
A Novel Sequential Coreset Method for Gradient Descent Algorithms

Jiawei Huang * 1 Ruomin Huang * 2 Wenjie Liu * 1 Nikolaos M. Freris 1 Hu Ding 1

Abstract
A wide range of optimization problems arising
in machine learning can be solved by gradient
descent algorithms, and a central question in this
area is how to efficiently compress a large-scale
dataset so as to reduce the computational com-
plexity. Coreset is a popular data compression
technique that has been extensively studied be-
fore. However, most of existing coreset methods
are problem-dependent and cannot be used as a
general tool for a broader range of applications. A
key obstacle is that they often rely on the pseudo-
dimension and total sensitivity bound that can be
very high or hard to obtain. In this paper, based on
the “locality” property of gradient descent algo-
rithms, we propose a new framework, termed “se-
quential coreset”, which effectively avoids these
obstacles. Moreover, our method is particularly
suitable for sparse optimization whence the core-
set size can be further reduced to be only poly-
logarithmically dependent on the dimension. In
practice, the experimental results suggest that our
method can save a large amount of running time
compared with the baseline algorithms.

1. Introduction
Coreset (Feldman, 2020) is a popular technique for com-
pressing large-scale datasets so as to speed up existing algo-
rithms. Especially for the optimization problems arising in
machine learning, coresets have been extensively studied in
recent years. Roughly speaking, given a large dataset P and
a specified optimization objective (e.g., k-means clustering),
the coreset approach is to construct a new dataset P̃ with
the size |P̃ | � |P |, such that any solution obtained over
P̃ will approximately preserve the same quality over the

*Equal contribution 1School of Computer Science and Tech-
nology, University of Science and Technology of China, An-
hui, China. 2School of Data Science, University of Science
and Technology of China, Anhui, China. Correspondence to:
Hu Ding <huding@ustc.edu.cn, http://staff.ustc.edu.
cn/˜huding/>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

original set P ; that is, we can replace P by P̃ when running
an available algorithm for solving this optimization prob-
lem. Because |P̃ | � |P |, the runtime can be significantly
reduced.

In this paper, we consider Empirical Risk Minimization
(ERM) problems which capture a broad range of applications
in machine learning (Vapnik, 1991). Let X and Y be the
data space and response space, respectively. Given an input
training set P = {(x1, y1), (x2, y2), · · · , (xn, yn)}, where
each xi ∈ X and each yi ∈ Y, the objective is to learn
the hypothesis β (from the hypothesis space Rd) so as to
minimize the empirical risk

F (β) =
1

n

n∑
i=1

f(β, xi, yi), (1)

where f(·, ·, ·) is the non-negative real-valued loss function.
In practice, the data size n can be very large, thus it is
instrumental to consider data compression methods (like
coresets) to reduce the computational complexity.

Let ε ∈ [0, 1]. A standard ε-coreset is represented as a
vector W = [w1, w2, · · · , wn] ∈ Rn with the property that
the function F̃ (β) = 1∑n

i=1 wi

∑n
i=1 wif(β, xi, yi) must

satisfy

F̃ (β) ∈ (1± ε)F (β), ∀β ∈ Rd. (2)

The number of non-zero entries ‖W‖0 is the coreset size,
and thus the goal of compression is to haveW to be as sparse
as possible. Suppose we have an algorithm that can achieve
c-approximation for the ERM problem (c ≥ 1). Then, we
can run the same algorithm on the ε-coreset, and let β̂ be the
returned c-approximation, i.e., F̃ (β̂) ≤ c ·minβ∈Rd F̃ (β).
It holds that F (β̂) ≤ c· 1+ε

1−ε minβ∈Rd F (β), thus the approx-
imation ratio of β̂ for the original objective function F (·) is
only slightly worse than c when ε is sufficiently small.

A large part of coreset methods are based on the “sensitiv-
ity” idea (Langberg & Schulman, 2010). First, it computes
a constant factor approximation with respect to the objec-
tive function (1); then it estimates the sensitivity σi for
each data item (xi, yi) based on the obtained constant factor
approximation; finally, it takes a random sample (as the
coreset) over the input set P , where each data item (xi, yi)
is selected with probability proportional to its sensitivity σi,

http://staff.ustc.edu.cn/~huding/
http://staff.ustc.edu.cn/~huding/

and the total sample size depends on the total sensitivity
bound

∑n
i=1 σi along with the “pseudo-dimension” of the

objective function (Feldman & Langberg, 2011; Li et al.,
2001). This sensitivity-based coreset framework has been
successfully applied to solve problems such as k-means
clustering and projective clustering (Feldman & Langberg,
2011). However, there are several obstacles when trying to
apply this approach to general ERM problems. For instance,
it is not easy to obtain a constant factor approximation;
moreover, different from clustering problems, it is usually
challenging to achieve a reasonably low total sensitivity
bound and compute the pseudo-dimension for many practi-
cal ERM problems. For example, the coreset size can be as
large as Ω̃(d2

√
n/ε2) for logistic regression (Tukan et al.,

2020) with O(nd2) construction time.

Another common class of coreset construction methods is
based on “greedy selection” (Coleman et al., 2020; Mirza-
soleiman et al., 2020a). The greedy selection procedure
is quite similar to the k-center clustering algorithm (Gon-
zalez, 1985) and the greedy submodular set cover algo-
rithm (Wolsey, 1982). Intuitively, the method greedily se-
lects a subset of the input training set, i.e., the coreset, which
are expected to be as diverse as possible; consequently, the
whole training set can be covered by small balls centered
at the selected subset. Nonetheless, this approach also suf-
fers from several drawbacks. First, it is difficult to bound
the size of the obtained coreset, when specifying the error
bound induced by the coreset (e.g., one may need too many
balls to cover the training set if their radii are required to
be no larger than an upper bound). Second, the time com-
plexity can be too high, e.g., the greedy k-center clustering
procedure usually needs to read the input training set for
a large number of passes, and the greedy submodular set
cover algorithm usually needs a large number of function
evaluations.

1.1. Our Contributions

The aforementioned issues seriously limit the applications
of coresets in practice. In this paper, we propose a novel and
easy-to-implement coreset framework, termed sequential
coreset, for the general ERM problem (1). Our idea comes
from a simple observation. For many ERM problems, ei-
ther convex or non-convex, gradient descent algorithms are
commonly invoked. In particular, these gradient descent
algorithms usually share the following locality property:

Since the learning rate of a gradient descent algorithm
is usually restricted by an upper bound, the trajectory of the
hypothesis β in (1) is likely to be “smooth” (except for the
first few rounds). That is, the change of β should be “small”
between successive rounds.

