples and clusters.

Table 1 compares the performance of our BB-based cluster-
ing algorithms (BBClst), CPLEX, and k-means algorithm.
In terms of the best found (feasible) solution or UB, the BB-
Clst based algorithms can always obtain the lowest sum-of-
squares cost. For example, for dataset Syn-2100 on problem

https://github.com/kingsley1989/global_kmeans
https://github.com/kingsley1989/global_kmeans
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Table 1. Computational performance of different algorithms on synthetic datasets.

DATASETS METHODS
k = 3 k = 4

UB NODES GAP(%) UB NODES GAP(%)

Syn-300

k-MEANS (WORST) 6454.84 - - 6379.28 - -
k-MEANS (AVERAGE) 4506.19 - - 3416.73 - -
k-MEANS (BEST) 4049.28 - - 3170.97 - -

CLASSIC BB (CPLEX) 6945.02 8955000 1046.8 6782.52 8181700 3981.6
BBCLST+CF 4049.28 397442 7.31 3170.97 360753 35.67
BBCLST+SG 4049.28 4475 0.88 3170.97 655 6.02

BBCLST+LD+SG 4049.28 73 < 0.1(2h) 3170.97 41 2.67
BBCLST+LD+SG(20CORES) 4049.28 73 < 0.1(0.4h) 3170.97 481 0.29

Syn-1200

k-MEANS (WORST) 24465.51 - - 23796.32 - -
k-MEANS (AVERAGE) 16223.76 - - 12578.29 - -
k-MEANS (BEST) 14290.53 - - 11812.94 - -

CLASSIC BB (CPLEX) 26417.87 2708500 27677.8 26154.47 1649002 58723.5
BBCLST+CF 14290.53 352489 7.42 11812.94 353012 44.73
BBCLST+SG 14290.53 714 2.20 11812.94 169 12.26

BBCLST+LD+SG 14290.53 32 1.21 11812.94 7 20.81
BBCLST+LD+SG(20CORES) 14290.53 159 < 0.1(0.6h) 11812.94 177 2.79

Syn-2100

k-MEANS (WORST) 43141.42 - - 41943.30 - -
k-MEANS (AVERAGE) 28111.86 - - 21639.97 - -
k-MEANS (BEST) 25033.48 - - 20598.32 - -

CLASSIC BB (CPLEX) 47349.02 930610 23709.5 47431.11 603200 333233.3
BBCLST+CF 25033.48 333910 7.26 20598.32 335763 41.61
BBCLST+SG 25033.48 233 3.20 20598.32 107 12.41

BBCLST+LD+SG 25033.48 14 2.71 20598.32 3 25.14
BBCLST+LD+SG(20CORES) 25033.48 322 0.26 20598.32 124 3.49

Syn-42000

k-MEANS (WORST) 847326.29 - - 822601.88 - -
k-MEANS (AVERAGE) 570643.51 - - 437109.88 - -
k-MEANS (BEST) 501472.82 - - 411815.14 - -

CLASSIC BB (CPLEX) NO FEASIBLE SOLUTION FOUND. NO FEASIBLE SOLUTION FOUND.
BBCLST+CF 501472.82 148583 9.82 411815.14 139891 75.21
BBCLST+SG 501472.82 4 5.43 411815.14 3 23.46

BBCLST+LD+SG 501472.82 1 7.45 411815.14 1 21.70
BBCLST+LD+SG(20CORES) 501472.82 20 3.16 411815.14 4 12.99

k = 3, our algorithm can reduce the optimal cost by 47.13%
compared with the best solution returned by CPLEX. Re-
markably, the best k-means objectives out of 100 trials also
obtain the lowest cost. This process of repeatedly using
local optimal algorithms with multiple random initialization
can be viewed as a stochastic global optimization strategy.
However, one key limitation of this strategy is that it cannot
compute the optimality gap and evaluate if it is necessary to
continue the search for better solutions. In contrast, the op-
timality gap provided by deterministic global optimization
algorithms gives a certificate on the solution quality.

In terms of the optimality gap, CPLEX cannot converge
into a comparatively low value within a budget of 4 hours,
and the optimality gap remains large (over 10000%) at the
end of the solution process and in extreme cases, can not
find a feasible solution for problems on large dataset (e.g.
Syn-42000) within 4 hours. On the contrary, our algorithm
can always maintain a comparatively low optimality gap
after four-hour execution. Specifically, for the problem with
k = 3 on dataset Syn-300 which has 300 samples, our

algorithm ends with an optimality gap lower than 0.1% in
within 2 hours in serial and within 0.4 hours in parallel (20
cores). Even when we increase the number of samples to
42000, the optimality gap remains at 5.43% in serial and
3.16% in parallel (20 cores), under the same runtime.

Comparing our algorithms using different methods to gen-
erate lower bounds, we find that, scenario-based sample
grouping may be beneficial for some MSSC problems, while
the Lagrangian decomposition component may accelerate
or slow down the solution process depending on the number
of variables and clusters.