This allows to focus, in each round, on a local region rather
than the whole hypothesis space Rd. We can thus visualize

β0β0

β2β2

β4β4 β5β5

β3β3

β1β1

Figure 1. Suppose the trajectory starts from β0, and we construct a
“local” coreset within the ball centered at β0; when the trajectory
approaches the ball’s boundary, i.e., β1, we update the coreset.
Similarly, we update the coreset at β2, β3, and β4, until sufficiently
approximating the stationary point β5. We can view β1, β2, β3,
and β4 as a sequence of “anchors”.

the trajectory to be decomposed into a sequence of “seg-
ments”, where each segment is bounded by an individual
ball. See Figure 1 for an illustration. When the trajectory
enters a new ball (i.e., a new local region), we construct a
coreset W = [w1, w2, · · · , wn] with

F̃ (β) ∈ (1± ε)F (β),∀β ∈ the current local region. (3)

The formal definition of such a “local” coreset is shown in
Section 2. When the trajectory approaches the boundary of
the ball, we update the coreset for the next ball. Therefore,
we call the method “sequential coreset”.

Although building the coreset for a local region is easier
than that for the global hypothesis space, there remain sev-
eral technical challenges to resolve. Partly inspired by the
layered sampling idea of (Chen, 2009; Ding & Wang, 2020),
we can achieve a coreset of (3) where the coreset size de-
pends on the range of the local region. In particular, our
method enjoys several significant advantages compared with
previous coreset methods:

• Our method is not problem-dependent and can be ap-
plied to any (convex or non-convex) ERM problem that
uses gradient descent, under some mild assumptions.
In fact, our method can be extended to apply to other
iterative algorithms beyond gradient descent, such as
subgradient descent and expectation maximization, as
long as they satisfy the locality property.

• Our method can avoid to compute the total sensitivity
bound and pseudo-dimension, thus it does not incur
any complicated computations (e.g., SVD) and has
only linear construction time.

• For special cases of practical interest such as sparse op-
timization, the coreset size can be further reduced to be
only poly-logarithmically dependent on the dimension.

1.2. Related Works

Gradient descent. Given a differentiable objective func-
tion, gradient descent is arguably the most common first-
order iterative optimization algorithm for finding the opti-
mal solution (Curry, 1944). A number of ERM models can
be solved via gradient descent methods, such as Ridge re-
gression (Tikhonov, 1998) and Logistic regression (Cramer,
2004). Note that though the objective function of the Lasso
regression (Tibshirani, 1996) is not differentiable, several
natural generalizations of the traditional gradient descent
method, such as subgradient methods (Bertsekas, 2015) and
proximal gradient methods (Mosci et al., 2010; Beck &
Teboulle, 2009), have been developed and shown to perform
well in practice. Several extensions of gradient descent
have been also widely studied in recent years. For example,
Nesterov introduced the acceleration technique for achiev-
ing faster gradient method (Nesterov, 1983). In view of the
rapid development of deep learning and many other machine
learning applications, stochastic gradient descent method
and variants have played a central role in the field of large-
scale machine learning, due to their scalability to very large,
possibly distributed datasets (Bottou et al., 2018; Kingma &
Ba, 2015; Duchi et al., 2011).

Coresets. Compared with other data compression ap-
proaches, an obvious advantage of coreset is that it is to
be selected from the original input; that is, the obtained
coreset can well preserve some favorable properties, such as
sparsity and interpretability, in the input domain. In the past
years, coreset techniques have been widely applied to many
optimization problems, such as: clustering (Chen, 2009;
Feldman & Langberg, 2011; Huang et al., 2018), logistic re-
gression (Huggins et al., 2016; Munteanu et al., 2018; Sama-
dian et al., 2020; Tukan et al., 2020; Samadian et al., 2020),
Bayesian methods (Campbell & Broderick, 2018; Camp-
bell & Beronov, 2019), linear regression (Dasgupta et al.,
2009; Drineas et al., 2006; Chhaya et al., 2020; Kacham
& Woodruff, 2020; Tukan et al., 2020), robust optimiza-
tion (Ding & Wang, 2020), Gaussian mixture model (Lucic
et al., 2017), and active learning (Coleman et al., 2020;
Sener & Savarese, 2018). Recently, (Maalouf et al., 2019)
also proposed the notion of “accurate” coresets, which do
not introduce any approximation error when compressing
the input dataset. Coresets are also applied to speed up large-
scale or distributed machine learning algorithms (Reddi
et al., 2015; Mirzasoleiman et al., 2020a;b; Borsos et al.,
2020).

Very recently, (Raj et al., 2020) also considered the “lo-
cal” heuristic for coresets. However, their results are quite
different from ours. Their method still relies on the problem-
dependent pseudo-dimension and the sensitivities; moreover,
their method requires the objective function to be strongly
convex.

Sketch. Another widely used data summarization method
is “sketch” (Phillips, 2016). Different from coresets, sketch
does not require to generate the summary from the orig-
inal input. The sketch technique is particularly popular
for solving linear regression problems (with and without
regularization) (Avron et al., 2017; Chowdhury et al., 2018).

2. Preliminaries
Given an instance of the ERM problem (1), we assume
that the loss function is Lipschitz smooth. This is a quite
common assumption for analyzing many gradient descent
methods (Wolfe, 1969).

Assumption 1 (Lipschitz Smoothness) There exists a
real constant L > 0, such that for any 1 ≤ i ≤ n and any
β1, β2 in the hypothesis space, we have

‖∇f(β1, xi, yi)−∇f(β2, xi, yi)‖ ≤ L‖β1 − β2‖, (4)

where ‖ · ‖ is the Euclidean norm in the space.

For simplicity, we just use ball to define the local region
for constructing our coreset as (3). Suppose we have the
“anchor” βanc ∈ Rd and region rangeR ≥ 0. Let B(βanc, R)
denote the ball centered at βanc with radius R. Below, we
provide the formal definition for the “local” coreset in (3).

Definition 1 (Local ε-Coreset) Let P = {(x1, y1),
(x2, y2),· · · , (xn, yn)} be an input dataset of the ERM
problem (1). Suppose ε ∈ (0, 1). Given βanc ∈ Rd and
R ≥ 0, the local ε-coreset, denoted CSε(βanc, R), is a vec-
tor W = [w1, w2, · · · , wn] satisfying that

F̃ (β) ∈ (1± ε)F (β), ∀β ∈ B(βanc, R), (5)

where F̃ (β) = 1∑n
i=1 wi

∑n
i=1 wif(β, xi, yi). The number

of non-zero entries of W is the size of CSε(βanc, R).

3. Local ε-Coreset Construction
We first present the construction algorithm for local ε-
coreset, and expose the detailed analysis on its quality in
Section 3.1. Besides the quality guarantee of (5), in Sec-
tion 3.2 we show that our coreset can approximately pre-
serve the gradient ∇F (β), which is an important property
for gradient descent algorithms. In Section 3.3, we discuss
some extensions beyond gradient descent. Relying on the lo-
cal ε-coreset, we propose the sequential coreset framework
and consider several important applications in Section 4.

Coreset construction. Let N = dlog ne (the basis of the
logarithm is 2 in this paper). Given the central point βanc ∈
Rd and the local region range (i.e., the radius) R ≥ 0,
we set H = F (βanc) and then partition the input dataset

Algorithm 1 Local ε-Coreset Construction
Input: A training dataset P = {(x1, y1),
(x2, y2), · · · , (xn, yn)}, the Lipschitz constant L
as described in Assumption 1, βanc ∈ Rd, and the
parameters R ≥ 0 and ε ∈ (0, 1).

1. Let N = dlog ne and H = F (βanc); initialize W =
[0, 0, · · · , 0] ∈ Rn.

2. The set P is partitioned into N + 1 layers
{P0, . . . , PN} as in (6) and (7).

3. For each Pj 6= ∅, 0 ≤ j ≤ N :

(a) take a random sample Qj from Pj uniformly
at random, where the size |Qj | depends on the
parameters ε, R, and L (the exact value will
be discussed in our following analysis in Sec-
tion 3.1);

(b) for each sampled data item (xi, yi) ∈ Qj , as-
sign the weight wi =

|Pj |
|Qj | ;

Output: the weight vector W = [w1, w2, · · · , wn] as
the coreset.

P = {(x1, y1), (x2, y2), · · · , (xn, yn)} into N + 1 layers:

P0 =
{

(xi, yi) ∈ P | f(βanc, xi, yi) ≤ H
}
, (6)

Pj =
{

(xi, yi) ∈ P | 2j−1H < f(βanc, xi, yi) ≤
2jH

}
, 1 ≤ j ≤ N. (7)

It is easy to see that P = ∪Nj=0Pj , since f(βanc, xi, yi)

is always no larger than 2NH for any 1 ≤ i ≤ n. For
each 0 ≤ j ≤ N , if Pj 6= ∅, we take a random sample
Qj from Pj uniformly at random, where the size |Qj | will
be determined in our following analysis (in Section 3.1);
for each sampled data item (xi, yi) ∈ Qj , we assign the
weight wi to be |Pj ||Qj | ; for all the data items of Pj \Qj , we
let their weights to be 0. At the end, we obtain the weight
vector W = [w1, w2, · · · , wn] as our coreset, and conse-
quently F̃ (β) = 1

n

∑n
i=1 wif(β, xi, yi) (it is easy to verify∑n

i=1 wi = n from our construction). The construction
procedure is shown in Algorithm 1.

Remark 1 Our layered sampling procedure in Algorithm 1
is similar to the coreset construction idea of (Chen, 2009;
Ding & Wang, 2020), which was originally designed for
the k-median/means clustering problems. Compared with
the sensitivity based coreset construction idea (Langberg &
Schulman, 2010), a significant advantage of our method
is that there is no need to compute the total sensitivity
bound and pseudo-dimension. These values are problem-
dependent and, for some objectives, they can be very high or

hard to obtain (Munteanu et al., 2018; Tukan et al., 2020).

3.1. Theoretical Analysis

In this section, we prove the quality guarantee and com-
plexity of the coreset returned from Algorithm 1. We
define two values before presenting our theorem, M :=
max

1≤i≤n
‖∇f(βanc, xi, yi)‖ and m := min

β∈B(βanc,R)
F (β).

Theorem 1 With problability 1 − 1
n , Algorithm 1

returns a qualified coreset CSε(βanc, R) with size

Õ

((
H+MR+LR2

m

)2

· dε2
)

1. Furthermore, when the vector

β is restricted to have at most k ∈ Z+ non-zero entries in
the hypothesis space Rd, the coreset size can be reduced

to be Õ
((

H+MR+LR2

m

)2

· k log d
ε2

)
. The runtime of Algo-

rithm 1 is O(n · tf), where tf is the time complexity for
computing the loss f(β, x, y).

Remark 2 From Theorem 1 we can see that the coreset size
depends on the initial vector βanc and the local region range
R. Also note that the value m is non-increasing with R.

First, the linear time complexity of Algorithm 1 is easy to
see: to obtain the partition and the samples, it just needs to
compute f(βanc, xi, yi) for 1 ≤ i ≤ n. Below, we focus
on proving the quality guarantee and coreset size. For the
sake of simplicity, we use fi(β) to denote f(β, xi, yi) in
our analysis. By using Taylor expansion and Assumption 1,
we directly have

fi(β) ∈ fi(βanc)±
(
‖∇fi(βanc)‖

R + L
2

)
R2. (8)

for any β ∈ B(βanc, R) and 1 ≤ i ≤ n. Then we have the
following lemma.

Lemma 1 We fix a vector β ∈ B(βanc, R) and an index j
from {0, 1, . . . , N}. Given any two numbers λ ∈ (0, 1) and
δ > 0, if we set the sample size in Step 3(a) of Algorithm 1
to be

|Qj | = O

(
(2j−1H +MR+ LR2)2δ−2 log

1

λ

)
, (9)

we have

Prob

∣∣∣∣∣∣ 1

|Qj |
∑

(xi,yi)∈Qj

fi(β)− 1

|Pj |
∑

(xi,yi)∈Pj

fi(β)

∣∣∣∣∣∣ ≥ δ
≤λ.

Proof. For a fixed 1 ≤ j ≤ N , we view fi(β) as an inde-
pendent random variable for each (xi, yi) ∈ Pj . Through

1Õ(g) := O
(
g · polylog

(
nHMR
εm

))
.

the partition construction (6) and (7), and the bounds (8),
we have

fi(β) ≥ 2j−1H −MR− 1

2
LR2;

fi(β) ≤ 2jH +MR+
1

2
LR2.

 (10)

Let the sample size |Qj | = d 1
2 (2j−1H + LR2 +

2MR)2δ−2ln 2
λe. Through the Hoeffding’s inequality (Ho-

effding, 1994), we know that

Prob

∣∣∣∣∣∣ 1

|Qj |
∑

(xi,yi)∈Qj

fi(β)− 1

|Pj |
∑

(xi,yi)∈Pj

fi(β)

∣∣∣∣∣∣ ≥ δ


is no larger than 2e
−

2|Qj |δ
2

(2j−1H+LR2+2MR)2 ≤ λ.