The decomposition scheme of our algorithm enables an easy
way for paralleling. To further illustrate the scalablity of our
algorithm on the MSSC problem. We tested BBclst+LD+SG
on the synthetic dataset with 210,000 samples in parallel of
200 cores. The results are listed in Table 2. Here, we can
see that even for dataset over 200,000 samples, which is 100
times larger the state of the art (2392 samples) by (Aloise
et al., 2012),
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Table 2. Computational performance of large synthetic dataset in
parallel. (BBClst+LD+SG, 200 cores, k = 3)

DATASET UB NODES GAP(%)

Syn-210000 2.43X106 6 2.55

Real-world data. We then perform numerical experiments
on several real-world datasets. First, we pick three datasets
with different scales to demonstrate the performance and
generalization ability of our algorithm. Two of them are
well known benchmark instances. The Iris dataset (Fisher,
1936) has 150 samples and 4 attributes, while the Seeds
dataset (Charytanowicz et al., 2010) contains 210 samples
and 7 attributes. The third dataset, Hemicellulose, contains
1955 experimental data samples on batch hemicellulose
hydrolysis of hardwood. Each of its data sample represents
a reaction condition with 7 attributes.

Table 3 summarizes the performance of different algorithms
on these three datasets. In terms of the UB, our algorithms
and k-means (best) attains the lowest cost for all datasets.
In terms of the optimality gap, our algorithm reports a sig-
nificantly lower optimality gap compared to the Classic BB
method. Remarkably, our implementation BBClst+LD+SG
can converge to 0.1% of the optimality gap within 1.5 hour
execution for the Iris dataset in serial. For parallel execu-
tion with 20 cores, only 0.6 hour and 1 hour executions
are needed for Iris and Seeds dataset to converge to 0.1%,
respectively. In contrast, CPLEX halts at 328.63%.

Table 3. Computational performance of different algorithms on
real-world datasets. (k = 3)

METHODS UB NODES GAP(%)
Iris (n = 150, d = 4)

k-MEANS (WORST) 145.45 - -
k-MEANS (AVERAGE) 85.91 - -
k-MEANS(BEST) 78.85 - -

CLASSIC BB(CPLEX) 82.64 12313100 328.63
BBCLST+CF 78.85 382280 50.76
BBCLST+SG 78.85 876 1.58

BBCLST+LD+SG 78.85 31 0.1(1.5h)
BBCLST+LD+SG(20CORES) 78.85 31 0.1(0.6h)

Seeds (n = 210, d = 7)
k-MEANS (WORST) 916.21 - -
k-MEANS (AVERAGE) 591.46 - -
k-MEANS(BEST) 587.32 - -

CLASSIC BB(CPLEX) 626.37 6715463 850.57
BBCLST+CF 587.32 356273 69.49
BBCLST+SG 587.32 443 4.34

BBCLST+LD+SG 587.32 47 0.26
BBCLST+LD+SG(20CORES) 587.32 89 0.1(1h)

Hemicellulose (n = 1, 955, d = 7)
k-MEANS (WORST) 16.98X106 - -
k-MEANS (AVERAGE) 10.20X106 - -
k-MEANS(BEST) 9.75X106 - -

CLASSIC BB(CPLEX) 18.38X106 478800 4950.51
BBCLST+CF 9.75X106 326896 59.48
BBCLST+SG 9.75X106 74 21.75

BBCLST+LD+SG 9.75X106 4 39.38
BBCLST+LD+SG(20CORES) 9.75X106 112 2.23

The rest two datasets are selected from (Aloise et al., 2012)
to compare the performance with current state of the art.
The Padberg and Rinald’s hole drilling dataset (Padberg &
Rinaldi, 1991) who has 2392 samples and 2 attributes is the
dataset with maximum sample size in (Aloise et al., 2012).
The glass identification dataset (Dua & Graff, 2017) is also
a well-know benchmark for clustering problem. It has 214
samples and 9 attributes. Table 4 expounds the results of
each dataset for problem k = 2.

Specifically, Aloise’s algorithm is superior when k is large
or n/k ≈ 10 (Aloise et al., 2012). In contrast, we offer
a different approach that can process large datasets with
relatively small number of clusters. As shown in Table 4,
for problem k = 2, Aloise’s algorithm cannot solve the
glass identification data and is very slow for Padberg and
Rinald’s data. Yet, our BB clustering algorithm can even hit
the gap lower than 0.1% within 12 hours on both datasets.

Table 4. Comparison on datasets with (Aloise et al., 2012).
(BBClst+LD+SG, k = 2)

METHODS UB NODES GAP(%)
Padberg and Rinald’s Dataset (n = 2, 392, d = 2)

ALOISE ET AL. 2.967X1010 1 i2 (50h)
SERIAL 2.967X1010 7 1.32 (4h)
SERIAL 2.967X1010 253 0.1 (11h)

20 CORES 2.967X1010 247 0.1 (1h)
Glass Identification (n = 214, d = 9)

ALOISE ET AL. CANNOT BE SOLVED
SERIAL 819.63 85 28.65 (4h)
SERIAL 819.63 339 0.1 (9h)

20 CORES 819.63 415 0.1 (1h)
2Solved at the root node.

5. Conclusion
In this paper, we proposed a scalable global optimization
algorithm for MSSC problems. This algorithm’s key ad-
vantages are that branching needs to be performed only on
the centers of clusters, and lower bounding problems can
be decomposed into smaller subproblems. We proved that
the algorithm converges to a global ε-optimal solution. The
numerical experiments demonstrated our algorithm’s ability
to handle datasets with up to 200,000 samples, which im-
proves scale of solvable MSSC problem by 100 times larger
than state of the art. Numerical results also illustrate that the
algorithm can provide the deterministic clustering results
with good generations on diverse real-world datasets.
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