Now we consider the case j = 0. For any data item
(xi, yi) ∈ P0, we have 0 ≤ fi(β) ≤ H + MR + 1

2LR
2.

If letting the sample size |Q0| = d 1
2 (H + 1

2LR
2 +

MR)2δ−2ln 2
λe, it is easy to verify that the same probability

bound also holds. �

After proving Lemma 1, we further show F̃ (β) ≈ F (β) for
any fixed β ∈ B(βanc, R).

Lemma 2 Suppose ε1 ≥ 0. In Lemma 1, if we set
δ = ε12j−1H for j = 0, 1, · · · , N , then for any fixed
β ∈ B(βanc, R),∣∣∣F̃ (β)− F (β)

∣∣∣ ≤ 3

2
ε1F (βanc) (11)

holds with probability at least 1− (N + 1)λ.

Proof. From Lemma 1, it holds that the probability that∣∣∣∣∣∣ |Pj ||Qj |
∑

(xi,yi)∈Qj

fi(β)−
∑

(xi,yi)∈Pj

fi(β)

∣∣∣∣∣∣
≥ |Pj | · ε12j−1H (12)

is at most λ. Recall F̃ (β) = 1
n

∑n
i=1 wif(β, xi, yi), where

for each (xi, yi) ∈ Pj , wi =
|Pj |
|Qj | if (xi, yi) ∈ Qj , and

wi = 0 if (xi, yi) ∈ Pj \ Qj . Thus, by taking the union
bound of (12) over 0 ≤ j ≤ N , we have

n
∣∣∣F̃ (β)− F (β)

∣∣∣
=

∣∣∣∣∣∣
N∑
j=0

|Pj |
|Qj |

∑
(xi,yi)∈Qj

fi(β)−
N∑
j=0

∑
(xi,yi)∈Pj

fi(β)

∣∣∣∣∣∣
≤

N∑
j=0

∣∣∣∣∣∣ |Pj ||Qj |
∑

(xi,yi)∈Qj

fi(β)−
∑

(xi,yi)∈Pj

fi(β)

∣∣∣∣∣∣
≤

N∑
j=0

|Pj |ε12j−1H (13)

with probability at least (1− λ)N+1 > 1− (N + 1)λ. To
complete the proof, we also need the following claim.

Claim 1
∑N
j=0 |Pj |2j ≤ 3n.

Proof. By the definition of Pj , we have

2jH = H, if j = 0;

2jH ≤ 2fi(βanc),∀(xi, yi) ∈ Pj , if j ≥ 1.
(14)

Therefore, 2jH is always no larger than 2fi(βanc) +H for
any 0 ≤ j ≤ N and any (xi, yi) ∈ Pj . Overall,

N∑
j=0

|Pj |2jH =

N∑
j=0

∑
(xi,yi)∈Pj

2jH

≤
N∑
j=0

∑
(xi,yi)∈Pj

(2fi(βanc) +H)

= 2nF (βanc) + nH = 3nH.

(15)

Thus the claim
∑N
j=0 |Pj |2j ≤ 3n is true. �

By using Claim 1, (13) can be rewritten as

n
∣∣F̃ (β)− F (β)

∣∣ ≤ 3

2
ε1nF (βanc). (16)

So we complete the proof. �

To prove F̃ (β) is a qualified coreset, we need to extend
Lemma 2 to any β ∈ B(βanc, R). For this purpose, we
discretize the region B(βanc, R) first (the discretization is
only used for our analysis, and we do not need to build the
grid in reality). Imagine that we build a uniform grid inside
B(βanc, R) with the side length being equal to ε2R√

d
, where

the exact value of ε2 is to be determined later. Inside each
grid cell of B(βanc, R), we pick an arbitrary point as its
representative point and let G be the set consisting of all the
representative points. Based on the formula of the volume
of a ball in Rd, we have

|G| = O

((
2
√
πe

ε2

)d)
. (17)

So we can simply increase the sample size of Lemma 2, and
take the union bound over all β ∈ G so as to extend the
result as follows.

Lemma 3 Suppose ε1 ≥ 0. In the sample size (9) of
Lemma 1, we set δ = ε12j−1H for j = 0, 1, · · · , N , re-
spectively, and replace λ by λ

(N+1)|G| . The following

∣∣F̃ (β)− F (β)
∣∣ ≤ 3

2
ε1F (βanc) (18)

holds for any β ∈ G, with probability at least 1− λ.

Following Lemma 3, we further derive a uniform bound
over all β ∈ B(βanc, R) (not just in G). For any β ∈
B(βanc, R), we let β′ ∈ G be the representative point of
the cell containing β. Then we have ‖β − β′‖ ≤ ε2R. We
define M ′ := max1≤i≤n max

β∈B(βanc,R)
‖∇f(β, xi, yi)‖. By

Assumption 1 we immediately know M ′ ≤ M + LR. By
using the similar manner of (8), for any 1 ≤ i ≤ n we have∣∣fi(β)− fi(β′)

∣∣ ≤ ε2M ′R+
1

2
Lε22R

2. (19)

This implies both

|F (β)− F (β′)| and |F̃ (β)− F̃ (β′)|

≤ ε2M ′R+
1

2
Lε22R

2. (20)

Using triangle inequality, we obtain

|F̃ (β)− F (β)|
≤ |F̃ (β)− F̃ (β′)|+ |F̃ (β′)− F (β′)|

+|F (β′)− F (β)|

≤ 3

2
ε1F (βanc) + 2× (ε2M

′R+
1

2
Lε22R

2), (21)

where the last inequality follows from Lemma 3 (note
β′ ∈ G) and (20). By letting ε1 = 2mε

7F (βanc)
and ε2 =

2ε1F (βanc)

R
(√

M ′2+2Lε1F (βanc)+M ′
) , we have |F̃ (β) − F (β)| ≤

εF (β) via simple calculations. That is, the returned vector
W = [w1, w2, · · · , wn] is a qualified coreset CSε(βanc, R).

Last, it remains to specify the obtained coreset size. To
guarantee the success probability to be at least 1− 1/n, we
set λ = 1/n. Then we can compute the coreset size, i.e., the
number of non-zero entries of W , which equals

N∑
j=0

|Qj | = Õ

((
H +MR+ LR2

m

)2

· d
ε2

)
(22)

(by combining (9), with the selection of δ in Lemma 2, the
choice of λ in Lemma 3 along with (17), and the definition
of ε1).

For the case that β is restricted to have at most k non-zero
entries (i.e., sparse optimization) , we revisit the size |G|
in (17). For a d-dimensional vector, there are

(
d
k

)
differ-

ent combinations for the positions of the k non-zero en-
tries. Thus β can be only located in the union of

(
d
k

)
k-

dimensional subspaces (similar idea was also used for ana-
lyzing compressed sensing (Baraniuk et al., 2006)). In other
words, we just need to build the grid (only for the sake of
analysis) in the union of

(
d
k

)
k-dimensional balls instead

of the whole B(βanc, R). Consequently, the new size |G|

is O
((

d
k

)
·
(

2
√
πe
ε2

)k)
, and the coreset size is reduced to

Õ

((
H+MR+LR2

m

)2

· k log d
ε2

)
.

3.2. Gradient Preservation

Besides the quality guarantee (5), our local coreset also
enjoys another favorable property. In this section, we show
that the gradient ∇F̃ (β) can be approximately preserved
as well, i.e., ∇F̃ (β) ≈ ∇F (β) for any β ∈ B(βanc, R).
Because the trajectory of β is guided by the gradients, this
property gives a hint that our eventually obtained β is likely
to be close to the optimal hypothesis β∗ (we also validate
this property in our experiments). In some scenarios like
statistical inference and parameter estimation, we expect to
achieve not only an almost minimal loss F (β), but also a
small difference between β and β∗.

Given a vector v ∈ Rd, we use v[l] to denote its l-th coor-
dinate value, for l = 1, 2, . . . , d. Under Assumption 1, we
obtain (similar with (8)), for any 1 ≤ i ≤ n,

∇fi(β)[l] ∈ ∇fi(βanc)[l] ± LR. (23)

We can apply a similar line of analysis as in Section 3.1 to
obtain Theorem 2. We need the following modifications.
First, we need to change the sample size Qj (and similarly
the total coreset size in (22)) of Algorithm 1 because we now
consider a different objective. Also, we achieve an additive
error for the gradient, instead of the (1± ε)-multiplicative
error as (5). The reason is that the gradient can be almost
equal to 0, if the solution approaches to a local or global
optimum (but the objective value (1) is usually not equal to
0, e.g., we often add a non-zero penalty item to the objective
function).

Theorem 2 Let σ > 0 be any given small number. With
probability 1 − 1

n , Algorithm 1 can return a vector W

with Õ
(
L2R2

σ2 · d
)

non-zero entries, such that for any

β ∈ B(βanc, R) and 1 ≤ l ≤ d,

∇F̃ (β)[l] ∈ ∇F (β)[l] ± σ. (24)

Furthermore, if the vector β is restricted to have at most
k ∈ Z+ non-zero entries in the hypothesis space Rd, the
number of non-zero entries of W can be reduced to be
Õ
(
L2R2

σ2 · k log d
)

.

Remark 3 If we want to guarantee both Theorem 1 and 2,
we can just set the coreset size as the maximum over both
cases.

3.3. Beyond Gradient Descent

In Section 3.1, our analysis relied on the fact that the func-
tion f(β, xi, yi) is differentiable. However, for some ERM
problems, the loss function can be non-differentiable. A rep-
resentative example is the l1-norm regularized regression,
such as (Tibshirani, 1996; Lee et al., 2006). We consider
the lp regularized regression with 0 < p ≤ 2. Given a

regularization parameter λ > 0, the objective function can
be written as

F (β) =
1

n

n∑
i=1

g(β, xi, yi) + λ‖β‖p, (25)

where the function g(β, xi, yi) is assumed to be differ-
entiable and satisfy Assumption 1. We can easily cast
(25) to have the form of (1) by setting f(β, xi, yi) =
g(β, xi, yi) + λ‖β‖p.

First, we note that problem (25) is usually solved by gener-
alizations of gradient descent method, such as subgradient
methods (Bertsekas, 2015) and proximal gradient meth-
ods (Mosci et al., 2010). The key point is that these al-
gorithms also enjoy the locality property described in Sec-
tion 1.1. Thus, a natural question arises whether we can
build a local coreset for (25) as well.

We answer this question in the affirmative. In (8), we pro-
vide the upper and lower bounds of fi(β) (i.e., f(β, xi, yi))
for the non-differentiable case (25). For 0 < p ≤ 2,
by using the Hölder’s inequality we obtain the similar
bounds for non-differentiable case : fi(β) ∈ fi(βanc) ±((
‖∇gi(βanc)‖

R + L
2

)
R2 + λd1/p−1/2

n R
)

. After replacing
(8) by these bounds, we can proceed the same analysis
in Section 3.1 and attain a similar result with Theorem 1.

4. Sequential Coreset Framework and
Applications

The local ε-coreset constructed in Section 3 can be directly
used for compressing input data. However, the trajectory of
the hypothesis β (although enjoying the locality property)
may span a relatively large range globally in the space. As
discussed in Remark 2, the coreset size depends on the pre-
specified local region range. Therefore, the coreset size can
be high, if we want to build in one shot a local coreset that
covers the whole trajectory. This motivates us to propose
the sequential coreset framework (see Algorithm 2).

In each round of Algorithm 2, we build the local coreset
CSε(βt, R) and run the “host” algorithmA on it until either
(i) the result becomes stable inside B(βt, R) or (ii) the hy-
pothesis β reaches the boundary of B(βt, R)2. For (i), we
just terminate the algorithm and output the result; for (ii),
we update βt and proceed the next iteration.

Following the sequential coreset framework, we consider its
applications for several ERM problems in machine learning.

Ridge regression. In the original linear regression problem,
the data space X = Rd and the response space Y = R, and
the goal is to find a vector β ∈ Rd such that the objective

2In practice, we can set a small number σ ∈ (0, 1) and deduce
that the boundary is reached when ‖βt − β‖ > (1− σ)R.

Algorithm 2 Sequential Coreset Framework
Input: An instance P = {(x1, y1), (x2, y2), · · · ,
(xn, yn)} of the ERM problem (1) with the initial so-
lution β0 and range R > 0, an available gradient descent
algorithm A as the “host”, and the parameter ε ∈ (0, 1).

1. For t = 0, 1, . . ., build the local coreset CSε(βt, R)
and run the host algorithm A on it until:

(a) if the result becomes stable inside B(βt, R),
terminate the loop and return the current β;

(b) else, the current β reaches the boundary of
B(βt, R), and then set βt+1 = β and t = t+ 1.

function F (β) = 1
n

∑n
i=1 |〈xi, β〉 − yi|2 is minimized. For

Ridge regression (Tikhonov, 1998), we add a squared l2-
norm penalty and the objective function becomes

F (β) =
1

n

n∑
i=1

|〈xi, β〉 − yi|2 + λ‖β‖22, (26)

where λ > 0 is a regularization parameter. Consequently,
the loss function f(β, xi, yi) of (26) is taken as |〈xi, β〉 −
yi|2 + λ‖β‖22.

Lasso regression. Another popular regularized regression
model is Lasso (Tibshirani, 1996). Compared to (26), the
only difference is that we use an l1-norm penalty i.e.,

F (β) =
1

n

n∑
i=1

|〈xi, β〉 − yi|2 + λ‖β‖1, (27)

where λ > 0 is a regularization parameter. The loss function
f(β, xi, yi) of (27) is |〈xi, β〉−yi|2 +λ‖β‖1. A key advan-
tage of Lasso is that the returned β is a sparse vector. The
objective function (27) is not differentiable, but it can still
be solved by our sequential coreset framework as discussed
in Section 3.3.

Logistic regression. For Logistic regression, the response
is binary, i.e., yi = 0 or 1 (Cramer, 2004). The objective
function

F (β) = − 1

n

n∑
i=1

{
yi log g(〈xi, β〉) +

(1− yi) log
(
1− g(〈xi, β〉)

)}
, (28)

where g(t) := 1
1+e−t (the logistic function). We may add

an l1 or l2-norm penalty to (28), in the same way as (26) and
(27). The loss function f(β, xi, yi) for Logistic regression
is −yi log g(〈xi, β〉)− (1− yi) log

(
1− g(〈xi, β〉)

)
.

Gaussian Mixture Model (GMM). As emphasized be-
fore, our local coreset method does not require the objec-
tive function to be convex. Here, we consider a typical

non-convex example: GMM training (Bishop, 2006). A
mixture of k Gaussian kernels is represented with β :=
[(ω1, µ1,Σ1), . . . , (ωk, µk,Σk)], where ω1, . . . , ωk ≥ 0,∑k
j=1 ωj = 1, and each (µj ,Σj) is the mean and covari-

ance matrix of the j-th Gaussian in RD. GMM is an un-
supervised learning problem, where the training dataset
contains {x1, · · · , xn} ⊂ RD, and the goal is to minimize
the objective function

F (β) = − 1

n

n∑
i=1

log
(k∑
j=1

ωjN (xi, µj ,Σj)
)
, (29)

where N (xi, µj ,Σj) is 1√
(2π)D|Σj |

exp(− 1
2 (xi −

µj)
TΣ−1

j (xi − µj)); so f(xi, β) =

− log
(∑k

j=1 ωjN (xi, µj ,Σj)
)

for (29). It is worth
noting that (29) is differentiable and Lipschitz smooth
and thus can be solved via the gradient descent method.
However, the expectation-maximization (EM) method
is more popular due to its simplicity and efficiency for
GMM training. Moreover, the EM method also has the
locality property in practice. In our experiment, we still use
Algorithm 2 to generate the sequential coreset, but run the
EM algorithm as the “host” algorithm A.

5. Experimental Evaluation
We evaluate the performance of our sequential coreset
method for the applications mentioned in Section 4. All
results were obtained on a server equipped with 2.4GHz
Intel CPUs and 256GB main memory; the algorithms were
implemented in Python. We consider Ridge and Lasso
regression first. APPLIANCES ENERGY is a dataset for pre-
dicting energy consumption which contains 19735 points
in R29 (Candanedo et al., 2017). FACEBOOK COMMENT
is a dataset for predicting comment which contains 602813
points in R54 (Singh et al., 2015). Furthermore, we generate
a synthetic dataset of 106 points in R50; each point is ran-
domly sampled from the linear equation y = 〈h, x〉, where
each coefficient of h is sampled from [−5, 5] uniformly at
random; for each data point we also add a Gaussian noise
N (0, 4) to y.

Compared methods. As the host algorithm A in Algo-
rithm 2, we apply the standard gradient descent algorithm.
Fixing a coreset size, we consider several different data
compression methods for comparison. (1) ORIGINAL: di-
rectly run A on the original input data; (2) UNISAMP: the
simple uniform sampling; (3) IMPSAMP: the importance
sampling method (Tukan et al., 2020); (4) SEQCORE-R:
our sequential coreset method with a specified region range
R; (5) ONESHOT: build the local coreset as Algorithm 1 in
one-shot (without using the sequential idea)3.

3For ONESHOT, we do not need to specify the range R, if

Results. We consider three metrics to measure the perfor-
mance: (1) the total loss, (2) the normalized error to the
optimal β∗ (let Errorβ = ‖β−β∗‖2

‖β∗‖2 where β is the obtained
solution and β∗ is the optimal solution obtained from ORIG-
INAL), and (3) the normalized runtime (over the runtime
of ORIGINAL). The results of Ridge regression are shown
in Figures 2, 3 and 4 (averaged across 10 trials). We can
see that in general our proposed sequential coreset method
has better performance on the loss and Errorβ , though
sometimes it is slightly slower than IMPSAMP if we set R
to be too small. UNISAMP is always the fastest one (be-
cause it is just simple uniform sampling), but at the cost
of inferior performance in total loss and model estimate
error. ONESHOT is faster than SEQCORE-R but often has
worse loss and error. Similar results of Lasso regression are
shown in Figure 5 and 6. Due to the space limit, more de-
tailed experimental results (including the results on Logistic
regression and GMM) are shown in our full paper.

6. Conclusions and Future Work
Based on the simple observation of the locality property, we
propose a novel sequential coreset framework for reducing
the complexity of gradient descent algorithms and some
relevant variants. Our framework is easy to implement and
has provable quality guarantees. Due to the space limit, we
place some omitted proofs and more experimental results
to our full paper. Following this work, it is interesting to
consider building coresets for other optimization methods,
such as the popular stochastic gradient descent method as
well as second order methods.

7. Acknowledgements
The authors would like to thank Mingyue Wang and the
anonymous reviewers for their helpful discussions and sug-
gestions on improving this paper. This work was supported
in part by the Ministry of Science and Technology of China
through grant 2019YFB2102200, the Anhui Dept. of Sci-
ence and Technology through grant 201903a05020049, and
Tencent Holdings Ltd through grant FR202003.

References
Avron, H., Clarkson, K. L., and Woodruff, D. P. Sharper

bounds for regularized data fitting. In Approximation,
Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques, APPROX/RANDOM 2017, vol-
ume 81, pp. 27:1–27:22, 2017.

Baraniuk, R., Davenport, M., DeVore, R., and Wakin, M.

we fix the coreset size. The range is only used for our sequential
coreset method because we need to re-build the coreset when β
reaches the boundary.

2 4 6 8 10
Coreset Size (*102)

0.0086

0.0088

0.0090

0.0092

0.0094

0.0096

L
o

s
s

Original

OneShot

UniSamp

SeqCore-0.001

SeqCore-0.005

SeqCore-0.01

SeqCore-0.05

ImpSamp

2 4 6 8 10
Coreset Size (*102)

0.2

0.4

0.6

0.8

1.0

E
rr

o
r β

OneShot

UniSamp

SeqCore-0.001

SeqCore-0.005

SeqCore-0.01

SeqCore-0.05

ImpSamp

2 4 6 8 10
Coreset Size (*102)

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

N
o

rm
a

liz
e

d
 R

u
n

ti
m

e

OneShot

UniSamp

SeqCore-0.001

SeqCore-0.005

SeqCore-0.01

SeqCore-0.05

ImpSamp

Figure 2. The experimental results on APPLIANCES ENERGY for Ridge regression (λ = 0.01).

102 103 104

Coreset Size

0.00023

0.00024

0.00025

0.00026

0.00027

0.00028

L
o

s
s

Original

OneShot

UniSamp

SeqCore-0.001

SeqCore-0.005

SeqCore-0.01

SeqCore-0.05

ImpSamp

102 103 104

Coreset Size

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

o
r β

OneShot

UniSamp

SeqCore-0.001

SeqCore-0.005

SeqCore-0.01

SeqCore-0.05

ImpSamp

102 103 104

Coreset Size

0.000

0.005

0.010

0.015

0.020

0.025

N
o

rm
a

liz
e

d
 R

u
n

ti
m

e

OneShot

UniSamp

SeqCore-0.001

SeqCore-0.005

SeqCore-0.01

SeqCore-0.05

ImpSamp

Figure 3. The experimental results on FACEBOOK COMMENT for Ridge regression (λ = 0.01).

102 103 104

Coreset Size

9

10

11

12

13

L
o

s
s

Original

OneShot

UniSamp

SeqCore-0.5

SeqCore-1

SeqCore-5

SeqCore-10

ImpSamp

102 103 104

Coreset Size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

E
rr

o
r β

OneShot

UniSamp

SeqCore-0.5

SeqCore-1

SeqCore-5

SeqCore-10

ImpSamp

102 103 104

Coreset Size

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

N
o

rm
a

liz
e

d
 R

u
n

ti
m

e

OneShot

UniSamp

SeqCore-0.5

SeqCore-1

SeqCore-5

SeqCore-10

ImpSamp

Figure 4. The experimental results on the synthetic dataset for Ridge regression (λ = 0.01)

2 4 6 8 10
Coreset Size (*102)

0.018

0.019

0.020

0.021

0.022

0.023

0.024

0.025

L
o

s
s

Original

OneShot

UniSamp

SeqCore-0.001

SeqCore-0.005

SeqCore-0.01

SeqCore-0.05

ImpSamp

2 4 6 8 10
Coreset Size (*102)

0.2

0.4

0.6

0.8

1.0

1.2

E
rr

o
r β

OneShot

UniSamp

SeqCore-0.001

SeqCore-0.005

SeqCore-0.01

SeqCore-0.05

ImpSamp

2 4 6 8 10
Coreset Size (*102)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
o

rm
a

liz
e

d
 R

u
n

ti
m

e

OneShot

UniSamp

SeqCore-0.001

SeqCore-0.005

SeqCore-0.01

SeqCore-0.05

ImpSamp

Figure 5. The experimental results on APPLIANCES ENERGY for Lasso regression (λ = 0.01).

102 103 104

Coreset Size

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

L
o

s
s

Original

OneShot

UniSamp

SeqCore-0.001

SeqCore-0.005

SeqCore-0.01

SeqCore-0.05

ImpSamp

102 103 104

Coreset Size

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

E
rr

o
r β

OneShot

UniSamp

SeqCore-0.001

SeqCore-0.005

SeqCore-0.01

SeqCore-0.05

ImpSamp

102 103 104

Coreset Size

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

N
o

rm
a

liz
e

d
 R

u
n

ti
m

e

OneShot

UniSamp

SeqCore-0.001

SeqCore-0.005

SeqCore-0.01

SeqCore-0.05

ImpSamp

Figure 6. The experimental results on FACEBOOK COMMENT for Lasso regression (λ = 0.01).

The johnson-lindenstrauss lemma meets compressed sens-
ing. preprint, 100(1):1–9, 2006.

Beck, A. and Teboulle, M. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM
Journal on Imaging Sciences, 2(1):183–202, 2009.

Bertsekas, D. P. Convex Optimization Algorithms. Athena
Scientific Belmont, MA, 2015.

Bishop, C. M. Pattern recognition and machine learning.
springer, 2006.

Borsos, Z., Mutny, M., and Krause, A. Coresets via
bilevel optimization for continual learning and streaming.
In Advances in Neural Information Processing Systems,
NeurIPS, 2020.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. SIAM Rev., 60
(2):223–311, 2018.

Campbell, T. and Beronov, B. Sparse variational infer-
ence: Bayesian coresets from scratch. In Wallach, H. M.,
Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox,
E. B., and Garnett, R. (eds.), Advances in Neural Infor-
mation Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
11457–11468, 2019.

Campbell, T. and Broderick, T. Bayesian coreset construc-
tion via greedy iterative geodesic ascent. In Dy, J. G.
and Krause, A. (eds.), Proceedings of the 35th Interna-
tional Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research,
pp. 697–705. PMLR, 2018.

Candanedo, L. M., Feldheim, V., and Deramaix, D. Data
driven prediction models of energy use of appliances in
a low-energy house. Energy and buildings, 140:81–97,
2017.

Chen, K. On coresets for k-median and k-means clustering
in metric and euclidean spaces and their applications.
SIAM Journal on Computing, 39(3):923–947, 2009.

Chhaya, R., Dasgupta, A., and Shit, S. On coresets for reg-
ularized regression. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML, volume
119, pp. 1866–1876, 2020.

Chowdhury, A., Yang, J., and Drineas, P. An iterative,
sketching-based framework for ridge regression. In Pro-
ceedings of the 35th International Conference on Ma-
chine Learning, ICML, volume 80, pp. 988–997, 2018.

Coleman, C., Yeh, C., Mussmann, S., Mirzasoleiman, B.,
Bailis, P., Liang, P., Leskovec, J., and Zaharia, M. Selec-
tion via proxy: Efficient data selection for deep learning.
In 8th International Conference on Learning Representa-
tions, ICLR. OpenReview.net, 2020.

Cramer, J. S. The early origins of the logit model. Studies
in History and Philosophy of Science Part C: Studies in
History and Philosophy of Biological and Biomedical
Sciences, 35(4):613 – 626, 2004.

Curry, H. B. The method of steepest descent for non-linear
minimization problems. Quart. Appl. Math., 2:258–261,
1944.

Dasgupta, A., Drineas, P., Harb, B., Kumar, R., and Ma-
honey, M. W. Sampling algorithms and coresets for `p
regression. SIAM Journal on Computing, 38(5):2060–
2078, 2009.

Ding, H. and Wang, Z. Layered sampling for robust opti-
mization problems. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML, volume
119, pp. 2556–2566, 2020.

Drineas, P., Mahoney, M. W., and Muthukrishnan, S. Sam-
pling algorithms for l2 regression and applications. In
Proceedings of the 17th annual ACM-SIAM symposium
on Discrete algorithms, pp. 1127–1136, 2006.

Duchi, J. C., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
J. Mach. Learn. Res., 12:2121–2159, 2011.

Feldman, D. Core-sets: An updated survey. Wiley Interdis-
cip. Rev. Data Min. Knowl. Discov., 10(1), 2020.

Feldman, D. and Langberg, M. A unified framework for
approximating and clustering data. In Proceedings of the
43rd ACM Symposium on Theory of Computing, STOC,
pp. 569–578, 2011.

Gonzalez, T. F. Clustering to minimize the maximum in-
tercluster distance. Theoretical Computer Science, 38:
293–306, 1985.

Hoeffding, W. Probability inequalities for sums of bounded
random variables. In The Collected Works of Wassily
Hoeffding, pp. 409–426. Springer, 1994.

Huang, L., Jiang, S., Li, J., and Wu, X. Epsilon-coresets for
clustering (with outliers) in doubling metrics. In IEEE
59th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 814–825, 2018.

Huggins, J., Campbell, T., and Broderick, T. Coresets for
scalable bayesian logistic regression. In Advances in
Neural Information Processing Systems, pp. 4080–4088,
2016.

Kacham, P. and Woodruff, D. P. Optimal deterministic
coresets for ridge regression. In The 23rd International
Conference on Artificial Intelligence and Statistics, AIS-
TATS, volume 108, pp. 4141–4150, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic op-
timization. In 3rd International Conference on Learning
Representations, ICLR, 2015.

Langberg, M. and Schulman, L. J. Universal ε-
approximators for integrals. In Proceedings of the twenty-
first annual ACM-SIAM symposium on Discrete Algo-
rithms, pp. 598–607. SIAM, 2010.

Lee, S., Lee, H., Abbeel, P., and Ng, A. Y. Efficient L1 reg-
ularized logistic regression. In Proceedings, The 21st Na-
tional Conference on Artificial Intelligence and the 18th
Innovative Applications of Artificial Intelligence Confer-
ence, pp. 401–408. AAAI Press, 2006.

Li, Y., Long, P. M., and Srinivasan, A. Improved bounds on
the sample complexity of learning. Journal of Computer
and System Sciences, 62(3):516–527, 2001.

Lucic, M., Faulkner, M., Krause, A., and Feldman, D. Train-
ing Gaussian mixture models at scale via coresets. The
Journal of Machine Learning Research, 18(1):5885–5909,
2017.

Maalouf, A., Jubran, I., and Feldman, D. Fast and accurate
least-mean-squares solvers. In Annual Conference on
Neural Information Processing Systems, NeurIPS, pp.
8305–8316, 2019.

Mirzasoleiman, B., Bilmes, J. A., and Leskovec, J. Coresets
for data-efficient training of machine learning models.
In Proceedings of the 37th International Conference on
Machine Learning, ICML, volume 119, pp. 6950–6960,
2020a.

Mirzasoleiman, B., Cao, K., and Leskovec, J. Coresets
for robust training of deep neural networks against noisy
labels. In Annual Conference on Neural Information
Processing Systems 2020, NeurIPS, 2020b.

Mosci, S., Rosasco, L., Santoro, M., Verri, A., and Villa, S.
Solving structured sparsity regularization with proximal
methods. In European Conference on Machine Learning
and Knowledge Discovery in Databases ECML PKDD,
volume 6322, pp. 418–433, 2010.

Munteanu, A., Schwiegelshohn, C., Sohler, C., and
Woodruff, D. On coresets for logistic regression. In
Advances in Neural Information Processing Systems, pp.
6561–6570, 2018.

Nesterov, Y. A method of solving a convex programming
problem with convergence rate O(1/k2). Soviet Mathe-
matics Doklady, 27(2):372–376, 1983.

Phillips, J. M. Coresets and sketches. Computing Research
Repository, 2016.

Raj, A., Musco, C., and Mackey, L. Importance sampling
via local sensitivity. In Chiappa, S. and Calandra, R.
(eds.), The 23rd International Conference on Artificial
Intelligence and Statistics, AISTATS 2020, volume 108
of Proceedings of Machine Learning Research, pp. 3099–
3109. PMLR, 2020.

Reddi, S. J., Póczos, B., and Smola, A. J. Communication
efficient coresets for empirical loss minimization. In
Meila, M. and Heskes, T. (eds.), Proceedings of the Thirty-
First Conference on Uncertainty in Artificial Intelligence,
UAI 2015, pp. 752–761. AUAI Press, 2015.

Samadian, A., Pruhs, K., Moseley, B., Im, S., and Curtin,
R. R. Unconditional coresets for regularized loss mini-
mization. In The 23rd International Conference on Artifi-
cial Intelligence and Statistics, AISTATS, volume 108, pp.
482–492, 2020.

Sener, O. and Savarese, S. Active learning for convolutional
neural networks: A core-set approach. In 6th Interna-
tional Conference on Learning Representations, ICLR.
OpenReview.net, 2018.

Singh, K., Sandhu, R. K., and Kumar, D. Comment volume
prediction using neural networks and decision trees. In
IEEE UKSim-AMSS 17th International Conference on
Computer Modelling and Simulation, UKSim2015 (UK-
Sim2015), Cambridge, United Kingdom, mar 2015.

Tibshirani, R. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society. Series B
(Methodological), 58(1):267–288, 1996.

Tikhonov, A. Nonlinear ill-posed problems. Applied Mathe-
matical Sciences, 1998.

Tukan, M., Maalouf, A., and Feldman, D. Coresets for
near-convex functions. In Annual Conference on Neural
Information Processing Systems, NeurIPS, 2020.

Vapnik, V. Principles of risk minimization for learning
theory. In Advances in Neural Information Processing
Systems 4, [NIPS, pp. 831–838, 1991.

Wolfe, P. Convergence conditions for ascent methods. SIAM
Rev., 11(2):226–235, 1969.

Wolsey, L. A. An analysis of the greedy algorithm for the
submodular set covering problem. Comb., 2(4):385–393,
1982.

